IIT-JEE-2013-P2-ModeI

Max.Marks: 180

PHYSICS

Complete Ray Optics of JEE ADV syllabus (50\%) + Vernier callipers, Screw gauge (50\%) (excluding problems involving relative motion and calculus)

CHEMISTRY

Methods of expressing concentration of a solution - \% by weight, Molarity, Molality, Normality, Mole fraction, ppm, \% labelling of oleum, volume strength of hydrogen peroxide stoichiometry-II :Titrations, Volumetric analysis: neutralisation titrations - simple titrations, double titrations and back titrations, Redox titrations: oxalic-acid vs KMnO4, Mohr's salt vs KMnO4 ; iodometry , iodimetry, Degree of hardness of water (60%)

Mole, significant figures, laws of chemical combination, Chemical calculations based upon weight, volume relations of chemical equations, percentage composition of mixtures, empirical and molecular formula, Concept of redox reactions - oxidation number - Types of redox reactions, Balancing Redox reactions, Equivalent weight, (30\%)

Cumulative syllabus (10\%)

MATHS

Properties of AP,AM,GP,GM; Sum of 'n' Terms of AP \& GP, Properties of HP \& HM; Sum of infinite GP \& AGP, method of differences/Vn method (60\%); Triangular Inequality, AM-GM-HM Inequalities, Cauchy-Schwartz Inequality (30\%); Cumulative (10\%)

IIT-JEE-2013-P2-Model
 Important instructions

Max Marks: 180
Time: 07:30 AM to 10:30 AM
PHYSICS:

Section	Question Type	$\begin{gathered} +\mathrm{Ve} \\ \text { Marks } \end{gathered}$	$-\mathrm{Ve}$ Marks	$\begin{gathered} \text { No.of } \\ \text { Qs } \end{gathered}$	Total marks
Sec-I(Q.N : 1-8)	Questions with Multiple Correct Choice	3	-1	8	24
Sec - II(Q.N : 9-16)	Questions with Comprehension Type (4 Comprehensions $-2+2+2+2=8 \mathrm{Q}$)	3	-1	8	24
Sec - III(Q.N : 17-20)	Matrix Matching Type	3	-1	4	12
Total				20	60

CHEMISTRY:

Section	Question Type	$+\mathrm{Ve}$ Marks	$-\mathrm{Ve}$ Marks	$\begin{aligned} & \text { No.of } \\ & \text { Qs } \end{aligned}$	Total marks
Sec - I(Q.N : $21-28)$	Questions with Multiple Correct Choice	3	-1	8	24
Sec - II(Q.N : 29-36)	Questions with Comprehension Type (4Comprehensions $-2+2+2+2=8 Q$)	3	-1	8	24
Sec - III(Q.N : $37-40)$	Matrix Matching Type	3	-1	4	12
Total				20	60

MATHEMATICS:

Section	Question Type	+ Ve Marks	- Ve Marks	$\begin{aligned} & \text { No.of } \\ & \text { Qs } \end{aligned}$	Total marks
Sec - I(Q.N : 41-48)	Questions with Multiple Correct Choice	3	-1	8	24
Sec - II(Q.N : 49-56)	Questions with Comprehension Type (4 Comprehensions $-2+2+2+2=8 Q$)	3	-1	8	24
Sec - III(Q.N : $57-60)$	Matrix Matching Type	3	-1	4	12
Total				20	60

SECTION - I

(MULTIPLE CORRECT CHOICE TYPE)
This section contains 8 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONE OR MORE is/ are correct.
Marking scheme: +3 for correct answer, $\mathbf{0}$ if not attempted and $\mathbf{- 1}$ in all other cases.

1. Choose the correct statement (/s) for zero error and zero correction.
A) If the zero of the vernier scale does not coincide with the zero of the main scale then the instrument is said to have a zero error.
B) Zero correction has a magnitude equal to zero error but sign is opposite to that of the zero error.
C) Zero error is positive when the zero of vernier scale lies to the left of the zero of the main scale.
D) Zero error is negative when the zero of vernier scale lies to the left of the zero of the main scale.
2. A spherical transparent medium of refractive index n is placed in air. A thin parallel beam of light of monochromatic wavelength λ is incident at a point O of the sphere at an angle of incidence i (see figure). Then which of the following statements will be true for this optic system?

A) For the ray to come out of the sphere after refraction through it, the incident angle i should be less than the critical angle C for the medium of the sphere.
B) The angle of emergence θ (made with the normal) for the ray will be equal to the incident angle i for all values of i.
C) If angle $i \simeq 90^{\circ}$ (grazing incident) the emergent ray will come out grazing the surface.
D) If the angle of incident i is such that the angle of refraction at O is equal to the critical angle C for the medium of sphere, the emergent ray will be parallel to the incident ray
3. Choose the correct statements:
A) The least count of vernier calipers is the length of the smallest unit on the main scale
B) The least count of vernier calipers is the length of the smallest unit on the vernier scale
C) The vernier constant is the least count of the vernier calipers
D) Vernier calipers can't measure the depth of a cylinder
4. In a prism of angle A , critical angle θ_{c} and refractive index μ, the maximum deviation occurs when
A) the angle of incidence is 90°
B) the angle of incidence may be is $\sin ^{-1}\left[\left(\sqrt{\mu^{2}-1}\right) \sin A-\cos A\right]$
C) the angle of emergence is $\sin ^{-1}\left[\left(\mu \sin \left(\mathrm{~A}-\theta_{\mathrm{c}}\right)\right)\right]$
D) the angle of emergence is equal to the angle of incidence
5. Points $A(0,1)$ and $B(12,5)$ are object -image pair (one of the point acts as object and the other point as image) x-axis is the principal axis of the mirror. This object image pair is
A) Due to convex mirror of focal length 2.5 units
B) Due to concave mirror having its pole at $(2,0)$
C) Real virtual pair
D) Due to concave mirror of focal length 2.5 units
6. In the diagram shown, a ray of light is incident on the inter face between 1 and 2 at an angle slightly greater than critical angle. The light suffers total internal reflection at this interface. After that the light ray falls at the interface of 1 and 3, and again is suffers total internal refraction. Which of the following relations hold true?

μ_{3}
A) $\mu_{1}<\mu_{2}<\mu_{3}$
B) $\mu_{1}^{2}-\mu_{2}^{2}>\mu_{3}^{2}$
C) $\mu_{1}^{2}-\mu_{3}^{2}>\mu_{2}^{2}$
D) $\mu_{1}^{2}+\mu_{2}^{2}>\mu_{3}^{2}$
7. Two refracting media are separated by a spherical interface as shown in figure. $p p^{\prime}$ is the principal axis μ_{1} and μ_{2} are the refractive indices of medium of incidence and medium of refraction respectively . if

A) $\mu_{2}>\mu_{1}$, There cannot be a real image of real object.
B) $\mu_{2}>\mu_{1}$, There cannot be a real image of virtual object.
C) $\mu_{1}>\mu_{2}$, There cannot be a virtual image of virtual object
D) $\mu_{1}>\mu_{2}$, There cannot be a real image of real object
8. Let μ_{1} and μ_{2} be the refractive indices of media so that $k=\frac{\mu_{1}}{\mu_{2}}$, ' i 'be the angle of incident and ' r ' be the angle of refraction. Keeping $i=\frac{\pi}{3}$ constant, a graph ' k ' versus $'|r-i|$ 'is drawn a shown bellow then:

A) The value of k_{1} is $\frac{2}{\sqrt{3}}$
B) The value of $\theta_{1}=\pi / 6$
C) The value of $\theta_{2}=\pi / 3$
D) The value of k_{2} is 1

SECTION - II

(COMPREHENSION TYPE)
This section contains 4 groups of questions. Each group has 2 multiple choice questions based on a paragraph. Each question has 4 choices A), B), C) and D) for its answer, out of which ONLY ONE is correct. Marking scheme: +3 for correct answer, 0 if not attempted and $\mathbf{- 1}$ in all other cases.

