

Master JEE CLASSES Kukatpally, Hyderabad.

IIT-JEE-MAINS PAPER-4

Max.Marks:360

IMPORTANT INSTRUCTIONS:

- 1) Immediately fill in the particulars on this page of the Test Booklet with Blue/Black Ball Point Pen. Use of pencil is strictly prohibited.
- 2) The test is of 3 hours duration.
- 3) The Test Booklet consists of 90 questions. The maximum marks are 360.
- There are three parts in the question paper A, B, C consisting of Mathematics, Chemistry and Physics having 30 questions in each part of equal weight age. Each question is allotted 4 (four) marks for correct response.
- Candidates will be awarded marks as stated above in instruction No. 4 for correct response of each question. (1/4) (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 6) There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instruction 5 above.

SYLLABUS

MATHS:

Transformation formulae, Conditional Identities, Graphs of Trigonometric Functions, Periodicity and extreme values (30%); Trigonometric Equations (70%) **CHEMISTRY:**

Enthalpy of reaction - different types of enthalpies, Hess's law, Effect of temperature on enthalpy of reaction - Kirchhoff's equation, Hess's law and its applications, Determination of enthalpy of hydration of CuSO4, Resonance energy, Limitations of first law of thermodynamics; Second law of Thermodynamics; Carnot cycle, efficiency of thermodynamic system ,Entropy - physical significance, expressions in all types of processes ,Gibb's free energy - physical significance, spontaneity of processes(70%) Thermodynamics: Terms involved in thermodynamics - System & Surrounding, Extensive and Intensive Properties, Path and State function, types of processes, First law of thermodynamics, Reversible and irreversible processes; Work - expressions for reversible, irreversible isothermal and adiabatic processes, Heat and Heat capacity, Thermo chemistry: Enthalpy(30%) **PHYSICS:**

Non - uniform accelerated motion in 1D & related graphs, Motion in 2D, Projectile motion (Excluding projection on inclined

planes) (70%)

Kinematics: Motion in 1D, Uniform motion, uniform accelerated motion, motion under gravity and related graphs (30%) Cumulative syllabus covered till now (10%)

		<i>.</i> .		
	3) 3 4) 4			
	1) 1 2) 2		3) 1	4) 4
	$ \sin 2x + \cos 2x = \sin y $ is		1) 0	2) 2
	satisfying the equations		$\cos(sinx) = \sin(sinx)$	$(\cos x)$, $x \in [-2\pi, 2\pi]$
4.	The number of values of <i>y</i> in[-	$-2\pi,2\pi$] 8.	Number of sol	lutions of
	3) 6 4) 0		3) $\frac{17\pi}{6}$	4) $\frac{3\pi}{6}$
	1) 2 2) 4		-' 6 17	-, 6
	$\sin x + \sin y = \sin(x+y) \ and x $	+ y =1	1) $\frac{11\pi}{1}$	2) $\frac{13\pi}{1}$
3.	No of solutions of		A+B=	
	3) π 4) $\frac{3\pi}{2}$		values satisfyi	ing both the equations
	2		and A and R a	$\sqrt{2}$
	1) $\frac{\pi}{2}$ 2) 0	7.	If $Tan(A-B) =$	= 1, and $Sec(A+B) = \frac{+2}{\sqrt{2}}$
	$2\cos^2 x + \cos^2 2x = 1 \Big\}, x \in [-\pi, \pi]$	τ	3) 6	4) 8
	$\cos 2x + \sin 2x = \cot x$		1) 2	2) 4
۷.	simultaneous equations		$\log_{ \cos x } \sin x + 1$	$\log_{ \sin x } \cos x = 2$
2	4 4 Sum of the common solutions	of the	$(-2\pi,2\pi)$ sati	isfying
	3) $\frac{\sqrt{16-\pi^2}}{4}$ 4) $\frac{\pi}{4}$	6.	The total num	ber of values of x in
	1) $\frac{1}{\sqrt{2}}$ 2) 1		3) 7	4) 9
			1) 3	2) 5
	is		$x \in (-2\pi, 5\pi)$	_
1.	If $\sin(\sin x + \cos x) = \cos(\cos x - \sin x)$ then the largest possible value	$\inf x$	$f(x) = Max \{si$	$ in x, \cos x = \frac{1}{2} in $
1	<u>MATHS</u>	5.	Total no of so	lutions of the equation,

Γ

		space for roug	n wo	ЭГК	rage s
		contra for rous	 	<u> </u>	
				3) 2	(2) 1 (1) (2)
				IS 1) 0	2) 1
	Sec θ + Cosec θ = C 1	nas		$\sin x = \lfloor 1 + \sin x \rfloor + \lfloor 1$	$-\cos x$ $\lim \left[-2\pi, 2\pi\right]$
13.	$(0,2\pi)$, the equ	lation		tunction then numb	er of solutions of $\cos x^2$ in $\begin{bmatrix} 2\pi & 2\pi^2 \end{bmatrix}$
10	(0,2) (1)		1/.	II [] denotes the gr	reatest integer
	3) $\frac{3}{4} + \frac{\pi}{4}$	4) $\frac{1}{2} + \frac{5\pi}{4}$	17	3) 10	4) 0
	2 4	2 4		1) 3	2) 6
	1) $\frac{1}{2} + \frac{7\pi}{1}$	2) $\frac{1}{2} + \frac{3\pi}{3\pi}$		$Tan^2x - Sec^{10}x + 1 = 0$	in (0,10) is
	equation $\sqrt{\sin(1-x)}$	$=\sqrt{\cos x}$ is	16.	The number of solu	tions of the equation
12.	The smallest positiv	ve root of the		3) (22,8)	4) (11,4)
	3) 5	4) 6		1) (6,2)	2) (8,3)
	1) 3	2) 4		pair(a,b) can be	
	$y = \cos x, y = \sin x$	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$		and $\sin 2x = a - b\sqrt{7}$,then the ordered
	the $y = \cos x$ $y = \sin x$	$3r$ in $\pi < r < \pi$	15.	If $\sin x + \cos x + \tan x + \frac{1}{2}$	$-\cot x + \sec x + \cos ecx = 7$
11.	The number of poin	ts of intersection of		3) 5	4) 6
	3) 2	4) infinite		1) 3	2) 4
	1) 0	2) 1		$\left \sin x\right \sin y = -\frac{1}{4},\cos y = -\frac{1}{4}$	$S(x+y) + cos(x-y) = \frac{3}{2}$
	equation $sin(e^x).cos$	$(e^x) = 2^{x-2} + 2^{-x-2}$		of solutions of the s	ystem of equations
10.	The number of real	solutions of the	14.	If $x \in (0, 2\pi)$ and $y \in \mathbb{C}$	$(\pi, 2\pi)$, the number
	3) $\frac{9\pi}{7}, \frac{\pi}{4}$	4) $\frac{3\pi}{12}, \frac{\pi}{4}$	1.4	3) (3,3)	4) (3,5)
	12'6	¹ 12 ³		1) (4,2)	2) (2,4)
	1) $\frac{5\pi}{\pi}$	2) $\frac{7\pi}{\pi}$		(x_1, x_2) 1S	
	<i>y</i> satisfying $x - y =$	$=\frac{\pi}{4}, \cot x + \cot y = 2$		solutions if $C^2 > 8$,	the ordered pair
9.	The smallest positiv	e values of x and		x_1 solutions if $C^2 < 8$	8 and has x_2
0		a values of and	1	a = 1 = t = a = 1	

