Solved Examples

JEE Main/Boards

Example 1: If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.

Sol: Refer to Fig. 10.22. If we consider the origin to be the vertex of the parabola. Then we know that the point $(5,10)$ will lie on the parabola. Using this we can solve the question easily.

Let 'MAN' be the parabolic reflector such that MN is its diameter and $A B$ is its depth. It is given that $A B=5 \mathrm{~cm}$ and $\mathrm{MN}=20 \mathrm{~cm}$
$\therefore \quad \mathrm{MB}=\mathrm{BN}=10 \mathrm{~cm}$
Taking the equation of the reflector as

$$
\begin{equation*}
y^{2}=4 a x \tag{i}
\end{equation*}
$$

Co-ordinates of point M are $(5,10)$ and lies on (i). Therefore,

$$
(10)^{2}=4(a)(5) \Rightarrow \quad a=5
$$

Thus, the equation of the reflector is

$$
y^{2}=20 x
$$

Its focus is at (5,0), i.e., at point B.
Hence, the focus is at the mid-point of the given diameter.

Example 2: The equation of the directrix of the parabola $y^{2}+4 y+4 x+2=0$ is-
(A) $x=-1$
(B) $x=1$
(C) $x=-3 / 2$
(D) $x=3 / 2$

Sol: Rewrite the given equation in the standard form and compare with the equation of directrix.
The given equation can be written as
$(y+2)^{2}=-4 x+2=-4(x-1 / 2)$
Which is of the form $Y^{2}=4 a X$
Where $Y=y+2, X=x-1 / 2, a=-1$
The directrix of the parabola

$$
\begin{aligned}
& Y^{2}=4 a x \text { is } X=-a \\
\Rightarrow \quad & x-1 / 2=-(-1) \Rightarrow \quad x=3 / 2
\end{aligned}
$$

is the equation of the directrix of the given parabola.
Example 3: If the focus of a parabola divides a focal chord of the parabola in segments of length 3 and 2, the length of the latus rectum of the parabola is-
(A) $3 / 2$
(B) $6 / 5$
(C) $12 / 5$
(D) $24 / 5$

Sol: Let $y^{2}=4 a x$ be the equation of the parabola, then the focus is $\mathrm{S}(\mathrm{a}, 0)$. Let $\mathrm{P}\left(\mathrm{at}_{1}{ }^{2}, 2 a t_{1}\right)$ and $\mathrm{Q}\left(\mathrm{at}_{2}{ }^{2}, 2 \mathrm{at} \mathrm{t}_{2}\right)$ be vertices of a focal chord of the parabola, then $\mathrm{t}_{1} \mathrm{t}_{2}=-1$. Let $\mathrm{SP}=3, \mathrm{SQ}=2$
$S P=\sqrt{a^{2}\left(1-t_{1}^{2}\right)+4 a^{2} t_{1}^{2}}=a\left(1+t_{1}^{2}\right)=3$
and $S Q=a\left(1+\frac{1}{t_{1}^{2}}\right)=2$
From (i) and (ii), we get $\mathrm{t}_{1}{ }^{2}=3 / 2$ and $\mathrm{a}=6 / 5$. Hence, the length of the latus rectum $=24 / 5$.

Example 4: The tangent at the point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the parabola $y^{2}=4 a x$ meets the parabola $y^{2}=4 a(x+b)$ at Q and R, the coordinates of the mid-point of $Q R$ are-
(A) $\left(x_{1}-a_{1} y_{1}+b\right)$
(B) $\left(x_{1}, y_{1}\right)$
(C) $\left(x_{1}+b, y_{1}+a\right)$
(D) $\left(x_{1}-b, y_{1}-b\right)$