Paragraph for Questions 9 and 10:

In general vernier calipers can measure accurately up to 0.01 cm and for greater accuracy micrometer screw devices e.g., screw gauge, spherometer are used. These consist of accurately cut screw which can be moved in a closely fitting fixed nut by tunning it axially. In one such type of screw gauge, the linear distance moved by the screw is 2 mm in four rotations and there are 50 divisions on its cap. When nothing is put between its jaws, $20^{\text {th }}$ divisions of circular scale coincides with reference line, with zero of circular scale lying above the reference line. When a plate is placed between the jaws main scale reads 4 divisions and circular scale reads 20 divisions
9. The least count of screw gauge is
A) 0.1 mm
B) 0.01 mm
C) 0.05 mm
D) 0.5 mm
10. Measurement corresponding to Zero error in the instrument is
A) -0.02 mm
B) +0.02 mm
C) -0.3 mm
D) +0.2 mm

Paragraph for Question 11 and 12:

A ball swings back and forth in front of a concave mirror. The motion of the ball is described approximately by the equation $\mathrm{x}=\mathrm{f} \cos \omega \mathrm{t}$, where f is the focal length of the mirror and x is measured along the axis of mirror. The origin is taken at the centre of curvature of the mirror.

11. The distance of the image of the swinging ball from the mirror can be represented as:
A) $\left(\frac{2+\cos \omega t}{1-\cos \omega t}\right) f$
B) $\left(\frac{2-\cos \omega t}{1+\cos \omega t}\right) f$
C) $\left(\frac{2+\cos \omega t}{1+\cos \omega t}\right) f$
D) $\left(\frac{2-\cos \omega t}{1-\cos \omega t}\right) f$
12. The point where the ball appear to coincide with its image is
A) $x=-\frac{f}{3}$
B) $x=+\frac{f}{3}$
C) $x=\frac{f}{2}$
D) $x=0$

Paragraph for Questions 13 and 14:

The pitch of a screw gauge is 1 mm and there are 50 divisions on its circular scale. When nothing is put between the jaws the zero of circular lies 3 divisions below the reference line.
13. The least count of screw gauge is
A) 0.002 mm
B) 0.02 mm
C) 0.02 cm
D) 0.002 cm
14. Zero error in the instrument is
A) -0.06 mm
B) 0.6 mm
C) 0.06 mm
D) none

Paragraph for Questions 15 and 16:

The following figure shows a simple version of a zoom. The converging lens has a focal length f_{1} and the diverging lens has focal length $f_{2}=-\left|f_{2}\right|$. The two lenses are separated by a variable distance d that is always less than f_{1}, also the magnitude of the focal length of the diverging lens satisfies the inequality $\left|f_{2}\right|>\left(f_{1}-d\right)$

If the rays that emerge from the diverging lens and reach the final image point are extended backward to the left of the diverging lens, they will eventually expand to the original radius r_{0} at the same point Q . To determine the effective focal length of the combination lens consider a bundle of parallel rays of radius r_{0} entering the emerging lens.
15. At the point where ray enters the diverging lens, the radius of the ray bundle decreases to
A) $r=\left(\frac{f_{1}-d}{f_{1}}\right) r_{0}$
B) $r=\left(\frac{f_{1}-d}{f_{1}}\right) r_{0}$
C) $r=\left(\frac{f_{1}-f_{2}}{f_{1}}\right) r_{0}$
D) $r=\frac{\left(d-f_{1}\right) f_{2}}{f_{1}-f_{2}-d}$
16. To the right of the diverging lens the final image I' is formed at a distance given by
A) $\frac{\left(f_{1}-f_{2}\right) d}{f_{1}-f_{2}+d}$
B) $\frac{\left(f_{1}-d\right) f_{2}}{f_{1}-d+f_{2}}$
C) $\frac{f_{1}-f_{2}+d}{f_{1}-f_{2}}$
D) $\frac{\left(d-f_{1}\right) f_{2}}{f_{1}-f_{2}-d}$

SECTION - III
 (MATRIX MATCH TYPE)

This section contains 4 multiple choice questions. Each question has matching lists. The codes for the lists have choices (A), (B), (C), and (D) out of which ONLY ONE is correct.
Marking scheme: +3 for correct answer, 0 if not attempted and $\mathbf{- 1}$ in all other cases.
17. Column I
(A) Diverging lens
(B)Converging lens
(C)Concave mirror
(D)Convex mirror

Column II
(P) Focal length does not change on dipping in Water
(Q) Always forms a virtual, erect and diminished image of a real object
(R) Can form virtual, erect and magnified image of a real object
(S) Can form real, inverted and diminished image of a real object
(T) Focal length changes on dipping in water
A) $\mathrm{A}-\mathrm{RST}, \mathrm{B}-\mathrm{PRS}, \mathrm{C}-\mathrm{PQ}, \mathrm{D}-\mathrm{QT}$
B) $\mathrm{A}-\mathrm{QT}, \mathrm{B}-\mathrm{RST}, \mathrm{C}-\mathrm{PQ}, \mathrm{D}-\mathrm{PRS}$
C) $\mathrm{A}-\mathrm{QT}, \mathrm{B}-\mathrm{RST}, \mathrm{C}-\mathrm{PRS}, \mathrm{D}-\mathrm{PQ}$
D) $\mathrm{A}-\mathrm{RST}, \mathrm{B}-\mathrm{QT}, \mathrm{C}-\mathrm{PRS}, \mathrm{D}-\mathrm{PQ}$
18. Two transparent media of refractive indices μ_{1} and μ_{2} have a solid lens shaped transparent material of refractive index μ_{2} between them as show in figures in Column - II. A ray traversing these media is also shown in the figures. In Column - I different relationship between μ_{1}, μ_{2} and μ_{3} are given. Match them to the ray diagram shown in Column - II

Column I

(A) $\mu_{1}<\mu_{2}$
(B) $\mu_{1}>\mu_{2}$

Column II

μ_{3}
(Q) μ_{3}
(C) $\mu_{2}=\mu_{3}$
(D) $\mu_{2}>\mu_{3}$
(R)

μ_{1}

(S)
(T)

μ_{1}
A) A - PR, B-QST, C-QS, D -PRT
B) $\mathrm{A}-\mathrm{PR}, \mathrm{B}-\mathrm{QST}, \mathrm{C}-\mathrm{PRT}, \mathrm{D}-\mathrm{QS}$
C) A - QS, B-PR, C-PRT, D -QS
D) A - PR, B-QST, C-PRT, D-QST
19. In column I the surface refractivity and object are indicated and in column II possibilities about images are given. Match them for the R.I. relation $\mu_{1}>\mu_{2}$.

COLUMN I

A)
P) Image will be real
B)

Q) Image will be virtual

COLUMN II
C)

R) Image may be magnified

D)
S) Image will be diminished.
T) Image may be real
A) A-PQRS, B-PQRS, C-PQRS, D-PQRST
B) A-PQRST, B-PQRST, C-PQRST, D-PQRST
C) A-PQRST, B-PQRS, C-PQRST, D-PQRST
D) A-PQRST, B-PQRST, C-PQRS, D-PQRS
20. Assuming the object for the optical entity given in column II may be either real or virtual match them will the type of image they can form given in column I .

Column I

(A)Real Image
(B)Virtual Image
(C)Magnified Image
(D)Diminished Image

Column II
(P) Converging lens
(Q) Diverging lens
(R) Concave mirror
(S) Convex mirror
(T) Plane mirror
A) $\mathrm{A}-\mathrm{S}, \mathrm{B}-\mathrm{PS}, \mathrm{C}-\mathrm{RT}, \mathrm{D}-\mathrm{QR}$
B) A-PQRST, B-PQRST, C-PQRST, D-PQRST
C) A-P,R,Q,S B-P,R,Q,S, C-P,R,Q,S,T D-P,R,Q,S,T
D) A-P,R,Q,S,T B-P,R,Q,S,T C-P,R,S, D-P,R,Q,S