18. The number of solutions of 22. If $a\cos^2 3\alpha + b\cos^4 \alpha = 16\cos^6 \alpha + 9\cos^2 \alpha$ is identity, then $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$ satisfying 1) a = 1, b = 24 2) a = 3, b = 24 $(\sqrt{3})^{\sec^2\theta} = \tan^4\theta + 2\tan^2\theta$ is 3) a = 4, b = 2 4) a = 7, b = 181) 4 2) 2 23. If 4) 3 3)1 $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3} \right) + \cos x \cos \left(x + \frac{\pi}{3} \right)$ $\frac{\sec^4\theta}{a} + \frac{\tan^4\theta}{b} = \frac{1}{a+b}$, then 19. and $g\left(\frac{5}{4}\right) = 1$, then $gof\left(\frac{\pi}{8}\right) =$ 1) |b| < |a|2) |a| = |b|1) $\frac{5}{4}$ 2)1 3) |b| > |a| 4) $\left|\frac{b}{a}\right| = 2$ 3) 2 4) π 20. If $[\sin x] + [\sqrt{2}\cos x] = -3, x \in [0, 2\pi]$ 24. If $u_n = \sin n\theta \sec^n \theta, v_n = \cos n\theta \sec^n \theta \neq 1$ where [] is the greatest integer then $\frac{\mathbf{v}_n - \mathbf{v}_{n-1}}{\mathbf{u}_{n-1}} + \frac{1}{n} \frac{\mathbf{u}_n}{\mathbf{v}_n}$ is equal to function , then $x \in$ 1) $\left\lfloor \frac{5\pi}{4}, 2\pi \right\rfloor$ 2) $\left(\frac{5\pi}{4}, 2\pi \right)$ 1)02) tan θ 3) $-\tan\theta + \frac{\tan n\theta}{n}$ 4) $\tan\theta + \frac{\tan n\theta}{n}$ 3) $\left(\pi, \frac{5\pi}{4}\right)$ 4) $\left[\pi, \frac{5\pi}{4}\right]$ 25. If $K_1 = \tan 27\theta - \tan \theta$ and 21. T he number of solutions in $x \in [0, 2\pi]$ $K_2 = \frac{\sin\theta}{\cos 3\theta} + \frac{\sin 3\theta}{\cos 9\theta} + \frac{\sin 9\theta}{\cos 27\theta}$, then for which 1) $K_1 = 2K_2$ 2) $K_1 = K_2 + 4$ $\lceil \sin x + \cos x \rceil = 3 + \lceil -\sin x \rceil + \lceil -\cos x \rceil$ 3) $K_1 = K_2$ 4) None of these ([] is greatest integer function) 26. If $\alpha, \beta, \gamma, \delta$ are the smallest positive angles 1)02)4 in ascending order of magnitude which 3) infinite 4) 1 space for rough work Page 4

	have their sines equ	al to the positive	29.	If $a_1 \cos \alpha_1 + a_2 \cos \alpha_2 + \dots + a_n \cos \alpha_n = 0$
	quantity k, then the	value of		and $a_1 \cos(\alpha_1 + \theta) + a_2 \cos(\alpha_2 + \theta)$ then
	$4\sin\frac{\alpha}{2}+3\sin\frac{\beta}{2}+2\sin\frac{\beta}{2}$	$n\frac{\gamma}{2} + \sin\frac{\delta}{2}$ is equal		and $+\dots a_n \cos(\alpha_n + \theta) = 0 (\theta \neq k\pi)$, then
	to			$a_1 \cos(\alpha_1 + \lambda) + a_2 \cos(\alpha_2 + \lambda) + +$
	1) $2\sqrt{1-k}$	2) $2\sqrt{1+k}$		$a_n \cos(\alpha_n + \lambda) =$
	3) $2\sqrt{k}$	4) None of these		1) 0 2) X
27.	If $\tan \alpha = \frac{x^2 - x}{x^2 - x + 1}$	and		3) $\theta + \lambda$ 4) $\theta - \lambda$
	$\tan\beta = \frac{1}{2x^2 - 2x + 1},$	$0 < \alpha, \beta < \frac{\pi}{2}$ then	30.	If the mapping $f(x) = ax + b, a < 0$ maps
	$\alpha + \beta$			[-1,1]onto $[0,2]$, then for all values of
	1) $\frac{\pi}{4}$	2) $\frac{\pi}{2}$		$\theta, A = \cos^2 \theta + \sin^4 \theta$ is such that
	3) $\frac{\pi}{3}$	4) $\frac{3\pi}{4}$		1) $f\left(\frac{1}{4}\right) \le A \le f(0)$
28.	The value of $\sin \frac{2\pi}{7}$	$+\sin\frac{4\pi}{7}+\sin\frac{8\pi}{7}$ is		2) $f(0) \le A \le f(-2)$
	1) 1	2) $\frac{\sqrt{7}}{2}$		3) $f\left(\frac{1}{3}\right) \le A \le f(0)$
	3) $\frac{3\sqrt{3}}{4}$	4) $\frac{\sqrt{15}}{4}$		4) $f(-1) < A \le f(-2)$
		_		
		space for roug	h wo	ork Page 5