Sol: Consider a mid point of the chord and find the equation w.r.t. $y^{2}=4 a(x+b)$. Compare this equation with the equation of the tangent to $y^{2}=4 a x$ and get the coordinates of the mid point.
Equation of the tangent at $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the parabola $\mathrm{y}^{2}=$ $4 a x$ is $y_{1}=2 a\left(x+x_{1}\right)$
or $2 a x-y_{1} y+2 a x_{1}=0$
If $M(h, k)$ is the mid-point of $Q R$, then the equation of $Q R$, a chord of the parabola $y^{2}=4 a(x+b)$ in terms of its mid-point is
$k y-2 a(x+h)-4 a b=k^{2}-4 a(h+b) \quad$ (Using T = S')
or $2 a x-k y+k^{2}-2 a h=0$
Since (i) and (ii) represent the same line, we have
$\frac{2 \mathrm{a}}{2 \mathrm{a}}=\frac{\mathrm{y}_{1}}{\mathrm{k}}=\frac{2 \mathrm{ax}_{1}}{\mathrm{k}^{2}-2 \mathrm{ah}}$
$\Rightarrow \quad \mathrm{k}=\mathrm{y}_{1}$ and $\mathrm{k}^{2}-2 \mathrm{ah}=2 \mathrm{ax}_{1}$
$\Rightarrow \mathrm{y}_{1}^{2}-2 \mathrm{ah}=2 \mathrm{ax}_{1} \Rightarrow 4 \mathrm{ax}_{1}-2 \mathrm{ax}_{1}=2 \mathrm{ah}$
(As $P\left(x_{1}, y_{1}\right)$ lies on the parabola $y^{2}=4 a x$) $\Rightarrow h=x_{1}$ so that $h=x_{1}, k=y_{1}$ is the mid point of $Q R$.

Example 5: P is a point on the parabola whose ordinate equals its abscissa. A normal is drawn to the parabola at P to meet it again at Q . If S is the focus of the parabola then the product of the slopes of SP and SQ is-
(A) -1
(B) $1 / 2$
(C) 1
(D) 2

Sol: Proceed according to the given condition. Clearly, the point with the same abscissa and the ordinate is the point (4a, 4a).
Let $P\left(\mathrm{at}^{2}\right.$, 2at) be a point on the parabola $y^{2}=4 a x$, then $a t^{2}=2 a t \Rightarrow t=2$ and thus the coordinates of P are (4a, 4a).
Equation of the normal at P is $y=-t x+2 a t+a t^{3}$
$\Rightarrow \quad y=-2 x+4 a+8 a$
$\Rightarrow \quad 2 x+y=12 a$
Which meets the parabola $y^{2}=4 a x$ at points given by

$$
\begin{aligned}
& y^{2}=2 a(12 a-y) \Rightarrow y^{2}+2 a y-24 a^{2}=0 \\
\Rightarrow \quad & y=4 a \text { or } y=-6 a \\
& y=4 a \text { corresponds to the point } P
\end{aligned}
$$

and $y=-6 a \Rightarrow x=9 a$ from (i)
So that the coordinates of Q are (9a, -6 a). Since the coordinates of the focus S are $(a, 0)$, slope of $S P=4 / 3$ and slope of $\mathrm{SQ}=-6 / 8$. Product of the slopes $=-1$.

Example 6: The common tangents to the circle $x^{2}+y^{2}=a^{2} / 2$ and the parabola $y^{2}=4 a x$ intersect at the focus of the parabola.
(A) $x^{2}=4 a y$
(B) $x^{2}=-4 a y$
(C) $y^{2}=-4 a x$
(D) $y^{2}=4 a(x+a)$

Sol: In this case, first we need to find the two common tangents and then find the point of intersection. Start with the standard equation of the tangent to a parabola and apply the condition of tangency on the circle to get the slope of the tangents and proceed to find the point of intersection.

The equation of a tangent to the parabola $y^{2}=4 a x$ is y $=m x+a / m$.

If it touches the circle $x^{2}+y^{2}=a^{2} / 2$

$$
\begin{aligned}
& \frac{a}{m}=\left(\frac{a}{2}\right) \sqrt{1+m^{2}} \Rightarrow 2=m^{2}\left(1+m^{2}\right) \\
& \Rightarrow m^{4}+m^{2}-2=0 \Rightarrow\left(m^{2}-1\right)\left(m^{2}+2\right)=0
\end{aligned}
$$

$\Rightarrow \quad m^{2}=1 \Rightarrow m= \pm 1$
Hence, the common tangents are $y=x+a$ and $y=-x-$ a, which intersect at the point $(-a, 0)$ Which is the focus of the parabola $y^{2}=-4 a x$.

Example 7: The locus of the vertices of the family of parabolas
$y=\frac{a^{3} x^{2}}{3}+\frac{a^{2} x}{2}-2 a$ is-
(A) $x y=64 / 105$
(B) $x y=105 / 64$
(C) $x y=\frac{3}{4}$
(D) $x y=35 / 16$

Sol: Convert the given equation to the standard form. The equation of the parabola can be written as

$$
\begin{array}{r}
\quad \frac{y}{a}=\left(\frac{a x}{\sqrt{3}}+\frac{\sqrt{3}}{4}\right)^{2}-\frac{3}{16}-2 \\
\text { or } \quad\left(x+\frac{3}{4 a}\right)^{2}=\frac{a^{2}}{3 a}\left(y+\frac{35}{16} a\right)
\end{array}
$$

Vertex is $x=-3 / 4 a, y=-35 a / 16$
Locus of the vertex is $x y=105 / 64$.