SECTION - I

(MULTIPLE CORRECT CHOICE TYPE)
This section contains 8 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONE OR MORE is/ are correct.
Marking scheme: $\mathbf{+ 3}$ for correct answer, $\mathbf{0}$ if not attempted and $\mathbf{- 1}$ in all other cases.
21. In a reaction $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$ was reduced to Cr^{+3} in acidic solution. Then which is / are true
A) The concentration of $0.1 \mathrm{M} \mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$ expressed in equivalent per litre is ----- 0.3
B) The concentration of $0.1 \mathrm{M} \mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$ expressed in equivalent per litre is ----- 0.6
C) Per mole of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2} 6$ moles of electrons are involved
D) oxidation number of Cr atom in $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$ is 6
22. Which is /are true
A) $3 \%(W / v) \mathrm{H}_{2} \mathrm{O}_{2}$ solution is approx $10^{\prime} \mathrm{V}^{\prime}$
B) In $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ carbon is in zero oxidation state
C) 109% oleum means it contains 40% free SO_{3}
D) In Iodometric titration starch indicator is used
23. The sample(s) containing same no. of Na atom as there are Na atoms in 5.3 gm of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, is/are
A) 4 gm of NaOH
B) 6.85 gm of NaCl
C) 0.25 mole of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
D) 5.6 gm of $\mathrm{Na}_{3} \mathrm{PO}_{4}$
24. Excess of KI was added to $100 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}_{2}$ solution of unknown strength alongwith sufficient $\mathrm{H}_{2} \mathrm{SO}_{4}$. Iodine liberated was titrated against 40 ml of 0.1 M hypo solution. The concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is
A) 0.04 N
B) 0.04 M
C) $0.86 \mathrm{gm} / \mathrm{L}$
D) 0.03 M
25. Dichromate ion in acidic medium oxidizes stannous ion as:
$x \mathrm{Sn}^{2+}+y \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+z \mathrm{H}^{+} \rightarrow a \mathrm{Sn}^{4+}+b \mathrm{Cr}^{3+}+\mathrm{cH}_{2} \mathrm{O}$ then which is/are true
A) the value of $x: y$ is $1: 3$
B) the value of $x+y+z$ is 18
C) $a: b$ is $3: 2$
D) The value of $z-c$ is 7
26. Which of the following can act as oxidizing as well as reducing agent?
A) NH_{3}
B) HNO_{3}
C) $\mathrm{H}_{2} \mathrm{O}_{2}$
D) HNO_{2}
27. A 150 ml mixture of CO and CO_{2} is passed through a tube containing excess of red hot charcoal. The volume become 200 ml due to reaction $\mathrm{CO}_{2}(g)+\mathrm{C}(\mathrm{s}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$
A) Mole percent of CO_{2} in the original mixture is 50
B) Mole fraction of CO in the original mixture is 0.66
C) The original mixture contains 60 ml of CO_{2}
D) The original mixture contain 50 ml of CO
28. Identify true statement (s)
A) The reaction $\mathrm{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{NaH}_{2} \mathrm{PO}_{2}+\mathrm{PH}_{3}$ is a disproportionation reaction.
B) In a disproportionation reaction neither oxidation nor reduction takes place.
C) Fluorine always exhibit an oxidation state of -1 in its compounds.
D) Oxidation numbers of ' S ' in $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is 2

SECTION - II

(COMPREHENSION TYPE)
This section contains 4 groups of questions. Each group has 2 multiple choice questions based on a paragraph. Each question has 4 choices A), B), C) and D) for its answer, out of which ONLY ONE is correct.
Marking scheme: +3 for correct answer, 0 if not attempted and -1 in all other cases.

Paragraph for Questions 29 and 30:

Following titration method is given to determine total content of the species with variable oxidation states. Answer the question given at the end of it.

A quantity of 25.0 ml of solution containing both Fe^{2+} and Fe^{3+} ions is titrated with 25.0 mL of $0.0200 \mathrm{M} \mathrm{KMnO}_{4}$ (in dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$). As a result, all of the Fe^{2+} ions are oxidized to Fe^{3+} ions. Next 25 mL of the original solution is treated with Zn metal. Finally, the solution requires 40.0 mL of the same KMnO_{4} solution for oxidation to $\mathrm{Fe}^{3+} . \mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$
29. Molar concentration of Fe^{2+} in the original solution is:
A) 0.01 M
B) 0.02 M
C) 0.10 M
D) 0.20 M
30. Molar concentration of Fe^{3+} in the original solution is
A) 0.06 M
B) 0.16 M
C) 0.032 M
D) 0.012 M

Paragraph for Questions 31 and 32:

A water is said to be a soft water if it produces sufficient foam with the soap and water that does not produce foam with soap is known as hard water.

Temporary hardness is due to presence of calcium and magnesium bicarbonate. It is simply removed by boiling as

$$
\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{CaCO}_{3} \downarrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}
$$

Temporary hardness can also be removed by addition of slaked lime, $\mathrm{Ca}(\mathrm{OH})_{2}$
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CaCO}_{3} \downarrow+2 \mathrm{H}_{2} \mathrm{O}$
Permanent hardness is due to presence of sulphate and chlorides of Ca, Mg etc. It is removed as $\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3} \downarrow+2 \mathrm{NaCl}$
$\mathrm{CaSO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3} \downarrow+\mathrm{Na}_{2} \mathrm{SO}_{4}$
100 ml of a sample of hard water after passing through cation exchange resin, required 20 ml of 0.05 M NaOH for neutralisation. One litre of same sample of water on treatment with sufficient lime gave 200 mg of CaCO_{3}. Assume that the hardness is only due to Ca^{+2} ions.
31. The degree of permanent hardness in the given sample of water is
A) 100 ppm
B) 200 ppm
C) 300 ppm
D) 500 ppm
32. The concentration of bicarbonate ions in ppm in the given sample of water is
A) 61 ppm
B) 122 ppm
C) 183 ppm
D) 100 ppm

Paragraph for Questions 33 and 34:

The number of parts by weight of a substance that can combine with or displace 1.008 parts by weight of hydrogen or 35.5 parts by weight of chlorine or 8 parts of oxygen is known as the equivalent weight of a substance it is represented by E.
33. 3.0 g of metal oxide converted to 5.0 g of metal chloride. The equivalent weight of the metal is
A) 3.325
B) 66.50
C) 33.25
D) 25.33
34. One mole of chlorine combines with certain weight of metal giving 111 gm of its chloride. The same amount of metal can displace 2 gm hydrogen from an acid. The equivalent weight of metal is
A) 40
B) 20
C) 80
D) 10

Paragraph for Questions 35 and 36:

2 litre of $9.8 \%(w / w) \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{~d}=1.5 \mathrm{gm} / \mathrm{ml})$ solution is mixed with 3 litre of 1 M KOH solution
35. The number of moles $\mathrm{H}_{2} \mathrm{SO}_{4}$ added are
A) 1
B) 2
C) 3
D) 0.5
36. The concentration of H^{+}if solution is acidic or concentration of OH^{-}if solution is basic in the final solution is
A) 0
B) $\frac{3}{10}$
C) $\frac{3}{5}$
D) $\frac{2}{5}$
SECTION - III
(MATRIX MATCH TYPE)

This section contains 4 multiple choice questions. Each question has matching lists. The codes for the lists have choices (A), (B), (C), and (D) out of which ONLY ONE is correct.
Marking scheme: $\mathbf{+ 3}$ for correct answer, $\mathbf{0}$ if not attempted and $\mathbf{- 1}$ in all other cases.
37. Given two mixtures:
I) $\mathrm{NaOH}+\mathrm{Na}_{2} \mathrm{CO}_{3}$
II) $\mathrm{NaHCO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3}$

100 ml of mixture I required ' W ' and ' X ' ml of 1 M HCl in separate titrations using phenolphthalein and Methyl orange indicators. While 100 ml of mixture II required ' Y ' and ' Z ' ml of same HCl solution in separate titration using same indicators.

Column I (Substance)		Column II (Molarity in solution)	
(A)	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ in mixture I	(P)	$(2 w-x) \times 10^{-2}$
(B)	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ in mixture II	(Q)	$(z-2 y) \times 10^{-2}$
(C)	NaOH in mixture I	(R)	$y \times 10^{-2}$
(D)	NaHCO_{3} in mixture II	(S)	$(x-w) \times 10^{-2}$

The correct answer is
A) $\mathrm{A} \rightarrow \mathrm{S} ; \mathrm{B} \rightarrow \mathrm{R} ; \mathrm{C} \rightarrow \mathrm{P} ; \mathrm{D} \rightarrow \mathrm{Q}$
B) $\mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{S} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{P}$
C) $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{R} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{Q}$
D) $\mathrm{A} \rightarrow \mathrm{S} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{Q}$
38. Match the Following