	CHEMISTRY	33.	The standard enthalpy of formation of
31.	Assuming that water vapour is an ideal		NH_3 is $-46.0 kJ mol^{-1}$. If the enthalpy of
	gas, the internal energy (ΔU) when 1		formation of H_2 from its atoms is
	mol of water is vapourized at 1 bar		$-436 kJ mol^{-1}$ and that of N_2 is
	pressure and $100^{\circ}C$. (Given: Molar		$-712 kJ mol^{-1}$, the average bond enthalpy
	enthalpy of vapourization of water at 1		of N-H bond in <i>NH</i> , is
	bar and $373K = 41kJ mol^{-1}$ and		1) $1102 k l m a^{l-1}$ 2) $064 k l m a^{l-1}$
	$R = 8.3J mol^{-1}K^{-1}$) will be		1) -1102 k5 mot 2) -904k5 mot
	1) $4.1kJ mol^{-1}$ 2) $3.7904 kJ mol^{-1}$		$3) +352 kJ mol^{-1} \qquad 4) +1056 kJ mol^{-1}$
	3) $37.904 kJ mol^{-1}$ 4) $41.0 kJ mol^{-1}$	34.	The lattice energy of NaCl is
32	22 Ovidizing power of ablering in		$-780 kJ mol^{-1}$. The enthalpies of hydration
aqueous solution	aqueous solution can be determined by		of $Na^+(g)$ and $Cl^-(g)$ ions are
	the parameters indicated below: $\frac{1}{2}Cl_{2}(g) \xrightarrow{\frac{1}{2}\Delta_{diss}H^{0}} Cl(g) \xrightarrow{\Delta_{gg}H^{0}} Cl^{-}(g) \xrightarrow{\Delta_{hyd}H^{0}} Cl^{-}(aq) \cdot$ The energy involved in the conversion		$-406 kJ mol^{-1}$ and $-364 kJ mol^{-1}$
$\frac{1}{2}Cl_2$			respectively. The enthalpy of solution of
2 -			NaCl(s) in water is
	The energy involved in the conversion		1) $738 kJ mol^{-1}$ 2) $10 kJ mol^{-1}$
	of $\frac{1}{2}Cl_2(g)$ to $Cl^-(g)$ (using the data,		3) $-10 kJ mol^{-1}$ 4) $-822 kJ mol^{-1}$
	$\Delta_{diss}H^0(Cl_2) = 240kJ mol^{-1},$	35.	The entropy change involved in the
$\Delta_{eg}I$	$H^{0}(Cl) = -349kJ mol^{-1}\Delta_{hyd}H^{0}(Cl) = -381kJ mol^{-1})$		isothermal reversible expansion of 2 mol
			of an ideal gas from a volume of $10 dm^3$ to
	1) $+152kJ mol^{-1}$ 2) $-610kJ mol^{-1}$		a volume of 100 dm^3 at $27^{\circ}C$ is
	3) $-850kJ mol^{-1}$ 4) $+120kJ mol^{-1}$		1) $35.8J mol^{-1}K^{-1}$ 2) $32.3J mol^{-1}K^{-1}$
			3) $42.3J mol^{-1}K^{-1}$ 4) $38.3J mol^{-1}K^{-1}$

space for rough work

36.	Standard entropies of X_2, Y_2 and XY_3	40.	Which one of the following statements is
	are 60, 40 and $50 JK^{-1} mol^{-1}$,		false?
	respectively. For the reaction,		1) Work is a state function
	$\frac{1}{2}X_2 + \frac{5}{2}Y_2 \rightarrow XY_3; \Delta H = -30 kJ \text{ to be at}$		2) Temperature is a state function
	equilibrium, the temperature will be 1) 1250 K 2) 500 K 3) 750 K 4) 1000 K		3) Work appears at the boundary of the system4) Change in the state is completely
37.	What is the sign of ΔG for the process of melting of ice at 280 K?		defined when the initial and final states are specified.
	1) $\Delta G > 0$ 2) $\Delta G = 0$ 3) $\Delta G < 0$ 4) None of these	41.	Calculate the work, in joules, done by a gas as it expands at constant temperature
38.	For a reversible isothermal expansion of an ideal gas 1) $\Delta S_{sys} = \Delta S_{surr} = positive$		from a volume of 3.00 L and a pressure of 5.00 atm to a volume of 8.00 L. The external pressure against which the gas expands is 1.00 atm. (1 atm = $101,325$
	2) $\Delta S_{sys} = -\Delta S_{surr}$ 3) $\Delta S_{cys} = \Delta S_{surr} = negative$	pa 1)	pa.) 1) $-405J$ 2) $-532J$
	4) $\Delta S_{sys} = \Delta S_{surr} = 0$	42.	3) $-458J$ 4) $-507J$ Which one of the following equations
39.	Among mass, volume, density and		does not correctly represent the first law
	specific volume of a gas, the intensive		of thermodynamics for the given process?
	properties are		1) Isothermal process: $q = -w$
	1) density and specific volume		2) Cyclic process: $q = -w$
	2) volume and density		3) Isochoric process: $\Delta U = q$
	3) specific volume and mass		4) Adiabatic process: $\Delta U = -w$
	4) density only		
	space for roug	h wo	ork Page 7

Γ

43. The enthalpy of neutralization of HCl 45. For which change $\Delta H \neq \Delta U$? by NaOH is $-55.9 kJ mol^{-1}$. If the 1) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ enthalpy of neutralization of HCN by 2) $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_{2}O(l)$ NaOH is $-12.1 kJ mol^{-1}$, the enthalpy of 3) $C(s) + O_2(g) \rightleftharpoons 2CO_2(g)$ dissociation of HCN is 4) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ 1) 43.8 kJ 2) -43.8 kJ 46. If water kept in an insulated vessel at 3) 68 kJ 4) -68 kJ $-10^{\circ}C$ suddenly freezes, the entropy 44. In a fuel cell, methanol is used as fuel change of the system and oxygen gas is used as an oxidizer. 1) decreases The reaction is 2) increases $CH_3OH(l) + \frac{3}{2}O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$ 3) is zero . At 298K, standard Gibbs energies of 4) equals to that of the surroundings formation for 47. Estimate the average S-F bond energy $CH_3OH(l), H_2O(l)$ and $CO_2(g)$ are in SF_6 . The standard heat of formation $-166.2 \, kJ \, mol^{-1}$, $-237.2 \, kJ \, mol^{-1}$ and values of $SF_{6(g)}$, $S_{(g)}$ and $F_{(g)}$ are: - 1100, $-394.4 kJ mol^{-1}$, respectively. If the 275 and 80 kJ mol⁻¹ respectively. standard enthalpy of combustion of 1) 309.17 kJ 2) 212.5 kJ methanol is $-726 kJ mol^{-1}$, efficiency of 3) 126.2 kJ 4) 182.5 kJ the fuel cell will be 48. When one mole anhydrous $CuSO_4$ is 1)90% 2) 97% dissolved in excess of water, -66.4 kJ3) 80% 4) 87% heat is evolved. When one mole of $CuSO_4.5H_2O$ is dissolved in water, the

space for rough work

	heat change is +11.7 kJ. Calculate	51.	Calculate the work done when 156g
	enthalpy of hydration of CuSO _{4(anh.)} .		potassium reacts with water in an open
	1) -87.1 kJ 2) -78.1 kJ		container of water at 300 K.
	3) -44.2 kJ 4) -28.1 kJ		1) -2866.5 J 2) -4988.4 J
49.	ΔH_f^0 values (i.e., enthalpy of		3) -1234.6 J 4) -862.5 J
	formation) for O_3 , CaO , NH_3 and HI are	52.	The enthalpy change for a reaction does
	$34.01, -151.9, -11.0$ and $+6.20 k cal mol^{-1}$		not depend upon
	respectively. Arrange these in		1) the physical states of reactants and products
	decreasing order of stability with		2) use of different reactants for the same
	respect to thermal decomposition.		product
	1) $CaO > HI > NH_3 > O_3$		3) the nature of intermediate reaction
	2) $NH_3 > HI > CaO > O_3$		steps
	3) $CaO > NH_3 > HI > O_3$		4) the differences in initial or final
	4) $CaO > HI > O_3 > NH_3$		temperatures of involved substances
50.	Calculate the free energy change when	53.	The direct conversion of A to B is
	1 mole of NaCl is dissolved in water at		difficult; hence it is carried out by the
	$25^{\circ}C$. Lattice energy of NaCl = 777.8		following shown path.
	kJ mol^{-1} ; ΔS for dissolution		с — — D
	$= 0.043 kJ mol^{-1}$ and hydration energy of		1
	$NaCl = -774.1 kJ mol^{-1}$		
	1) $-9.114 kJ mol^{-1}$ 2) $-91.14 kJ mol^{-1}$		АВ
	3) $-911.4 kJ mol^{-1}$ 4) $-0.9114 kJ mol^{-1}$		Given