Example 8: Find the locus of the foot of the perpendicular drawn from a fixed point to any tangent to a parabola.

Sol: Take a fixed point and use it to find the foot of the perpendicular on a general equation of a tangent.
Let the parabola be $y^{2}=4 a x$ and the fixed point be (h, k)

The tangent at any point $P\left(a t^{2}, 2 a t\right)$ is

$$
\begin{equation*}
t y=x+a t^{2} \tag{i}
\end{equation*}
$$

Let $M(\alpha, \beta)$ be the foot of the perpendicular to the tangent (i) from the point (h, k)

Using perpendicularly, $\frac{\beta-k}{\alpha-h} \cdot \frac{1}{\mathrm{t}}=-1$
As $M(\alpha, \beta)$ is on (i), $t \beta=\alpha+a t^{2}$
We have to eliminate t from (ii) and (iii)
From (ii), $\mathrm{t}=-\frac{\beta-\mathrm{k}}{\alpha-\mathrm{h}}$. Putting in (iii),
$\beta\left(-\frac{\beta-k}{\alpha-h}\right)=\alpha+a \cdot\left(\frac{\beta-k}{\alpha-h}\right)^{2}$
or $\quad-\beta(\beta-k)(\alpha-h)=\alpha(\alpha-h)^{2}+a(\beta-k)^{2}$
\therefore The equation of the locus of the foot M is
$x(x-h)^{2}+y(x-h)(y-k)+a(y-k)^{2}=0$.

Example 9: Tangents to the parabola at the extremities of a common chord $A B$ of the circle $x^{2}+y^{2}=5$ and the parabola $y^{2}=4 x$ intersect at the point T. A square $A B C D$ is constructed on this chord lying inside the parabola, then $\left[(T C)^{2}+(T D)^{2}\right]^{2}$ is equal to ?

Sol: Find the point of intersection of the circle and the parabola. Then get the equation of the chord and the point of intersection of the tangents at the end of the chord. In the last step use simple geometry to find $\left[(T C)^{2}+(T D)^{2}\right]^{2}$.

The points of intersection of the circle and the parabola are $A(1,2), B(1,-2)$

The equation of the common chord is $x=1$, which is the latus rectum of the parabola.

\therefore Tangents at the extremities of $A B$ intersect on the directrix $x=-1$.
Coordinates of T are $(-1,0)$
Since the length of $A B=4$, the sides of the square $A B C D$ are of length 4 , and the coordinates of C are
$(-5,2)$ and of D are $(5,2)$.
$(T C)^{2}=(T D)^{2}=(5+1)^{2}+4=40$.
$\Rightarrow \quad\left[(T C)^{2}+(T D)^{2}\right]^{2}=80^{2}=6400$.

JEE Advanced/Boards

Example 1: If the normal chord at a point ' t ' on the parabola $y^{2}=4 a x$ subtends a right angle at the vertex, then a value of t is-
(A) 4
(B) $\sqrt{3}$
(C) $\sqrt{2}$
(D) 1

Sol: Use the concept of homogenization of a conic and a straight line and then apply the condition of the sum of the co-efficients of x^{2} and y^{2} equal to zero.

The equation of the normal of a parabola
$y^{2}=4 a x$ is $y=-t x+2 a t+a t^{3}$
The joint equation of the lines joining the vertex (origin) to the points of intersection of the parabola and the line (i) is

$$
\begin{aligned}
& y^{2}=4 a x\left[\frac{y+t x}{2 a t+a t^{3}}\right] \\
& \Rightarrow \quad\left(2 t+t^{3}\right) y^{2}=4 x(y+t x) \\
& \Rightarrow \quad 4 t x^{2}-\left(2 t+t^{3}\right) y^{2}+4 x y=0
\end{aligned}
$$

Since these lines are at right angles co-efficient of $x^{2}+$ coefficient of $y^{2}=0$
$\Rightarrow \quad 4 \mathrm{t}-2 \mathrm{t}-\mathrm{t}^{3}=0 \Rightarrow \mathrm{t}^{2}=2$
For $t=0$, the normal line is $y=0$, i.e. the axis of the parabola which passes through the vertex $(0,0)$.