Column I		Column II	
(A)	100 ml of $0.2 \mathrm{M} \mathrm{AlCl}_{3}$ solution +400 ml of 0.1 M HCl solution	(P)	Concentration of cation $=0.12 \mathrm{M}$
(B)	$\begin{aligned} & 50 \mathrm{ml} \text { of } 0.4 \mathrm{M} \mathrm{KCl}+50 \mathrm{ml} \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	(Q)	$\left[\mathrm{SO}_{4}^{2-}\right]=0.06 \mathrm{M}$
(C)	$\begin{aligned} & 30 \mathrm{ml} \text { of } 0.2 \mathrm{M} \mathrm{~K}_{2} \mathrm{SO}_{4}+70 \mathrm{ml} \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	(R)	$\left[\mathrm{SO}_{4}^{2-}\right]=2.5 \mathrm{M}$
(D)	$200 \mathrm{ml} \mathrm{24.5} \mathrm{\%}(\mathrm{w} / \mathrm{v}) \mathrm{H}_{2} \mathrm{SO}_{4}$	(S)	$\left[C l^{-1}\right]=0.2 M$

The correct answer is
A) A-PS; B-SP; C-PQR; D-PR
B) A-PS; B-S; C-PQ; D-R
C) A-Q; B-S; C-PQ; D-PR
D) A -PQS; B -PR; C -SR; D -Q
39. Match the Following: Identify equivalent weight of underlined species from redox reactions

Column I

(A) $\underline{P_{2} H_{4}} \rightarrow \mathrm{PH}_{3}+\mathrm{P}_{4} \mathrm{H}_{2}$
(P) $E=\frac{3 M}{4}$
(B) $\underline{I_{2}} \rightarrow I^{-}+\mathrm{IO}_{3}^{-}$
(Q) $E=\frac{3 M}{5}$
(C) $\mathrm{MnO}_{4}^{-}+\mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \underline{\mathrm{Mn}_{3} \mathrm{O}_{4}}+\mathrm{H}^{+}$
(R) $E=\frac{15 M}{26}$
(D) $\underline{\mathrm{H}_{3} \mathrm{PO}_{2}} \rightarrow \mathrm{PH}_{3}+\mathrm{H}_{3} \mathrm{PO}_{3}$
(S) $E=\frac{5 M}{6}$

The correct answer is
A) $\mathrm{A} \rightarrow \mathrm{S} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{P} ; \mathrm{D} \rightarrow \mathrm{R}$
B) $\mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{P}$
C) $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{R} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{Q}$
D) $\mathrm{A} \rightarrow \mathrm{S} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{P}$
40. List -I
A) $10 \mathrm{gm} \mathrm{CaCO} 3 \xrightarrow[\text { decomposition }]{\Delta}$
B) $10.6 \mathrm{gm} \mathrm{Na}_{2} \mathrm{CO}_{3} \xrightarrow{\text { excess } \mathrm{HCl}}$
C) $2.4 \mathrm{gm} \mathrm{C} \xrightarrow[\text { combustion }]{\text { excess } \mathrm{O}_{2}}$
D) $5.6 \mathrm{gm} \mathrm{CO} \xrightarrow[\text { combustion }]{\text { excess } \mathrm{O}_{2}}$
P) $6 \times 10^{22} \mathrm{CO}_{2}$ molecules
Q) $1.2 \times 10^{23} \mathrm{CO}_{2}$ molecules
R) 4.48 lit CO_{2}
S) 2.24 lit CO_{2}
T) 0.448 lit CO_{2}

The correct answer is
A) A-SPQ; B-SPR; C-RQ; D-RQS
B) A-SP; B-SP; C-RQ; D-RQ
C) A-SPQ; B-SPQ; C-SRQ; D-PRQ
D) A-SPQ; B-SPR; C-RSQ; D-RQ

SECTION - I

(MULTIPLE CORRECT CHOICE TYPE)
This section contains 8 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONE OR MORE is/ are correct.
Marking scheme: +3 for correct answer, 0 if not attempted and $\mathbf{- 1}$ in all other cases.
41. $\mathrm{S}_{\mathrm{n}}=1^{2}+2^{2} \mathrm{x}+3^{2} \mathrm{x}^{2}+4^{2} \mathrm{x}^{3}+\ldots \ldots \ldots . .+\infty$, then $\mathrm{S}_{\infty}=$
A) 12 for $x=1 / 2$
B) $9 / 2$ for $x=1 / 3$
C) 16 for $x=1 / 2$
D) $64 / 9$ for $x=1 / 4$
42. If $x^{2}+y^{2}+z^{2}=1$, then the value of $x+2 y+3 z$ cannot be greater than
A) 3
B) 4
C) 5
D) 2
43. The series $\frac{8}{5}+\frac{16}{65}+\frac{24}{325}+\ldots . .+\frac{8 n}{4 n^{4}+1}$
A) The sum to infinite number of terms of the series is 2
B) The sum to n terms of the series is less than $2 \forall n \in N$
C) The sum to n terms of the series cannot be an integer for any $n \in N$
D) The sum to infinite number of terms of the series is $13 / 3$
44. If $a x^{2}+\frac{b}{x} \leq c \forall x>0, a>0$ and $b>0$, then $27 \mathrm{ab}^{2}$ is
A) less than or equal to 4 for $\mathrm{c} \leq 1$
B) less than or equal to 32 for $\mathrm{c} \leq 2$
C) greater than or equal to 108 for $\mathrm{c} \leq 3$
D) greater than or equal to 64 for $\mathrm{c} \leq 2$
45. If the arithmetic mean of two positive numbers $a \& b(a>b)$ is twice their geometric mean, then $a: b$ can be
A) $2+\sqrt{3}: 2-\sqrt{3}$
B) $7+4 \sqrt{3}: 1$
C) $1: 7-4 \sqrt{3}$
D) $2: \sqrt{3}$
46. If both the roots of the equation $x^{2}-6 a x+2-2 a+9 a^{2}=0$ exceeds 3 then
A) a cannot be less than 1
B) $\mathrm{a}>\frac{11}{9}$
C) $\mathrm{a}>\frac{3}{2}$
D) $\mathrm{a}<\frac{5}{2}$
47. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in H.P then the expression $E=\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)\left(\frac{1}{c}+\frac{1}{a}-\frac{1}{b}\right)$ equals
A) $\frac{2}{b c}-\frac{1}{b^{2}}$
B) $\frac{1}{4}\left(\frac{3}{c^{2}}+\frac{2}{c a}-\frac{1}{a^{2}}\right)$
C) $\frac{3}{b^{2}}-\frac{2}{a b}$
D) $\frac{3}{b^{2}}+\frac{2}{a b}$
48. If $(1+3+5+\ldots . .+\mathrm{p})+(1+3+5+\ldots .+\mathrm{q})=(1+3+5+\ldots . .+\mathrm{r})$ where each set of paranthesis

Contain the sum of consecutive odd integers and $\mathrm{p}>6$ then
A) The smallest possible value of $p+q+r=21$
B) The maximum value of $\mathrm{p}+\mathrm{q}+\mathrm{r}=21$
C) $p+q+r$ can attain the value 45
D) $\mathrm{p}+\mathrm{q}+\mathrm{r}$ is an odd prime integer

SECTION - II

(COMPREHENSION TYPE)
This section contains 4 groups of questions. Each group has 2 multiple choice questions based on a paragraph. Each question has 4 choices A), B), C) and D) for its answer, out of which ONLY ONE is correct.
Marking scheme: $+\mathbf{3}$ for correct answer, $\mathbf{0}$ if not attempted and $\mathbf{- 1}$ in all other cases.

Paragraph for Questions 49 and 50:

The sum of three terms of a strictly increasing G.P. is αs and sum of the squares of these terms is S^{2}
49. α^{2} lies
A) $(1 / 3,2)$
B) $(1,2)$
C) $(1 / 3,3)$
D) $\left(\frac{1}{3}, 1\right) \cup(1,3)$
50. If $\alpha=1 / 2, \mathrm{~S}=20$, then the greatest value of the first term is
A) $10 / 3$
B) $7 / 3$
C) $1 / 3$
D) 3

Paragraph for Questions 51 and 52:

Let ABCD is a unit square and $0<\alpha<1$. Each side of the square is divided in the ratio $\alpha: 1-\alpha$. These points are connected to obtain another square. The sides of new square are divided in the ratio $\alpha: 1-\alpha$ and points are joined to obtain another square. The process is continued indefinitely. Let a_{n} denote the length of side and A_{n} be the nth square. (Including given Square)
51. If $\alpha=1 / 3$, the least value of n for which $\mathrm{A}_{\mathrm{n}}<1 / 10$ is
A) 4
B) 5
C) 6
D) 7
52. The value of α for which side of nth square equals the diagonal of $(n+1)$ th square is
A) $1 / 3$
B) $1 / 4$
C) $1 / 2$
D) $1 / \sqrt{2}$

Paragraph for Questions 53 and 54:

We know that, if $a_{1}, a_{2}, \ldots ., a_{n}$ are in H.P., then $\frac{1}{a_{1}}, \frac{1}{a_{2}}, \ldots \ldots, \frac{1}{a_{n}}$, are in A.P. and vice-
versa. If $a_{1}, a_{2}, \ldots ., a_{n}$ are in A.P. with common difference d , then for any $\mathrm{b}(>0)$, the number $b^{a_{1}}, b^{a_{2}}, b^{a_{3}}, \ldots ., b^{a_{n}}$ are in G.P. with common ratio b^{d}. If $a_{1}, a_{2}, \ldots ., a_{n}$ are positive and in G.P. with common ratio r, then for any base $b(b>0), \log _{b} a_{1}, \log _{b} a_{2}, \ldots \ldots$, $\log _{b} \mathrm{a}_{\mathrm{n}}$ are in A.P. with common difference $\log _{\mathrm{b}} \mathrm{r}$.
53. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are respectively the $\mathrm{p}_{,}^{\text {th }} \mathrm{q}^{\text {th }}$ and $\mathrm{r}^{\text {th }}$ terms of an A.P., as well as a G.P., then the value of $x^{y-z} \cdot y^{z-x} \cdot z^{x-y}$ is
A) 1
B) -1
C) 0
D) 2
54. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in H.P., then $4^{-a^{-1}}, 4^{-b^{-1}}, 4^{-c^{-1}}$ are in
A) A.P.
B) G.P.
C) H.P.
D) none of these

Paragraph for Questions 55 and 56:

Let $\mathrm{A}_{1}, \mathrm{G}_{1}, \mathrm{H}_{1}$ denote the arithmetic, geometric and harmonic means, respectively of two distinct positive numbers. For $n \geq 2$, let A_{n-1} and H_{n-1} has arithmetic, geometric and harmonic means as A_{n}, G_{n}, H_{n} respectively.
55. Which of the following statements is a correct statement?
A) $G_{1}>G_{2}>G_{3}>\ldots .$.
B) $G_{1}<G_{2}<G_{3}<\ldots \ldots$
C) $G_{1}=G_{2}=G_{3}=\ldots$.
D) $G_{1}<G_{2}<G_{3}<\ldots .$. and $G_{1}>G_{2}>G_{3}>\ldots \ldots$
56. Which of the following statements is a correct statement?
A) $H_{1}>H_{2}>H_{3}>\ldots$.
B) $H_{1}<H_{2}<H_{3}<\ldots$
C) $H_{1}>H_{3}>H_{5}>\ldots$ and $H_{2}<H_{4}<H_{6}<\ldots$.
D) $H_{1}<H_{3}<H_{5}<\ldots$...and $H_{2}>H_{4}>H_{6}>\ldots$.

SECTION - III

(MATRIX MATCH TYPE)
This section contains 4 multiple choice questions. Each question has matching lists. The codes for the lists have choices (A), (B), (C), and (D) out of which ONLY ONE is correct.
Marking scheme: +3 for correct answer, 0 if not attempted and -1 in all other cases.
57. Column - 1

Column-2
(A) If a, b, c are positive real numbers such that
P) 1210
$49\left(4 a^{2}+9 b^{2}+c^{2}\right)=36(a+b+c)$ then $36\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)=$
$\begin{array}{ll}\text { (B) Let }\left\{a_{1}, a_{2}, \ldots .\right\} \text { be a sequence such that } & \text { Q) } 270\end{array}$
$a_{1}=1$ and $a_{n}-a_{n-1}=n^{2} \forall n \geq 2$ then $\sum_{i=1}^{10} a_{i}$ is equal to
(C) If $\sum_{k=1}^{15}\left(\frac{1}{2 k}-\frac{1}{k+1}+\frac{1}{2(k+2)}\right)=a$ then $1088 \mathrm{a}=$
R) 229
(D) If $S_{n}=\frac{3}{4}+\frac{5}{36}+\frac{7}{144}+\frac{9}{400}+\ldots$. to n term then
S) 1681 $\frac{1}{1-S_{40}}$ is equal to
A) $\mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{Q}$
B) $\mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{S}$
C) $\mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{S} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{P}$
D) $\mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{P} ; \mathrm{D} \rightarrow \mathrm{S}$
(A) If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be positive numbers then $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$

Must be greater than or equal to.
(B) If H be the H.M. and g be the G.M. of two positive
Q) 9

Numbers a and b such that $\mathrm{h}: \mathrm{g}=4: 5$, then $\frac{a}{b}$ can be equal to
(C) If $S=\sum_{r=0}^{\infty} \frac{1}{2^{r}}$ and $S_{n+1}=\sum_{r=0}^{n} \frac{1}{2^{r}}$ and $S-S_{n+1}<10^{-3}$
R) 10

Then n can be
(D) If $(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right) \ldots \ldots . .\left(1+x^{128}\right)=\sum_{r=0}^{n} x^{r}$
S) 255

Then n is equal to
A) $\mathrm{A} \rightarrow \mathrm{P}, \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{R}, \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{S}$
B) $\mathrm{A} \rightarrow \mathrm{P}, \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{S} ; \mathrm{C} \rightarrow \mathrm{R}, \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{P}$
C) $\mathrm{A} \rightarrow \mathrm{P}, \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{S}$
D) $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{R}, \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{S}$
59. Column - 1
(A) If a, b, c are positive real numbers then the least value
of $\frac{a^{3}}{4 b}+\frac{b}{8 c^{2}}+\frac{1+c}{2 a}$ is $\frac{x}{y}(x, y$ coprime natural numbers $)$ where $x+y=$
(B) If a, b, c are positive real numbers then the least value
Q) 5 $\frac{(a+b)(b+c)(c+a)}{a b c}$ is
(C) If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are positive real numbers such that $\mathrm{a}+\mathrm{b}+\mathrm{c}=1$
R) 8
then the least value of $\frac{(1+a)(1+b)(1+c)}{(1-a)(1-b)(1-c)}$ is
(D) If a, b, c are the sides of triangle then
$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<k$ where least positive integral value of k is
A) $\mathrm{A} \rightarrow \mathrm{S} ; \mathrm{B} \rightarrow \mathrm{R} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{P}$
B) $\mathrm{A} \rightarrow \mathrm{S} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{P}$
C) $\mathrm{A} \rightarrow \mathrm{S} ; \mathrm{B} \rightarrow \mathrm{R} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{P}$
D) $\mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{S} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{P}$
(A) If three unequal numbers a, b, c are in A.P. and $b-a, c-b, a \quad P) 1$ Are in G.P. then $\frac{a^{3}+b^{3}+c^{3}}{3 a b c}$ is equal to
(B) let x be the arithmetic mean and y, z be two geometric
Q) 4

Means between any two positive numbers, then $\frac{y^{3}+z^{3}}{2 x y z}$
Is equal to
(C) If a, b, c be three positive number which form three
R) 2

Successive terms of a G.P. and $c>4 b-3 a$, then the common ratio of the G.P. can be equal to.
$\begin{array}{ll}\text { (D) number of integral values of } x \text { satisfying inequality } & \text { S) } 0\end{array}$
$-7 x^{2}+8 x-9>0$ is
A) $\mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{P} ; \mathrm{D} \rightarrow \mathrm{S}$
B) $\mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{S} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{P}$
C) $\mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{S} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{P}$
D) $\mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{S}$

Master JEE CLASSES

Kukatpally, Hyderabad.