space for rough work

space for rough work Page 10			
combustion of gaseous carbon			
2) the standard molar enthalpy of	4) $H_2 O_{(l)} \to H_2 O_{(g)}$		
1) zero	3) $NaCl_{(g)} \rightarrow NaCl_{(s)}$		
of CO_2 is equal to	2) $Na^+_{(g)} + Cl^{(g)} \rightarrow NaCl_{(s)}$		
55. Standard molar enthalpy of formation	1) $H_{2(g)} + \frac{1}{2}O_{2(g)} \to H_2O_{(l)}$		
4) $\Delta G = \Delta G^0 \neq 0$			
3) $\Delta G^0 = 0$ but not ΔG	57. In which of the following reactions the		
2) $\Delta G = 0$ but not ΔG^0	4) Adiabatic system		
1) $\Delta G = \Delta G^0 = 0$	3) Open system		
54. For a reaction at equilibrium,	2) Insulated system		
3) $-100eu$ 4) $-60eu$	1) Closed system		
1) $+100eu$ 2) $+60eu$	example of		
is	56. Boiling water in a closed steel tank is an		
Where eu is entropy unit, then $\Delta S_{(A \rightarrow B)}$	combustion of carbon (graphite).		
$\Delta S_{(B \to D)} = 20 eu$	4) the standard molar enthalpy of		
$\Delta S_{(C \to D)} = 30 eu$	of formation of CO and O_2		
$\Delta S_{(A \to C)} = 50 eu$	3) the sum of standard molar enthalpies		

58.	Which of the follow	ving process is non-			<u>PHYS</u>	SICS
	spontaneous		61.	A stone is d	ropped	from a hill of height
	1) Heat flow from	not end to cold end		180m. Two	second	ls later another a stone
	2) Water flow from	higher level to		is dropped f	from a p	oint P below the top
	lower level			of the hill.	If the tw	vo stones reach the
	3) Gas flow from lo	ower pressure		ground simu	ultaneou	usly, the height of P
	region to higher pro	essure region		from the gro	ound is ($(g = 10 \text{ ms}^{-2})$
	4) Gas flow from h	igher pressure		1) 100 m		2) 90 m
	region to lower pre	ssure region		3) 80 m		4) none of these
59.	Human body require	res 2370 K. cal of	62.	Water drops	s fall fro	om the roof of a
	energy daily. If the	heat of combustion		building 20	m high a	at regular time
	of glucose is 790K.	cal/mole the		interval. If	the first	drop strikes the floor
	amount of glucose	required for daily		when the size	xth drop	begins the fall, the
	consumption is			height of the	e secono	d drop from the
	1) 650 g	2) 540 g		ground at th	at insta	nt is
	3) 327 g	4) 490 g		$(g = 10 \text{ ms}^{-2})$	2)	
60.	In an insulated con	tainer 1 mole of a		1) 3.2 m	2) 0.8	8 m
	liquid. Molar volur	ne 100 ml at 1 bar.		3) 7.2 m	4) no	one of these
	Liquid is steeply ta	ken to 100 bar,	63.	A body free	ely fallin	ng from a height h
	when volume of lic	uid decreases by		describes 11	1 h/36 in	the last second of its
	1 ml. Find ΔH for	the process.		fall. The he	eight h is	$s (g = 10 m s^{-2})$
	1) 7900 bar mL	2) 8900 bar Ml		1) 125 m		2) 180 m
	3) 9900 bar mL	4) 10900 bar mL		3) 360 m		4) none of these
			1			

space for rough work

64.	A ball dropped from a point P crosses		
	a point Q in t second	ds. The time taken	
	by it to travel from	Q to R, if $PQ = QR$	
	1) t	2) $\sqrt{2} t$	
	3) 2t	4) $(\sqrt{2} - 1)t$	
65.	A boy throws a ball	in air in such a	
manner that when a ball is at its			
	e throws another		
	e thrown with the		
	time difference 1 second, the		
	maximum height attained by each ball		
	is		
	1) 9.8 m	2) 19.6 m	
	3) 4.9 m	4) none of these	
66.	A body projected vertically up reaches		
	a maximum height h in time t. The		
	time taken to reach	the half of the	

1) t/2 2) t/4 3) $\frac{t}{\sqrt{2}}$ 4) t $\left[1 - \frac{1}{\sqrt{2}}\right]$

maximum height may be

67. A player kicks a football obliquely at a speed of 20 m/s so that its range is maximum. Another player at a

distance of 24m away in the direction of the kick starts running at that instant to catch the ball. Before the ball hits the ground to catch it, the speed with which the second player has to run is

$$(g = 10 \text{ m/s}^2)$$

1)
$$4 \text{ ms}^{-1}$$
 2) $4\sqrt{2} \text{ ms}^{-1}$

- 3) 8 $\sqrt{2}$ ms⁻¹ 4) none of these
- 68. From the top of a tower, a stone is thrown up and it reaches the ground in time t_1 . A second stone is thrown down with the same speed and it reaches the ground in time t_2 . A third stone is released from rest and it reaches the ground in time t_3

1)
$$t_3 = \frac{1}{2}(t_1 + t_2)$$
 2) $t_3 = \sqrt{t_1 t_2}$

3)
$$\frac{1}{t_3} = \frac{1}{t_2} - \frac{1}{t_1}$$
 4) $t_3^2 = t_1^2 - t_2^2$

69. A body starts with velocity V and moves on a straight path with constant acceleration. When its velocity becomes 5V the acceleration is reversed in direction without change in magnitude.

space for rough work

When it returns to the starting point, its velocity becomes

- 1) -7 V 2) -3 V
- 3) 7 V 4) -5 V
- 70. A train length 200 m switches on its headlight when it starts moving with acceleration $0.5 m/s^2$. Sometime later, its tail light is switched on. An observer on the ground notices that the two events occur at the same place. The time interval between the two events is
 - 1) $10\sqrt{2}s$ 2) 20s
 - 3) $20\sqrt{2}s$ 4) 40s
- 71. The distance traveled by a body during last second of its upward journey is d when the body is projected with certain velocity vertically up. If the velocity of projection is doubled, the distance traveled by the body during last second of its upward journey is
 - 1) 2d 2) 4d
 - 3) d/2 4) d