Example 2: A parabola is drawn touching the x-axis at the origin and having its vertex at a given distance k from the x-axis. Prove that the axis of the parabola is a tangent to the parabola $x^{2}+8 k(y-2 k)=0$.

Sol: Use the relation between the tangent at the vertex and the axis of the parabola to prove it.
Let the equation of the parabola be $Y^{2}=4 a x$.

Any tangent to it at the point ($\mathrm{at}^{2}, 2 a t$) is

$$
\begin{equation*}
Y t=X+a t^{2} \tag{i}
\end{equation*}
$$

The normal at the point ($a t^{2}, 2 a t$) is

$$
\begin{equation*}
Y+t X=2 a t+a t^{3} \tag{ii}
\end{equation*}
$$

Take the equations of transformation
$\frac{t Y-X-a t^{2}}{\sqrt{1+t^{2}}}=y$
and $\frac{\mathrm{Y}+\mathrm{tX}-2 \mathrm{at}-\mathrm{at}^{3}}{\sqrt{1+\mathrm{t}^{2}}}=\mathrm{x}$
\therefore in x, y coordinates $P=(0,0)$ and $P T$ is the x-axis which is the tangent to the parabola at the origin.
Now, (3) $\Rightarrow t Y-X-a t^{2}=y \sqrt{1+t^{2}}$
(4) $\Rightarrow Y+t X-2 a t-a t^{3}=x \sqrt{1+t^{2}}$
$\therefore \quad(5) \times t+(6) \Rightarrow\left(t^{2}+1\right) Y-2 a t^{3}-2 a t$

$$
=\mathrm{yt} \sqrt{1+\mathrm{t}^{2}}+\mathrm{x} \sqrt{1+\mathrm{t}^{2}}
$$

$\therefore \quad$ The axis of the parabola $(Y=0)$ becomes

$$
\begin{align*}
& -2 a t^{3}-2 a t=(y t+x) \sqrt{1+t^{2}} \\
& \text { or } y t+x=\frac{-2 a t\left(1+t^{2}\right)}{\sqrt{1+t^{2}}}=-2 a t \sqrt{1+t^{2}} \tag{vii}
\end{align*}
$$

The distance of the vertex $\mathrm{V}(0,0)$ in the X, Y coordinates from PT
$=\frac{-a t^{2}}{\sqrt{1+t^{2}}}=k$ (from the equation)
\therefore From (vii), the equation of the axis of the parabola in x, y coordinates becomes
$y t+x=-2 a t\left(\frac{-a t^{2}}{k}\right)$
or $y t+x-\frac{2 a^{2} t^{3}}{k}=0$
The given parabola is $x^{2}=-8 k(y-2 k)$
Solving (viii) and (ix), we get

$$
x^{2}=-8 k \cdot \frac{1}{t}\left(-x+\frac{2 a^{2} t^{3}}{k}\right)+16 k^{2}
$$

or $\quad x^{2}=8 \frac{k}{t} x-16 a^{2} t^{2}+16 k^{2}$
or $\quad t x^{2}-8 k x+16 t\left(a^{2} t^{2}-k^{2}\right)=0$
Here, $\quad D=64 k^{2}-64 t^{2}\left(a^{2} t^{2}-k^{2}\right)$

$$
\begin{aligned}
& =64\left[k^{2}-a^{2} t^{4}+t^{2} k^{2}\right] \\
& =64\left[\left(1+t^{2}\right) \cdot \frac{a^{2} t^{4}}{1+t^{2}}-a^{2} t^{4}\right]=0
\end{aligned}
$$

\therefore The axis, given by (8) touches the given parabola.
Note: If we take $k=\frac{a t^{2}}{\sqrt{1+t^{2}}}$, the points of intersection of the axis and the given parabola will be imaginary.

Example 3: If the line $x-1=0$ is the directrix of the parabola $y^{2}-k x+8=0, k \neq 0$ and the parabola intersects the circle $x^{2}+y^{2}=4$ in two real distinct points, then the value of k is-
(A) -4
(B) -8
(C) 4
(D) None

Sol: Represent the parabola in the standard form. Compare the equation of the directrix with the given equation and form a quadratic in k. Solve the quadratic for two real roots to get the desired value of k.
The equation of the parabola can be written as
$y^{2}=k(x-8 / k)$ which is of the form $Y^{2}=4 A X$

Where $\quad Y=y, X=x-8 / k$ and $A=k / 4$
Equation of the directrix is
$X=-A \Rightarrow x-8 / k=-k / 4$
Which represents the given line $x-1=0$
If $\frac{8}{\mathrm{k}}-\frac{\mathrm{k}}{4}=1$
$\Rightarrow \mathrm{k}^{2}+4 \mathrm{k}-32=0 \Rightarrow \mathrm{k}=-8$ or 4
For $k=4$, the parabola is $y^{2}=4(x-2)$ whose vertex is $(2,0)$ and touches the circle $x^{2}+y^{2}=4$ at the vertex. Therefore $k \neq 4$.