KEY SHEET

PHYSICS

1	ABD	2	BC	3	\mathbf{C}	4	ABC	5	ABCD
6	$\mathbf{B C D}$	7	$\mathbf{A C}$	8	$\mathbf{B C D}$	9	\mathbf{B}	10	\mathbf{C}
11	\mathbf{C}	12	\mathbf{D}	13	\mathbf{B}	14	\mathbf{C}	15	\mathbf{A}
16	\mathbf{B}	17	\mathbf{C}	18	\mathbf{B}	19	\mathbf{D}	20	\mathbf{D}

CHEMISTRY

21	$\mathbf{B C D}$	22	$\mathbf{A B C D}$	23	\mathbf{A}	24	\mathbf{A}	25	$\mathbf{B C D}$
26	$\mathbf{C D}$	27	\mathbf{B}	28	$\mathbf{A C D}$	29	\mathbf{C}	30	\mathbf{A}
31	\mathbf{C}	32	\mathbf{B}	33	\mathbf{B}	34	\mathbf{B}	35	\mathbf{C}
36	\mathbf{C}	37	\mathbf{A}	38	\mathbf{B}	39	\mathbf{D}	40	\mathbf{B}

MATHS

41	$\mathbf{A B}$	42	$\mathbf{B C}$	43	$\mathbf{A B C}$	44	$\mathbf{A B}$	45	$\mathbf{A B C}$
46	$\mathbf{A B}$	47	$\mathbf{A B C}$	48	$\mathbf{A C}$	49	\mathbf{D}	50	\mathbf{A}
51	\mathbf{B}	52	\mathbf{C}	53	\mathbf{A}	54	\mathbf{B}	55	\mathbf{C}
56	\mathbf{B}	57	\mathbf{B}	58	\mathbf{A}	59	\mathbf{C}	60	\mathbf{D}

SOLUTIONS

PHYSICS

1. It is negative when it lies left of the main scale.
2. Conceptual
3. Conceptual
4. Conceptual
5. Join, object and image with a line that intersects the principle axis at point c . (centre of curvature) From the similar triangles

$\frac{1}{x}=\frac{5}{12-x} \Rightarrow x=2 \mathrm{~cm}$
Apply mirror formula we get $f=2.5 \mathrm{~cm}$
6. from given condition $\mathrm{m} \mu_{1}>\mu_{2}, \mu_{1}>\mu_{3} \sin c e, \mu_{1}, \mu_{2}$ and $\mu_{3}>1$

Hence, $\mu_{1}{ }^{2}>\mu_{2}{ }^{2}, \mu_{1}{ }^{2}>\mu_{3}{ }^{2}$.
7. Conceptual
8. Apply Snells law : $\mu_{2} \operatorname{in} \mathrm{i}-\mu_{1} \sin \mathrm{r} \Rightarrow \operatorname{sini}-\mathrm{k} \sin \mathrm{r}$

From the given graph, angle of deviation decreases and becomes zero at $k=k_{2}$
Hence, $\theta_{1}=|r-i|=\frac{\pi}{6}$ (By geometry $)$
\Rightarrow at $\mathrm{k}=\mathrm{k}_{2}, \theta=|\mathrm{r}-\mathrm{i}|=0$
\Rightarrow whon $\mathrm{E}=\infty, \mathrm{r}=0$, by the Snells law. $\theta_{2}|\mathrm{r}-1|={ }_{1}=\frac{\pi}{3}$
$\Rightarrow k_{1}=$ must be less than k_{2} from the given graph
9. Least Count $=\frac{\text { Pitch }}{\text { No. of divisions on Circular scale }}$

Pitch $=\frac{\text { Linear dis } \tan \text { ce moved }}{\text { No. of rotations }}$
10. Conceptual
11. Using $\frac{1}{v}-\frac{1}{[2 f+f \cos \omega t]}=\frac{-1}{f}$

We get $v=-\left(\frac{2+\cos \omega t}{1+\cos \omega t}\right) \cdot f$
12. The ball coincides with its image at the centre of curvature
13. $L C=\frac{1}{50}=0.02 \mathrm{~mm}$
14. The instrument has positive zero error
$\mathrm{e}=+3 \times 0.02=0.06 \mathrm{~mm}$
15. Conceptual
16. Conceptual
17. Conceptual
18. Conceptual
19. Conceptual
20. Conceptual

CHEMISTRY

24. 40 mL of 0.1 M hypo $\Rightarrow 4 \times 10^{-3}$ equivalent of $\mathrm{H}_{2} \mathrm{O}_{2} \Rightarrow 4 \times 17 \times 10^{-3} \mathrm{~g}$ in $100 \mathrm{~mL} \Rightarrow 0.68 \mathrm{~g}$ per L (or) 0.02 M (or) 0.04 N
25. $3 \mathrm{Sn}^{2+}+14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 3 \mathrm{Sn}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
26.
27. Only Fe^{2+} is oxidized and MnO_{4}^{-}is reduced to Mn^{2+}
$25 \times M\left(\mathrm{Fe}^{2+}\right)=25 \times 0.02 \times 5\left(\mathrm{MnO}_{4}^{-}\right)$
$\mathrm{M}=0.10 \mathrm{M}$
28. Total Fe^{2+} in second part (including that of from Fe^{3+})-

$$
\begin{aligned}
& 25 \times y=40 \times 0.02 \times 5 \\
& y=0.16 \mathrm{M}=0.16 \mathrm{~N} \\
& F e^{3+}=0.16-0.10\left(F e^{2+}\right) \\
& =0.06 \mathrm{M}
\end{aligned}
$$

31, 32.
From the solution, $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{CaO} \longrightarrow 2 \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$
200 mg of CaCO_{3} is given by one m mole of $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ per Lt.
\therefore Degree of temporary hardness $=100 \mathrm{ppm}$
When water is passed through cation exchange resin all the cations are exchanged with ' H^{+}' ions and HCO_{3}^{-}ions remain same.
milli eq of $\mathrm{HCO}_{3}^{-}+$milli eq. of $\mathrm{Ca}^{+2}=$ milli eq. of NaOH
milli eq. of $\mathrm{Ca}^{+2}=1-0.2=0.8$
\therefore milli moles of $\mathrm{Ca}^{+2}=0.4$ per 100 ml
Total degree of hardness $=400 \mathrm{ppm}$
Hence degree of permanent hardness $=300 \mathrm{ppm}$
33, 34
MW of $\mathrm{MCl}_{2}=111 \mathrm{~g}$
$\mathrm{M}+71=111 \quad \mathrm{M}=111-71=40$
2 gm of H_{2} displaced by 40 gm of metal
1 gm of H_{2} displaced by?

37. Mixture I:

End point with phenolphthalein (disappearance of pink colour) corresponds to the neutralisation of NaOH and half- neutralisation of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{ONa}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaHCO}_{3}+\mathrm{NaCl}$
End point with Methyl orange (Appearance of Red colour) corresponds to the neutralisation of NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Volume of HCl required for neutralisation of $\mathrm{Na}_{2} \mathrm{CO}_{3}=2(x-w)$
Normality of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{1 \times 2(x-w)}{100}$
$2(x-w) \times 10^{-2}$ Molarity of $\mathrm{Na}_{2} \mathrm{CO}_{3}=(x-w) \times 10^{-2}$
Volume of HCl req. for neutralisation of NaOH
$=w-(x-w)=(2 w-x) m l$

Hence, molarity of $\mathrm{NaOH}=\frac{(2 w-x) \times 1}{100}$
$=(2 w-x) \times 10^{-2} M$

Mixture II:

End point with phenolphthalein corresponds to half- neutralisation of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ as $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaHCO}_{3}+\mathrm{NaCl}$

Volume of HCl req. for complete neutralisation of $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ ' 2 y ' ml
\therefore Molarity of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{1}{2} \times \frac{2 y}{100}=y \times 10^{-2}$
End point with Methyl orange corresponds to neutralisation of NaHCO_{3}
Hence, volume required for neutralisation of NaHCO_{3} present initially $=(z-2 y) m l$
\therefore Molarity of $\mathrm{NaHCO}_{3}=\frac{(z-2 y)}{100}=(z-2 y) \times 10^{-2}$
40. A) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
B) $\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
C) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
D) $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$

MATHS

41. $S_{n}(1-x)=1^{2}+\left(2^{2}-1^{2}\right) x+\left(3^{2}-2^{2}\right) x^{2}+\left(4^{2}-3^{2}\right) x^{3}+\ldots .$.

$$
\begin{aligned}
& =1+3 x+5 x^{2}+7 x^{2}+\ldots . . \operatorname{in}(\text { A.G.P }) \\
& S_{\infty}=\frac{1+x}{(1-x)^{3}}
\end{aligned}
$$

42. $(x+2 y+3 z)^{2} \leq\left(1^{2}+2^{2}+3^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)$