- 72. A boy sees a ball go up and then down through a window 2.45 m high. If the total time that the ball in is sight is 1s, the height above the window the ball rises is approximately.
 - 1) 2.45 m 2) 4.9 m
 - 3) 0.3 m 4) 0.49 m
- 73. A ball thrown horizontally with velocityV from the top of a tower of height hreaches the ground in t seconds. Ifanother ball of double the mass is thrownhorizontally with velocity 3V from thetop of another tower of height 4h itreaches the ground in (seconds)
 - 1) 3t 2) t/2
- 3) 4t4) 2t74. A balloon starts rising from the ground
 - with an acceleration of $1.25 m / s^2$. After 8 s, a stone is released from the balloon. The stone will
 - 1) Cover a distance of 40 m
 - 2) have a displacement of 50 m
 - 3) reach the ground in 4 s
 - 4) begin to move down after being released.

space for rough work

75. A ball rolls of the top of a stair way with a horizontal velocity u m/s. If the steps are h metre high and b metres wide, the ball with hit the edge of the *n* th step, if

$$1) n = 2hu/gb^2$$

2)
$$n = 2hu^2 / gb^2$$

3) $n = 2hu^2 / gb$
4) $n = hu^2 / gb^2$

76. A ball is thrown with velocity *u* making an angle θ with the horizontal. Its velocity vector is normal to initial velocity (u) vector after a time interval of

1)
$$\frac{u\sin\theta}{g}$$

2) $\frac{u}{g\cos\theta}$
3) $\frac{u}{g\sin\theta}$
4) $\frac{u\cos\theta}{g}$

77. A projectile aimed at a mark which is in the horizontal plane through the point of projection falls "a" distance short of it when the elevation is α and goes "b" distance too far when the elevation is β . If the velocity of projection is same in all the cases, the proper elevation is

1)
$$\frac{1}{2}\sin^{-1}\left[\frac{a\sin 2\alpha - b\sin 2\beta}{a+b}\right]$$

2)
$$\frac{1}{2}\sin^{-1}\left[\frac{a\sin 2\alpha + b\sin 2\beta}{a+b}\right].$$

3)
$$\frac{1}{2}\sin^{-1}\left[\frac{a\sin 2\alpha - b\sin 2\beta}{a-b}\right]$$

4)
$$\frac{1}{2}\sin^{-1}\left[\frac{a\sin 2\alpha + b\sin 2\beta}{a-b}\right]$$

 Velocity of the body on reaching the ground is same in magnitude in the following cases

> A) a body projected vertically from the top of tower of height 'h' with velocity 'V'

b) a body thrown downwards withvelocity 'V' from the top of tower ofheight 'h'

c) a body projected horizontally with a velocity 'V' from the top of tower of height 'h'

space for rough work

d) a body dropped from the top tower of height 'h'

- 1) a, b, c & d are correct
- 2) a b & c are correct
- 3) a & d are correct
- 4) d only correct
- 79. A cannon ball has a horizontal range R on a horizontal plane. If *h* and *h*'are the greatest heights in the two paths for which this possible, then:

1)
$$R = 4\sqrt{(hh')}$$
 2) $R = \frac{4h}{h'}$
3) $R = 4hh'$ 4) $R = \sqrt{hh'}$

80. A particle 1 is projected with speed V from a point O making an angle of 30° with the vertical. At the same instant, a second particle 2 is thrown vertically upwards from a point A. The two particles reach H, the highest point on the parabolic path of particle 1 simultaneously. What is the ratio of V/v?

81. A stone is dropped from a height of 10cm above the top of a window 80cm high. The time taken by the stone to cross the window is

1)1/7 s	2) 2/7 s	
3) 3/7 s	4) 4/7 s	

82. A projectile is thrown at an angle 30° with a velocity of 10 m/s. The change in velocity during the time interval in which it reaches the highest point is

1)	10 m/s	2) 5 m/s
----	--------	----------

3) $5\sqrt{3}$ m/s 4) $10\sqrt{3}$ m/s

space for rough work

83. A body is projected with velocity V so that the maximum height is thrice the horizontal range. Then the maximum height is

1)
$$\frac{72V^2}{145g}$$
 2) $\frac{6}{\sqrt{145}} \frac{V^2}{g}$
3) $\frac{V^2}{2g}$ 4) none of these

- 84. The range of a projectile, when launched at an angle of 15° with the horizontal in 1.5km. The additional horizontal distance the projectile would cover when projected with same velocity at 45° is
 - 1) 3 km 2) 4.5 km
 - 3) 1.5 km 4) 2.5 km
- 85. A boy aims a gun at a bird from a point, at a horizontal distance of 100 m. If the gun can impart a velocity of 500 m/sec to the bullet, at what height above the bird must he aim his gun in order to hit it?
 - $(\text{take } g = 10 \, m \, / \, \text{sec}^2)$
 - 1) 100 cm 2) 5
- 2) 50 cm

- 3) 40 cm 4) 20 cm
- 86. Let two bodies be projected horizontally in opposite directions with velocities u_1 and u_2 from certain height. The time instant from the start at which displacement vectors perpendicular to each other is

1)
$$\frac{2u_1u_2}{g}$$
 2) $\frac{u_1u_2}{g}$
3) $\frac{2\sqrt{u_1u_2}}{g}$ 4) $\frac{\sqrt{u_1u_2}}{g}$

- 87. The horizontal and vertical displacement of a projectile are given by x = 12t and $y = 16t - 5t^2$, all the quantities being measured in S.I system. The maximum height of the projectile is (g = 10 m/s²)
 - 1) 25.6 m 2) 12.8 m
 - 3) 64 m 4) none of these
- 88. A ball is projected from the bottom of a tower and is found to go above the tower and is caught by the thrower at the bottom of the tower after a time interval t₁. An observer at the top of the tower sees the same ball go up above him and

space for rough work

	then come back it his level in a time	hits the screen A, penetrates through it
	interval t_2 . The height of the tower is	and finally emerges out from B making
	1) $\frac{1}{2}$ gt ₁ t ₂ 2) $g\frac{t_1t_2}{s}$	holes in A & B. If the resistance of air
	2 8	and wood are negligible, the difference of
	3) $\frac{g}{8}(t_1^2 - t_2^2)$ 4) $\frac{g}{2}(t_1 - t_2)^2$	heights of the holes in A & B is
89.	Two bodies are projected at angle 30°	1) 5m
	and 60° to the horizontal from the	2) $\frac{49}{90}$ m
	ground such then the maximum	\sim 7
	heights reached by them are equal.	3) $\frac{7}{\sqrt{90}}$ m
	Then	4) none of the above
	1) their times of flight are equal	
	2) their horizontal ranges are equal	
	3) the ratio of their initial speeds of	
	projection is $\sqrt{3}$: 1	
	4) both take same time to reach the	
	maximum height	
	Mark the answer as	
	1) If a, b, c & d are correct	
	2) If only a, b & c are correct	
	3) If only a & c are correct	
	4) If a, c & d are correct	
90.	Two thin wood screens A & B are	
	separated by 200m. A bullet traveling	
	horizontally at a speed of 600 m/s	
	space for roug	h work Page 17

Master JEE CLASSES

Kukatpally, Hyderabad.