For $\mathrm{k}=-8$, the parabola is $\mathrm{y}^{2}=-8(\mathrm{x}+1)$ which intersects the circle $x^{2}+y^{2}=4$ at two real distinct points.

Example 4: A variable chord PQ of the parabola $y=x^{2}$ subtends a right angle at the vertex. Find the locus of points of intersection of the normals at P and Q.
Sol: Take two points on the parabola and find the relation between the parametric coordinates. Use this relation to find the locus.

The vertex V of the parabola is $(0,0)$ and any point on y $=x^{2}$ has the coordinates $\left(\mathrm{t}, \mathrm{t}^{2}\right)$.

So let us take $P=\left(t_{1}, t_{1}^{2}\right), Q\left(t_{1}, t_{2}{ }^{2}\right)$ and $Đ P V Q=90^{\circ}$

As 'm' of $V P=\frac{t_{1}^{2}-0}{t_{1}-0}=t_{1}$
and ' m ' of $V Q=\frac{t_{2}^{2}-0}{t_{2}-0}=t_{2^{\prime}}$
$V P \perp V Q \Rightarrow t_{1} \cdot t_{2}=-1$
The equation of the normal to a curve at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is
$y-y_{1}=\frac{-1}{\left(\frac{d y}{d x}\right)_{x_{1}, y_{1}}} \cdot\left(x-x_{1}\right)$
The normals at $P \& Q$ intersect at
$M(x, y)=\left(2 a\left(t_{1}^{2}+t_{2}^{2}+t_{1} t_{2}\right)-a t_{1} t_{2}\left(t_{1}+t_{2}\right)\right)$
From (1) $t_{1} t_{2}=-1$
$\therefore \mathrm{y}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) ; \quad \mathrm{x}=2 \mathrm{a}\left(\mathrm{t}_{1}^{2}+\mathrm{t}_{2}^{2}-1\right)$
$y^{2}=a^{2}\left(t_{1}^{2}+t_{2}^{2}-2\right)$
$\Rightarrow \frac{y^{2}}{a^{2}}+1=\frac{x}{2 a} \Rightarrow 2 y^{2}+2 a^{2}=x a$
Here, $a=1 / 4$
\therefore Locus is $16 \mathrm{y}^{2}=2 \mathrm{x}-1$

Example 5: A parabola is drawn to pass through A and B, the ends of a diameter of a given circle of radius a, and to have as directrix a tangent to a concentric circle of radius b; the axes of reference being $A B$ and a perpendicular diameter, prove that the locus of the focus of the parabola is $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{b^{2}-a^{2}}=1$.

Sol: Consider a circle with its centre at the origin. Let the two points A and B lie on the X-axis. Write the equation of the tangent in standard form and apply the focus-directrix property to prove the given statement.

Let $A=(-a, 0)$ and $B=(a, 0)$
The centre of the circle $=(0,0)$
The equation of the concentric circle will be
$x^{2}+y^{2}=b^{2}$
Any tangent to $x^{2}+y^{2}=b^{2}$ is
$y=m x+b \sqrt{1+m^{2}}$
Which is the directrix of the parabola.
Let (α, β) be the focus.
Then by focus-directrix property, the equation of the parabola will be
$(x-\alpha)^{2}+(y-\beta)^{2}=\left(\frac{y-m x-b \sqrt{1+m^{2}}}{\sqrt{1+m^{2}}}\right)^{2}$
It passes through $A(-a, 0), B(a, 0)$; so
$(a+\alpha)^{2}+b^{2}=\left(\frac{m a-b \sqrt{1+m^{2}}}{\sqrt{1+m^{2}}}\right)^{2}$
$=\frac{m^{2} a^{2}+b^{2}\left(1+m^{2}\right)-2 a b m \sqrt{1+m^{2}}}{1+m^{2}}$
$(a-\alpha)^{2}+b^{2}=\left(\frac{-m a-b \sqrt{1+m^{2}}}{\sqrt{1+m^{2}}}\right)^{2}$
$=\frac{m^{2} a^{2}+b^{2}\left(1+m^{2}\right)+2 a b m \sqrt{1+m^{2}}}{1+m^{2}}$
or $a^{2}+b^{2}=\frac{m^{2}}{1+m^{2}} a^{2}+b^{2}$
(ii) - (i) $\Rightarrow-4 \mathrm{a} \alpha=\frac{4 \mathrm{abm} \sqrt{1+\mathrm{m}^{2}}}{1+\mathrm{m}^{2}}$
or $\quad \mathrm{a}^{2}=\frac{\mathrm{b}^{2} \mathrm{~m}^{2}}{1+\mathrm{m}^{2}} \quad \therefore \quad \frac{\mathrm{~m}^{2}}{1+\mathrm{m}^{2}}=\frac{\alpha^{2}}{\mathrm{~b}^{2}}$
Putting in (iii) from (iv)