Cauchy-schwarz inequality
$x+2 y+3 z \leq \sqrt{14}$
43. $T_{r}=\frac{8 r}{4 r^{4}+1}=\frac{8 r}{\left(2 r^{2}+2 r+1\right)\left(2 r^{2}-2 r+1\right)}$
$=2\left\{\frac{\left(2 r^{2}+2 r+1\right)-\left(2 r^{2}-2 r+1\right)}{\left(2 r^{2}+2 r+1\right)\left(2 r^{2}-2 r+1\right)}\right\}$
$=2\left\{\frac{1}{2 r^{2}-2 r+1}-\frac{1}{2 r^{2}+2 r+1}\right\}=2\left\{\frac{1}{v_{r}}-\frac{1}{v_{r+1}}\right\}$
$\sum_{r=1}^{\infty} T_{r}=2\left[\left(\frac{1}{1}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{13}\right)+\ldots.\right]=2$
$1<\sum_{r=1}^{n} T_{r}<2$
44. $\frac{a x^{2}+\frac{b}{2 x}+\frac{b}{2 x}}{3} \geq\left(a x^{2} \cdot \frac{b}{2 x} \cdot \frac{b}{2 x}\right)^{1 / 3}$
$\frac{1}{3}\left(a x^{2}+\frac{b}{x}\right) \geq\left(\frac{a b^{2}}{4}\right)^{1 / 3}$
$3\left(\frac{a b^{2}}{4}\right)^{1 / 3} \leq c$
$\mathrm{AM} \geq \mathrm{GM}$
$3\left(\frac{a b^{2}}{4}\right)^{1 / 3} \leq a x^{2}+\frac{b}{x} \leq c$
$27 \frac{\left(a b^{2}\right)}{4} \leq c^{3}$
$27 a b^{2} \leq 4 c^{3}$
45. $\frac{a+b}{2 \sqrt{a b}}=2 \Rightarrow \sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}=4$
$\frac{a}{b}=7 \pm 4 \sqrt{3}$
$a>b$
$\therefore \frac{a}{b}=7+4 \sqrt{3}$
46. $(x-3 a)^{2}=2 a-2$
$x=3 a \pm \sqrt{2 a-2}$
$3 a-\sqrt{2 a-2}>3$
$3(a-1)>\sqrt{2} \sqrt{a-1}$
$\therefore a>1, \sqrt{a-1}>\frac{\sqrt{2}}{3}$
47. $E=\left(\frac{1}{c}+d\right)\left(\frac{1}{c}-d\right)=\frac{1}{c^{2}}-d^{2}$
$=\frac{1}{c^{2}}-\left(\frac{1}{c}-\frac{1}{b}\right)^{2}=\frac{2}{b c}-\frac{1}{b^{2}}$

Similarly $E=\frac{1}{c^{2}}-\frac{1}{4}\left(\frac{1}{c}-\frac{1}{a}\right)^{2}=\frac{1}{4}\left(\frac{3}{c^{2}}+\frac{2}{c a}-\frac{1}{a^{2}}\right)$
$E=\left(\frac{2}{b}-\frac{1}{a}\right)^{2}-\left(\frac{1}{b}-\frac{1}{a}\right)^{2}=\frac{3}{b^{2}}-\frac{2}{a b}$
48. $1+3+5+\ldots . .+(2 k-1)=k^{2}$

$$
\begin{aligned}
& \therefore\left(\frac{p+1}{2}\right)^{2}+\left(\frac{q+1}{2}\right)^{2}=\left(\frac{r+1}{2}\right)^{2} \\
& \therefore(p+1)^{2}+(q+1)^{2}=(r+1)^{2} \quad p+1>7 \\
& (p+1, q+1, r+1) \Rightarrow \text { pythagorean triplet. }
\end{aligned}
$$

The first pythagoream triplet contains a number >7 is $(6,8,10)$

$$
\begin{aligned}
& \mathrm{P}=7 \mathrm{q}=5 \mathrm{r}=9 \\
& \mathrm{P}+\mathrm{q}+\mathrm{r}=21
\end{aligned}
$$

Also when $\mathrm{p}+1=16, \mathrm{q}+1=12, \mathrm{r}+1=20$

$$
\begin{equation*}
\mathrm{P}+\mathrm{q}+\mathrm{r}=15+11+19=45 \tag{1}
\end{equation*}
$$

49. $a\left(\frac{1}{r}+1+r\right)=\alpha s$
$a^{2}\left(\frac{1}{r^{2}}+1+r^{2}\right)=s^{2}$
Divide (2) and (1) to obtain
$a\left(\frac{1}{r}+1+r\right)=\frac{s}{\alpha}+2 a$
From (2) and (3)

$$
2 a=s\left(\alpha-\frac{1}{\alpha}\right)=s\left(\frac{\alpha^{2}-1}{\alpha}\right)
$$

Putting this in (2) we get

$$
\begin{align*}
& \frac{\left(\alpha^{2}-1\right)^{2}}{4 \alpha^{2}}\left(\frac{1}{r^{2}}+1+r^{2}\right)=1 \\
& \Rightarrow\left(r-\frac{1}{r}\right)^{2}+3=\frac{4 \alpha^{2}}{\left(\alpha^{2}-1\right)^{2}} \tag{4}\\
& \Leftrightarrow 3 \alpha^{4}-10 \alpha^{2}+3<0 \\
& \Leftrightarrow\left(3 \alpha^{2}-1\right)\left(\alpha^{2}-3\right)<0
\end{align*}
$$

$\Leftrightarrow 1 / 3<\alpha^{2}<3$
But $\alpha^{2}=1 \Rightarrow a=0$. Not possible.
50. $a\left(\frac{1}{r}+1+r\right)=\left(\frac{1}{2}\right)(20)$
$\Rightarrow \frac{10}{a}=\left(\sqrt{r}-\frac{1}{\sqrt{r}}\right)^{2}+3 \geq 3$
$\Rightarrow a \leq 10 / 3$
Also, $a^{2}\left(\frac{1}{r^{2}}+1+r^{2}\right)=20^{2}$
$\Rightarrow a \leq 20 / \sqrt{3}$
Thus, $\Rightarrow a \leq 10 / 3$
51. $a_{1}=1$ and $a^{2}{ }_{n+1}=\left[(1-\alpha)^{2}+\alpha^{2}\right] a^{2}{ }_{n}$
$=\frac{5}{9} a_{n}{ }^{2}=\left(\frac{5}{9}\right)^{n}$
Now, $A_{n}=a_{n}{ }^{2}<\frac{1}{10}$
$\Rightarrow\left(\frac{9}{5}\right)^{n-1}>10$
$\Rightarrow 9^{n-1}>2\left(5^{n}\right)$
$\Rightarrow n \geq 5$
52. Diagonal of $(\mathrm{n}+1)$ th square $=\sqrt{2} a_{n+1}$

Now $\quad a_{n}=\sqrt{2} a_{n+1}$
$\Rightarrow a_{n}{ }^{2}=2 a_{n+1}{ }^{2}$
$\Rightarrow a_{n}{ }^{2}=2\left(2 \alpha^{2}-2 \alpha+1\right) a_{n}{ }^{2}$
$\Rightarrow \alpha=1 / 2$
53. Let the base be taken as e. Since x, y, z are terms of a G.P. (say with common ratio t), $\ln x, \operatorname{lny}, \operatorname{lnz}$ are in A.P. with common difference lnt. Also, x, y, z terms of A.P. (say with common difference d)

Hence $x-y=(p-q) d$ etc. And $\ln x-\ln y=(p-q) \ln t$. Etc.
Let $E=x^{y-z} \cdot y^{z-x} \cdot z^{x-y}$ so that
$\ln E=(y-z) \ln x+(z-x) \ln y+(x-y) \ln z$
$=(q-r) d \ln x+(r-p) d \ln y+(p-q) d \ln z$

$$
\begin{aligned}
& =d[p(\ln z-\ln y)+q(\ln x-\ln z)+r(\ln y-\ln x)] \\
& =d \ln t[p(r-q)+q(p-r)+r(q-p)]=0 \Rightarrow E=1
\end{aligned}
$$

54. (B) Here $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in H.P.
$\Rightarrow a^{-1}, b^{-1}, c^{-1}$ are in A.P. $\quad \Rightarrow\left(\frac{1}{4}\right)^{a^{-1}},\left(\frac{1}{4}\right)^{b^{-1}},\left(\frac{1}{4}\right)^{c^{-1}}$ are in G.P.
$\Rightarrow 4^{-a^{-1}}, 4^{-b^{-1}}, 4^{-c^{-1}}$ are in G.P.
55. Let two distinct positive numbers be a and b.