IIT-JEE-MAINS PAPER-4

Max. Marks: 360

KEY SHEET

MATHS

1	4	2	2	3	3	4	4	5	3	6	4
7	1	8	1	9	1	10	1	11	1	12	1
13	2	14	2	15	3	16	1	17	1	18	2
19	1	20	3	21	1	22	1	23	2	24	3
25	1	26	2	27	1	28	2	29	1	30	1

CHEMISTRY

31	3	32	2	33	3	34	2	35	4	36	3
37	1	38	2	39	1	40	1	41	4	42	4
43	1	44	2	45	4	46	3	47	1	48	2
49	3	50	1	51	2	52	3	53	2	54	2
55	4	56	1	57	4	58	3	59	2	60	3

PHYSICS

61	3	62	3	63	2	64	4	65	3	66	4
67	2	68	2	69	1	70	3	71	4	72	3
73	4	74	3	75	2	76	3	77	2	78	2
79	1	80	2	81	1	82	2	83	1	84	1
85	4	86	3	87	2	88	3	89	1	90	2

SOLUTIONS: MATHS

 $\cos(\cos x - \sin x) = \cos(\frac{\pi}{2} - (\sin x + \cos x))$ 1. Taking +ve sign, $\cos x = n\pi + \frac{\pi}{4}$ Taking -ve sign, $\sin x = \frac{\pi}{4}$ Expressing both the equations in terms of Tanx , we get Tan²x = 1, x = $n\pi \pm \frac{\pi}{4}$, For n=-2,0,-1,1,+2, 2. sum=0 3. using transformations for $\sin x + \sin y = \sin(x + y)$, we get 6 solution The Max value of $|\sin y| = 1$, while min of L.H.S is 1 4. $\therefore \sin y = \pm 1, y = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}$ f(x) is a periodic function with period 2π and y = f(x) and $y = \frac{1}{2}$ meet 2 times in $(0, 2\pi)$ 5. $|\sin x| \neq 1, |\cos x| \neq 1, |Tanx| = 1 \therefore x = \pm \frac{\pi}{4}, \pm \frac{3\pi}{4}, \pm \frac{5\pi}{4}, \pm \frac{7\pi}{4}.$ -8values 6. $Tan(A-B) = 1, A-B = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{-3\pi}{4} - -$ 7. $\sec(A+B) = \frac{2}{\sqrt{3}}, A+B = \frac{\pi}{6}$ $A = \frac{19\pi}{24}, B = \frac{25\pi}{24}$ 8. From the graph, analise that L.H.S always greater than R.H.S $\sin(x+y) + \cos(x+y) = \frac{1}{\sqrt{2}}$ 9. $\therefore x = \frac{5\pi}{12}, y = \frac{\pi}{6}$ The given equation is $2\sin(e^x).\cos(e^x) = \frac{1}{2}[2^x + 2^{-x}]$ 10. RHS $\geq\!1\,and~LHS\!\leq\!1$ For a solution $sin(2.e^x) = 1$ $\therefore x = 0$, but sin $2 \neq 1$: No solution $\sin 3x = \sin(\frac{\pi}{2} - x)$ 11. $3x = n\pi + (-1)^n (\frac{\pi}{2} - x)$

considering even and odd cases

$$x - \frac{\pi}{8} \cdot \frac{\pi}{2} \cdot \frac{\pi}{8}$$
12. Consistant with $\cos x \ge 0$ and $\sin(1-x) \ge 0$
after solving $1 - x = \pi\pi + (-1)^{4} (\frac{\pi}{2} - x)$
 $x = \frac{1}{2} - (\frac{4m+1}{4})\pi, \pi \in 1$
13. Draw the graph of see $\theta + \csc \theta$
14. If $0 < x < \pi, \cos(x - y) - \frac{1}{2}$ and $\cos(x + y) - 1:(x_1, y_1) - (\frac{5\pi}{6}, \frac{7\pi}{6})x(\frac{\pi}{6}, \frac{11\pi}{6})$ as the 2 solutions. Similarly,
for $x \in (\pi, 2\pi)$ there are 2 solutions $(\frac{7\pi}{6}, \frac{7\pi}{6})md(\frac{1\pi}{6}, \frac{11\pi}{6})$
15. Re-write the equation as $(\sin x + \cos x)(1 - \frac{2}{\sin 2x}) - (7 - \frac{2}{\sin 2x})$
where, $\sin^{2} 2x - 44\sin^{2} 2x + 36\sin 2x = 0$, $\sin 2x = 22 - 8\sqrt{7}$
16. $\sin^{2} x \le m \sec^{10}$
 $\therefore -1 = \pi\pi^{1}x - \sec^{10}x \le \tan^{2}x = -2$
 $x + \sin x - \sin x = \sin^{2}x \le \tan^{2}x = -2$
 $x + \sin x - \sin x = -1$
17. $\sin x - \sin x + \sin x = -1$
18. put $\sec^{1} \theta - x = -1$
19. $\frac{\sec^{1} \theta}{a} + \frac{\tan^{4} \theta}{b} - \frac{\sec^{2} \theta - \tan^{2} \theta}{a + b}$
 $\sec^{2} \theta - \frac{1}{a} \le 1$
20. we must have $|\sin x| = -1[\sqrt{2}\cos x] = -2$
21. $1H8 \le 1, RHS \ge 1$
 $\therefore (-\sin x) = -1[\sqrt{2}\cos x] = -1$
which is not possible
22. Given $\arccos^{2} \alpha + teds' \alpha = 16\cos^{2} \alpha - 9\cos^{2} \alpha$
 $-9 \sec^{2} \alpha - 16\cos^{2} \alpha - 24\cos^{2} \alpha - 10\cos^{2} 1 + 10\cos^{2} \alpha$
 $-9 \sec^{2} \alpha - 16\cos^{2} \alpha - 24\cos^{2} \alpha - 10\cos^{2} 1 + 10\cos^{2} \alpha$
 $-9 \sec^{2} \alpha - 16\cos^{2} \alpha - 24\cos^{2} \alpha - 10\cos^{2} 1 + 10\cos^{2} \alpha$
 $-9 \sec^{2} \alpha + 16\cos^{2} \alpha - 24\cos^{2} \alpha - 10\cos^{2} 2 + 10\cos^{2} \alpha + 16\cos^{2} \alpha$
 $\cos m x + 10\cos^{2} \alpha - 14\cos^{2} \alpha + 10 - 24a = 0$, $b = 24a = 24$
23. $f(x) = \frac{1}{4}(-\cos 2x) + \frac{1}{2}[1 - \cos(2x + \frac{2\pi}{3})] + \frac{1}{2}[\cos(2x + \frac{\pi}{3}) + \cos^{2} \frac{\pi}{3}]$

$$\frac{5}{4} - \frac{1}{2} \left[\cos 2x + \cos (2x + \frac{2\pi}{3}) - \cos (2x + \frac{\pi}{3}) \right] = \frac{5}{4} \text{ for all } x$$