$$
a^{2}+a^{2}+b^{2}=\frac{a^{2} \alpha^{2}}{b^{2}}+b^{2}
$$

$\therefore \quad\left(1-\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}\right) \mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{b}^{2}-\mathrm{a}^{2}$
or $\quad \frac{b^{2}-a^{2}}{b^{2}} a^{2}+b^{2}=b^{2}-a^{2} \quad \therefore \quad \frac{\alpha^{2}}{b^{2}}+\frac{\beta^{2}}{b^{2}-a^{2}}=1$
$\therefore \quad$ The equation of the locus of the focus (α, β) is

$$
\frac{x^{2}}{b^{2}}+\frac{y^{2}}{b^{2}-a^{2}}=1
$$

Example 6: Let $\left(x_{r}, y_{r}\right) ; r=1,2,3,4$ be the points of the intersection of the parabola $y^{2}=4 a x$ and the circle
$x^{2}+y^{2}+2 g x+2 f y+c=0$
Prove that $y_{1}+y_{2}+y_{3}+y_{4}=0$.
Sol: Solve the equation of the circle and the parabola. Then use the theory of equations to prove $y_{1}+y_{2}+y_{3}$ $+y_{4}=0$.
Let $x^{2}+y^{2}+2 g x+2 f y+c=0$

$$
\begin{equation*}
y^{2}=4 a x \tag{i}
\end{equation*}
$$

Solving (i) and (ii), we get the coordinates of points of intersection
From (ii), $x=\frac{y^{2}}{4 a}$ putting in (i),
$\left(\frac{y^{2}}{4 a}\right)^{2}+y^{2}+2 g \cdot \frac{y^{2}}{4 a}+2 f y+c=0$
or $\frac{1}{(4 a)^{2}} y^{4}+\left(1+\frac{g}{2 a}\right) y^{2}+2 f y+c=0$
It has four roots.
Its roots are $y_{1^{\prime}} y_{2^{\prime}} y_{3}$ and y_{4}.
Now, sum of roots $=-\frac{\text { coefficientof } y^{3}}{\text { coefficientof } y^{4}}$
$\therefore \quad y_{1}+y_{2}+y_{3}+y_{4}=-\frac{0}{1 /(4 a)^{2}}=0$.

Example 7: From the point, where any normal to the parabola $y^{2}=4 a x$ meets the axis, a line perpendicular to
the normal is drawn. Prove that this line always touches the parabola $y^{2}+4 a(x-2 a)=0$.

Sol: Get the equation of the line perpendicular to the normal, passing through the intersection of the normal and the axis. Use the theory of equation
The normal at any point (at $\left.{ }^{2}, 2 a t\right)$ of the parabola $y^{2}=$ $4 a x$ is $y+t x=2 a t+a t^{3}$.
It cuts the axis $y=0$ of the parabola at ($2 \mathrm{a}+a \mathrm{t}^{2}, 0$).

\therefore The equation of the line through this point drawn perpendicular to the normals is
$y-0=\frac{1}{t}\left(x-\overline{2 a+a t^{2}}\right)$
$\{\because ' m$ ' of normal $=-t\}$
or \quad ty $=x-2 a-a t^{2}$
We have to prove that (1) touches the parabola

$$
\begin{equation*}
y^{2}+4 a(x-2 a)=0 \tag{ii}
\end{equation*}
$$

Solving (i) and (ii), $\mathrm{y}^{2}+4 \mathrm{a}\left(\mathrm{ty}+\mathrm{at}^{2}\right)=0$

$$
\begin{aligned}
& \text { or } y^{2}+4 a t y+(2 a t)^{2}=0 \quad \text { or } \quad(y+2 a t)^{2}=0 \\
& \therefore \quad y=-2 a t,-2 a t
\end{aligned}
$$

\therefore (i) cuts (ii) at coincident points, i.e., (i) touches (ii).