$$
\begin{aligned}
& A_{1}=\frac{1}{2}(a+b), G_{1}=\sqrt{a b}, H_{1}=\frac{2 a b}{a+b} \\
& A_{n}=\frac{1}{2}\left(A_{n-1}+H_{n-1}\right), G_{n}=\sqrt{A_{n-1}+H_{n-1}} \\
& H_{n}=\frac{2 A_{n-1}+H_{n-1}}{A_{n-1}+H_{n-1}} \\
& \text { for } n \geq 2 \\
& A_{n} H_{n}=A_{n-1}+H_{n-1} \\
& \text { thus, } A_{1} H_{1}=A_{2} H_{2}=A_{3}+H_{3}=\ldots . \\
& \Rightarrow G_{1}^{2}=G_{2}^{2}=G_{3}^{2}=\ldots . \\
& G_{1}=G_{2}=G_{3}=\ldots .
\end{aligned}
$$

56. As a and b are distinct, $\mathrm{A}_{1}>\mathrm{H}_{1}$
$\Rightarrow A_{1}>A_{2}>H_{2}>H_{1}$
$\Rightarrow A_{1}>A_{2}>A_{3}>H_{3}>H_{2}>H_{1}$
And so on.
Thus, $A_{1}>A_{2}>A_{3}>\ldots \ldots$.
And $H_{1}<H_{2}<H_{3}<\ldots \ldots$.
57. A-q;B-p;C-q;D-s
(A) $\frac{\left[(s-a)^{2}+(s-a)+1\right]}{(s-a)} \frac{\left[(s-b)^{2}+2(s-b)+1\right]}{(s-b)} \frac{\left[(s-c)^{2}+3(s-c)+1\right]}{(s-c)}=$
$\left[(s-a)+\frac{1}{s-a}+1\right]\left[(s-b)+\frac{1}{s-b}+2\right]\left[(s-c)+\frac{1}{s-c}+3\right]$
(B) $a_{i}=1^{2}+2^{2}+\ldots . . i^{2}=\frac{i(i+1)(2 i+1)}{6}$
$S=\sum_{i=1}^{10} a_{i}=\sum_{i=1}^{10} \frac{i(i+1)(2 i+1)}{6}=1210$
(C) $T_{n}=\frac{n^{2}}{500+3 n^{3}}$

Let $U_{n}=\frac{1}{T_{n}}=\frac{500}{n^{2}}+3 n$
$\frac{d T_{n}}{d n}=\frac{\left(500+3 n^{3}\right) 2 n-n^{2} 9 n^{2}}{\left(500+3 n^{3}\right)^{2}}=\frac{n\left(1000-3 n^{3}\right)}{\left(500+3 n^{3}\right)^{2}}=0$
$\Rightarrow n=\left(\frac{1000}{3}\right)^{1 / 3}$
Now, $6<\left(\frac{1000}{3}\right)^{1 / 3}<7$
(D) $T_{r}=\frac{2 r+1}{r^{2}(r+1)^{2}}=\frac{(r+1)^{2}-r^{2}}{r^{2}(r+1)^{2}}=\frac{1}{r^{2}}-\frac{1}{(r+1)^{2}}$
$S_{n}=\sum_{r=1}^{n} T_{r}=\sum_{r=1}^{n}\left[V_{r}-V_{r+1}\right]$
$=V_{1}-V_{n+1}=1-\frac{1}{(n+1)^{2}}$
58. A-p,q;B-p;C-r,s;D-s
(A) $A . M \geq H . M \Rightarrow \frac{a+b+c}{3} \geq \frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}$
$\Rightarrow(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq 9$
(B) $h=\frac{2 a b}{a+b}, g=\sqrt{a b} \Rightarrow \frac{h}{g}=\frac{2 a b}{(a+b) \sqrt{a b}}$
$\Rightarrow \frac{4}{5}=\frac{2 \sqrt{a b}}{a+b}$
$\Rightarrow \frac{9}{1}=\frac{(\sqrt{a}+\sqrt{b})^{2}}{(\sqrt{a}-\sqrt{b})^{2}} \Rightarrow\left|\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\right|=3$
or $\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}= \pm 3$
or $a: b=1: 4$ or $4: 1$
(C) $S=\frac{1}{1-\frac{1}{2}}=2$ and $S_{n+1}=\frac{1-\frac{1}{2^{n+1}}}{1-\frac{1}{2}}=2-\frac{1}{2^{n}}$
$\therefore S-S_{n+1}=\frac{1}{2^{n}}<\frac{1}{1000} \Rightarrow 2^{n}>1000$
But $2^{9}<1000<2^{10}$
$\therefore n \geq 10$
(D) $(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right) \ldots \ldots\left(1+x^{128}\right)$
$\frac{1-x^{256}}{1-x}=\sum_{r=0}^{255} x^{r} \Rightarrow n=255$
59. A-r; B-q; C-q; D-p
(A) $A_{p}=a+(p-1) d \ldots \ldots$.
$A_{q}=a+(q-1) d \ldots \ldots$.
$A_{r}=a+(r-1) d$
$A_{s}=a+(s-1) d$
$A_{q}=k A_{p}$
$A_{r}=k^{2} A_{p} \quad\left(A_{p}, A_{q}, A_{r}, A_{s}\right.$ in G.P. $)$
$A_{s}=k^{3} A_{p}$
$(p-q)=\frac{A_{p}-A_{q}}{d}=A_{p} \frac{(1-k)}{d} \operatorname{from}(1) \operatorname{and}(2)$
$(q-r)=A_{p} k \frac{(1-k)}{d}$ from (2) and (3)
$(r-s)=A_{p} k^{2} \frac{(1-k)}{d}$
$\Rightarrow p-q, q-r, r-s$ arein G.P.
(B) In $x, \operatorname{In} y$, In z are in G.P.
$\Rightarrow \operatorname{In}(\operatorname{In} x), \operatorname{In}(\operatorname{In} y), \operatorname{In}(\operatorname{In} z)$ are in A.P.
$\Rightarrow 2 x+\operatorname{In}(\operatorname{In} x), 3 x+\operatorname{In}(\operatorname{In} y), 4 x+\operatorname{In}(\operatorname{In} z)$ are in A.P.
(C) $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{z}}=\ldots . .=k($ say $)$
$\frac{1}{x} \log a=\frac{1}{y} \log b=\frac{1}{z} \log c=\ldots . .=\log k$
But $\log a, \log b, \log c \Rightarrow A . P$
$x \log k, y \log k, z \log k \Rightarrow A . P$
$x, y, z \Rightarrow A . P$
(D) $\frac{(b-c)^{2}+(a-b)^{2}+(c-a)^{2}}{3}$

$$
\begin{aligned}
& \Rightarrow \frac{(b+c-2 a)^{2}+(c+a-2 b)^{2}+(a+b-2 c)^{2}}{3} \\
& \Rightarrow(b+c-2 a)^{2}-(b-c)^{2}+(c+a-2 b)^{2}-(c-a)^{2}+(a+b-2 c)^{2}-(a-b)^{2}=0 \\
& a=b=c
\end{aligned}
$$

60. (A) $a, b, c=>b-d, b, b+d$

$$
\begin{aligned}
& \mathrm{b}-\mathrm{a}=\mathrm{b}-(\mathrm{b}-\mathrm{d})=\mathrm{d} \\
& \mathrm{c}-\mathrm{a}=\mathrm{b}+\mathrm{d}-\mathrm{b}=\mathrm{d} \\
& \mathrm{a}=\mathrm{b}-\mathrm{d} \\
& \mathrm{~d}, \mathrm{~d}, \mathrm{~b}-\mathrm{d}=>\text { G.P. } \\
& \mathrm{b}=2 \mathrm{~d} \\
& \frac{a^{3}+b^{3}+c^{3}}{3 a b c}==\frac{36 d^{3}}{18 d^{3}}=2
\end{aligned}
$$

(B) $x=\frac{a+b}{2}, y=a\left(\frac{b}{a}\right)^{1 / 3}, z=a\left(\frac{b}{a}\right)^{2 / 3}$
$y^{3}+z^{3}=a^{2} b+a b^{2} \quad x y z=\frac{a+b}{2} a^{2 / 3} b^{1 / 3} a^{1 / 3} b^{2 / 3}$
$=a b(a+b) \quad=\frac{(a+b) a b}{2}$
$\frac{y^{3}+z^{3}}{2 x y z}=\frac{a b(a+b)}{2\left(\frac{a+b}{2}\right) a b}=1$
(C) $a, a r, a r^{2}, a^{2}>4 a r-3 a \quad(a>0)$
$r^{2}-4 r+3>0, r^{2}>4 r-3$
$r<1$ or $r>3$
(D) $7 x^{2}-8 x+9<0$ No real solutions