$$\therefore f(\frac{\pi}{3}) = \frac{5}{4} \text{ and therefore golf}(\frac{\pi}{3}) = g(\frac{5}{4}) = 1$$
24. we have $\frac{u_n}{v_n} = \tan n\theta$ and $\frac{v_n - v_{n-1}}{u_{n-1}} = \frac{\cos n\theta \sec^n \theta - \cos(n-1)\theta \sec^{n-1} \theta}{\sin(n-1)\theta \sec^{n-1} \theta}$

$$= \frac{\cos n\theta \sec^n \theta - \cos(n-1)\theta}{\sin(n-1)\theta} = \frac{\cos n\theta - \cos(n-1)\theta \csc^n \theta}{\cos \theta \sin(n-1)\theta}$$

$$= \frac{\cos(n-1)\theta \cos\theta - \sin(n-1)\theta}{\cos \theta \sin(n-1)\theta} = \frac{\cos n\theta - \cos(n-1)\theta \cos\theta}{\cos \theta \sin(n-1)\theta}$$

$$= \frac{\cos(n-1)\theta \cos\theta - \sin(n-1)\theta}{\cos \theta \sin(n-1)\theta} = \frac{\cos n\theta}{\cos \theta \sin(n-1)\theta}$$

$$= \frac{\cos(n-1)\theta \cos\theta - \sin(n-1)\theta}{\cos \theta \sin(n-1)\theta} = \frac{\cos n\theta}{\cos \theta \sin(n-1)\theta}$$

$$= \frac{\cos(n-1)\theta \cos\theta - \sin(n-1)\theta - \cos(n-1)\theta \cos\theta}{\cos \theta \sin(n-1)\theta} = -\tan \theta$$

$$= \frac{\cos(n-1)\theta \cos\theta - \sin(n-1)\theta}{\cos \theta \sin(n-1)\theta} = \frac{\sin 2\theta}{\cos \theta \sin(n-1)\theta} \approx 0$$
25.
$$K_n = Tan 27\theta - \tan \theta = (\tan 27\theta - \tan 9\theta) + (\tan 9\theta - \tan 3\theta) - (\tan 3\theta - \tan \theta)$$
now, $\tan 3\theta - \tan \theta = \frac{\sin 2\theta}{\cos 3\theta} = 2\sin \theta$

$$\sin \sin \alpha + \sin \theta = \frac{\sin 2\theta}{\cos 3\theta} = 2\sin \theta$$

$$\sin \sin \alpha + \sin \theta = \sin \alpha + \sin \theta = \sin \alpha + \sin \theta = 1$$

$$\Rightarrow \beta = \pi - \alpha, \gamma = 2\pi + \alpha, \delta = \sin \delta = 1$$
so that the given expression is equal to
$$4\sin \frac{\alpha}{2} + 3\sin(\frac{\pi - \alpha}{2}) + 2\sin \frac{2\pi + \alpha}{2} + \sin \frac{3\pi - \alpha}{2}$$

$$= 4\sin \frac{\alpha}{2} + 3\cos \frac{\alpha}{2} - 2\sin \frac{\alpha}{2} - \cos \frac{\alpha}{2} = 2(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}) = 2\sqrt{1 + 2\sin \frac{\alpha}{2} \cos \frac{\alpha}{2}} = 2\sqrt{1 + k}$$
27. $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{\frac{a}{a+1} + \frac{1}{2a+1}}{\frac{a}{(a+1)(2a+1)}}$
where $x^2 - x = a$

$$\frac{\frac{a}{a+1} + \frac{1}{2a+1}}{1 - \left\{\frac{1}{a+1} - \frac{1}{2a+1}\right\}} = \frac{\frac{a}{a+1} + \frac{1}{2a+1}}{\frac{a}{a+1} + \frac{1}{2a+1}} = 1$$
hence $\alpha + 3 = \frac{\pi}{4} (\operatorname{not} : \alpha + \beta \operatorname{can ot be} \frac{5\pi}{4}$
28. let $S = \sin \frac{2\pi}{7} + \sin \frac{\pi}{7} \sin \frac{\pi}{7}$ and $C = \cos \frac{2\pi}{7} + \sin \frac{4\pi}{7} + \sin \frac{\pi}{7}$
then

C+15 =
$$\alpha + \alpha^{2} + \alpha^{4} - \alpha^{i}$$

 $\alpha - \cos^{2} \frac{2\pi}{7} + \sin^{2} \frac{\pi}{7} is \ complex 7^{a} \ root of unity and
C - is = \alpha^{4} + \alpha^{3} + \alpha^{i} - (ii) , \alpha^{b} = \alpha, ec
add (i) and (ii)
2C = $\alpha + \alpha^{2} + \alpha^{3} + \alpha^{i} - (ii) , \alpha^{b} = \alpha, ec$
add (i) and (ii)
2C = $\alpha + \alpha^{2} + \alpha^{3} + \alpha^{i} - (ii) , \alpha^{b} = 2 \Rightarrow S = \frac{\sqrt{7}}{2}$
29. $\Rightarrow (\alpha - \cos \alpha + a) \cos (\alpha + 1) \dots + a_{a} \cos (\alpha - b) = 0$
 $\Rightarrow (\alpha - \cos \alpha + a) \cos (\alpha + 1) \dots + a_{a} \cos (\alpha - b) = 0$
 $\Rightarrow (\alpha - \cos \alpha + a) \cos (\alpha + 1) \dots + a_{a} \cos (\alpha - c) = 0$
now $a_{i} \cos (\alpha_{i} + a_{i} \sin \alpha_{2} + \dots + a_{a} \sin \alpha_{a} - 0 \ isne \sin \theta = 0$
and $a_{i} \cos \alpha_{i} + a_{i} \cos \alpha_{2} + \dots + a_{a} \cos \alpha_{a} = 0$
now $a_{i} \cos (\alpha_{i} + a_{i} + 2 \cos \alpha_{2} + \dots + a_{a} \cos \alpha_{a} = 0$
now $a_{i} \cos (\alpha_{i} + a_{i} + 2 \cos \alpha_{2} + \dots + a_{a} \cos \alpha_{a} = 0$
now $a_{i} \cos (\alpha_{i} + a_{i} + 2 \cos \alpha_{2} + \dots + a_{a} \cos \alpha_{a} = 0$
and $a_{i} \cos \alpha_{i} + a_{i} \cos \alpha_{2} + \dots + a_{a} \cos \alpha_{a} = 0$
now $a_{i} \cos (\alpha_{i} + a_{i} + 2 \cos \alpha_{2} + \dots + a_{a} \cos \alpha_{a} = 0$
and $a_{i} \cos \alpha_{i} + a_{i} \cos \alpha_{2} + \dots + a_{a} \cos \alpha_{a} = 0$
now $a_{i} \cos (\alpha_{i} + a_{i} + 2 \cos \alpha_{2} + \dots + a_{a} \cos \alpha_{a} = 0$
and $a_{i} \cos \alpha_{i} + a_{i} \cos \alpha_{2} + \dots + a_{a} \cos \alpha_{a} = 0$
and $a_{i} \cos \alpha_{i} + a_{i} \cos \alpha_{2} + \dots + a_{a} \cos \alpha_{a} = 0$
and $a_{i} \cos \alpha_{i} + a_{i} \cos \alpha_{i} + a_{i} \sin \alpha_{i} + a_{i} \sin \alpha_{a} + \dots + a_{a} \sin \alpha_{a} \sin \alpha_{a} = 0$
30. given $f(x) = a + b + 0$ $\therefore a = -1$ and $b = 1$, thus $f(x) = -x + 1$
clearly
 $f(0) = 1, f(\frac{1}{4}) = \frac{3}{4}, f(-2) = 3, f(\frac{1}{3}) = \frac{2}{3, f(-1) = 2}$
 $ab_{i} A_{i} = \frac{1 + \cos 2B}{2} + \frac{1 - \cos 2B}{2} + \frac{1}{4} \cos^{2} 2 = \frac{3}{4} + \frac{1}{4} (\frac{1 + \cos 4B}{2}) = \frac{7}{8} + \frac{1}{8} \cos 40$
 $\therefore \frac{3}{4} \le A \le 1 \Rightarrow f(\frac{1}{4}) \le A \le f(0)$
21. 3
The reaction involved is $H_{i} O(l) \rightarrow H_{2}O(g)$, where $\Delta n_{g} = 1$ mol, $\Delta_{ap} H = 41kJ \ mol^{-1}$. Now,
 $\Delta U = \Delta M - \Delta n_{g} \mathcal{R} I$
 $= 41kJ \ mol^{-1} = 13.906 kJ \ mol^{-1} = 37.904 kJ \ mol^{-1}$
32. Given that
 $\frac{1}{2} Cl_{i} (g) \rightarrow Cl^{-} (aq); \Delta H = ?$
 $Cl_{i} \simeq 2Cl_{i} \Delta H_{i} = 240kJ \ mol^{-1}$$