Example 8: Consider a parabola $y^{2}=4 a x$, the length of focal chord is ℓ and the length of the perpendicular from the vertex to the chord is p then-
(A) $\ell . p$ is constant
(B) $\ell \cdot \mathrm{p}^{2}$ is constant
(C) $\ell^{2} . p$ is constant
(D) None of these

Sol: A quantity is constant if it does not depend on the parameter. Represent ℓ and p in terms of the parameter and look for the quantity in which the parameter gets eliminated.

Let $P\left(a t^{2}, 2 a t\right)$ and $Q\left(a / t^{2},-2 a / t\right)$ be a focal chord of the parabola (as $\mathrm{t}_{1} \mathrm{t}_{2}=-1$)
The length of $\mathrm{PQ}=\ell=\sqrt{\left(a t^{2}-a / t^{2}\right)^{2}+(2 a t+2 a / t)^{2}}$
$=a \sqrt{\left(t^{2}-1 / t^{2}\right)^{2}+4(t+1 / t)^{2}}$
$=\mathrm{a}(\mathrm{t}+1 / \mathrm{t}) \sqrt{(\mathrm{t}-1 / \mathrm{t})^{2}+4}=\mathrm{a}(\mathrm{t}+1 / \mathrm{t})^{2}$
The length of the perpendicular from the vertex $(0,0)$ on
the line $P Q$ whose equation is
$y\left(t-\frac{1}{t}\right)=2(x-a)$ is given by
$p=\frac{2 a}{\sqrt{(t-1 / t)^{2}+2^{2}}}=\frac{2 a}{(t+1 / t)}$
So that $\ell . p^{2}=\frac{4 a^{2}}{(t+1 / t)^{2}} \times a(t+1 / t)^{2}=4 a^{3}$,
which is constant.

Paragraph for Example No. 9 to 11

$C: y=x^{2}-3, D: y=k x^{2}, L_{1}: x=a, L_{2}: x=1 .(a \neq 0)$
Example 9: If the parabolas $C \& D$ intersect at a point A on the line L_{1}, then the equation of the tangent line L at A to the parabola D is-
(A) $2\left(a^{3}-3\right) x-a y+a^{3}-3 a=0$
(B) $2\left(a^{3}-3\right) x-a y+a^{3}-3 a=0$
(C) $\left(a^{3}-3\right) x-2 a y-2 a^{3}+6 a=0$
(D) None of these

Sol: In this case we need to calculate the point of intersection of C and D and then find the equation of the tangent to the parabola $y=k x^{2}$.
C and D intersect at the points for which $x^{2}-3=k x^{2}$.
But $x=a$ (given)
$\Rightarrow \mathrm{k}=\frac{\mathrm{a}^{2}-3}{\mathrm{a}^{2}}$.
So the coordinates of A are $\left(a, a^{2}-3\right)$
The equation of the tangent L at A to $D: y=k x^{2}$ is
$\frac{1}{2}\left(y+a^{2}-3\right)=\frac{a^{2}-3}{a^{2}} x a$
$\Rightarrow 2\left(\mathrm{a}^{2}-3\right) \mathrm{x}-\mathrm{ay}-\mathrm{a}^{3}+3 \mathrm{a}=0(\mathrm{~L})$

Example 10: If the line L meets the parabola C at a point B on the line L_{2}, other than A then a is equal to-
(A) -3
(B) -2
(C) 2
(D) 3

Sol: Proceed further from the previous solution.
The line L meets the parabola
$C: y=x^{2}-3$ at the points for which
$x^{2}-3=\frac{2\left(a^{2}-3\right)}{a} x-a^{2}+3 \Rightarrow(x-a)\left(a x+6-a^{2}\right)=0$.
But $x=1 \& x \neq a$.
$\Rightarrow x=\frac{a^{2}-6}{a}=1 \Rightarrow a^{2}-a-6=0$

Example 11: If a >0, the angle subtended by the chord $A B$ at the vertex of the parabola C is-
(A) $\tan ^{-1}(5 / 7)$
(B) $\tan ^{-1}(1 / 2)$
(C) $\tan ^{-1}(2)$
(D) $\tan ^{-1}(1 / 8)$

Sol: Calculate the point of intersection of C and D depending the value of ' a ' and hence find the angle.
If $a>0$, then $a=3$. The coordinates of A and B are $(3,6)$ and $(1,-2)$ respectively, and the equation of C : is
$y=x^{2}-3$ or $x^{2}=y+3$
The coordinates of the vertex O of the parabola C are $(0,-3)$.