$$Cl \rightarrow Cl^{-}(\Delta H_{2} = -349 \lambda J mol^{-1}$$

$$Cl = \frac{4\mu m m}{mode} \rightarrow Cl^{-}(aq); \Delta H_{3} = -381 k J mol^{-1}$$
Therefore,

$$\Delta H = \frac{\Delta H_{1}}{2} + \Delta H_{2} + \Delta H_{3} = \frac{240}{2} - 349 - 381 = -610 k J mol^{-1}$$
33.
$$NH_{3}(g) \rightarrow N(g) + 3H(g) = \Delta_{N-H} H^{0} = \frac{\Delta H}{3}$$
The value of ΔH for this reaction can be obtained from summation of following equations

$$2NH_{3} \rightarrow 2N + 6H = \Delta_{N-H} H^{0} = \frac{\Delta H}{6}$$

$$2NH_{3} \rightarrow 2N + 6H = \Delta_{N-H} H^{0} = \frac{92}{6}$$

$$2NH_{3} \rightarrow 2N + 6H = \Delta_{A} H^{0} = 92$$

$$N_{1} \rightarrow 2N + 6H = \Delta_{A} H^{0} = 112$$

$$3H_{2} \rightarrow 6H = \Delta_{A} H^{0} = 112$$
Thus, at this condition $\Delta_{N-H} H^{0} = \frac{2112}{6} = 352 k J mol^{-1}$
34.
$$NaCl(x) \rightarrow Na^{+}(g) + Cl^{-}(g) = \Delta H = -406 k J (Hydration)$$

$$Cl^{-}(g) + H_{2}O(l) \rightarrow Cl^{-}(aq) \Delta H = -406 k J (Hydration)$$
The net reaction of dissolution of $NaCl(x)$ is $NaCl(x) + 2H_{2}O(l) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$

$$\Delta_{ac}H - 780 - (406 + 364) - 10 k J mol^{-1}$$
35. For an ideal gas, for isothermal reversible process,

$$\Delta S = 2.303 n R \log\left(\frac{V_{2}}{V_{1}}\right) = 2.303 \times 2 \times 8.314 \times \log\left(\frac{100}{10}\right) = 38.3 J mol^{-1} K^{-1}$$
36. For the reaction, $\frac{1}{2} X_{2} + \frac{3}{2} Y_{2} \rightarrow \lambda Y_{3}$

$$\Delta_{a}S = 50 - \left(\frac{1}{2} \times 60 + \frac{3}{2} \times 40\right) = -40 J mol^{-1}$$
Since, $\Delta G = \Delta H - T\Delta S$ and at equilibrium $\Delta G = 0$, so, $T = \frac{\Delta H}{\Delta S} = \frac{-30}{-40} \times 10^{3} = 750 K$
37. Melting of ice at 280 K is a non-spontaneous process
38. Conceptual
39. Density is mass per unit volume and specific volume is volume per unit mass

40. Work is not a state function; instead it is dependent on the path of the reaction 41. $w = -p\Delta V$ $\Delta V = 8.00 L - 3.00 L = 5.00 L$ $w = -(1 a t m) \times (5.00 L) = -5.00 L a t m$ In joules: - 5.00 L atm $\left(\frac{101.325J}{1L atm}\right) = -507 J$ 42. According to the first law of thermodynamics, $\Delta U = q + w$ For isothermal process, $\Delta U = 0$. Hence, q = -w. For cyclic process, $\Delta U = 0$. Hence q = -w. For isochoric process, $\Delta V = 0$. Hence, $\Delta U = q(w = p\Delta V = 0)$, For adiabatic process, q = 0. Hence $\Delta U = w$. $HCl + NaOHK \rightarrow NaCl + H_2O \Delta H_1 = -55.9 \, kJ \, mol^{-1}$ 43. $HCl + NaOHK \rightarrow NaCl + H_2O \Delta H_2 = -12.1 kJ mol^{-1}$ Enthalpy of dissociation of HCN = $\Delta H_2 - \Delta H_1 = -12.1 - (-55.9) = +43.8 kJ$ 44. Conceptual 45. Conceptual 46. As the system is insulated from the surroundings, no heat enters or leaves the system. Hence, $\Delta S = q / T = 0.$ 47. Conceptual 48. We have to calculate enthalpy of reaction for $CuSO_4 + 5H_2O \rightarrow CuSO_4.5H_2O; \Delta H = ?$ Given that $CuSO_{4(anh.)} + 5H_2O + aq. \rightarrow CuSO_4.5H_2O_{(aq)}; \Delta H_1 = -66.4 kJ \dots (1)$ And $CuSO_4.5H_2O + aq. \rightarrow CuSO_4.5H_2O_{(aq)}; \Delta H_2 = +11.7 kJ$ On the basis of two equations A compound with more negative ΔH_f^0 value will have less energy associated with it and so 49. more stable. On the basis of given data $CaO > NH_3 > HI > O_3$