Slope of $O A=3$, slope of $O B=1$
\therefore The angle between OA and OB is
$\tan ^{-1} \frac{3-1}{1+3}=\tan ^{-1}(1 / 2)$.

Example 12: Let $y^{2}=4 a x$ be the equation of a parabola, then

(A) $y y_{1}=2 a\left(x+x_{1}\right)$	(p) Equation of thenormal at $\left(x_{1}, y_{1}\right)$
(B) $x y_{1}=2 a\left(y_{1}-y\right)+x_{1} y_{1}$	(q) Equation of the focal chord through $\left(x_{1}, y_{1}\right)$
(C) $x y_{1}=y\left(x_{1}-a\right)+a y_{1}$	(r) Equation of the through $\left(x_{1}, y_{1}\right)$ and the point of intersection of axis with the direct
(D) $(x+a) y_{1}=\left(x_{1}+a\right) y$	(s) Equation of the tangent at $\left(x_{1}, y_{1}\right)$

Sol: Use the standard results and simple transformations to match the given option.
For the parabola $y^{2}=4 a x$,
The equation of the tangent at $\left(x_{1}, y_{1}\right)$ is

$$
\mathrm{yy}_{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_{1}\right)
$$

The equation of the normal at $\left(x_{1}, y_{1}\right)$ is

$$
\begin{aligned}
& \mathrm{y}-\mathrm{y}_{1}=-\frac{\mathrm{y}_{1}}{2 \mathrm{a}}\left(\mathrm{x}-\mathrm{x}_{1}\right) \\
\Rightarrow \quad & \mathrm{xy}_{1}=2 \mathrm{a}\left(\mathrm{y}_{1}-\mathrm{y}\right)+\mathrm{x}_{1} \mathrm{y}_{1}
\end{aligned}
$$

Next, the equation of the focal chord through $\left(x_{1}, y_{1}\right)$ and $(a, 0)$ is

$$
\begin{aligned}
& y=\frac{y_{1}-0}{x_{1}-a}(x-a) \\
\Rightarrow \quad & x y_{1}=y\left(x_{1}-a\right)+a y_{1}
\end{aligned}
$$

Lastly, the equation of the line joining ($-\mathrm{a}, 0$), the point of intersection of the axis $y=0$ and the directrix $x+a$ $=0$ with $\left(x_{1}, y_{1}\right)$ is

$$
(x+a) y_{1}=\left(x_{1}+a\right) y
$$

JEE Main/Boards

Exercise 1

Q. 1 Find the equation of the parabola whose focus is $(1,-1)$ and vertex is $(2,1)$.
Q. 2 Find focus, vertex, directrix and axis of the parabola $4 x^{2}+y-3 x=0$.
Q. 3 The focal distance of a point on the parabola $y^{2}=$ $12 x$ is four units. Find the abscissa of this point.
Q. 4 A double ordinate of parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ is of length 8 a . Prove that the lines joining vertex to the end points of this chord are at right angles.
Q. 5 Show that $\mathrm{lx}+\mathrm{my}+\mathrm{n}=0$ will touch the parabola $y^{2}=4 a x$, if $\ln =a m^{2}$.
Q. 6 If $x+y+1=0$ touches the parabola $y^{2}=\mid x$, then show that $\lambda=4$.
Q. 7 Find the equation of the tangent, to the parabola $y^{2}=8 x$, which makes an angle of 45° with the line $y=3 x+5$.
Q. 8 Find equation of the tangent and the normal to the parabola $\mathrm{y}^{2}=4 \mathrm{x}$ at the point $(4,-4)$.
Q. 9 Find the equation and the point of contact of the tangents to $y^{2}=6 x$ drawn from the point $(10,-8)$.
Q. 10 Find the equation of the common tangent to the parabola $y^{2}=32 x$ and $x^{2}=108 y$.
Q. 11 Find the point where normal to the parabola $\mathrm{y}^{2}=\mathrm{x}$ at $\left(\frac{1}{4}, \frac{1}{2}\right)$ cuts it again.
Q. 12 Find shortest distance between $y^{2}=4 x$ and $x^{2}+y^{2}-24 y+128=0$.
Q. $13 A B$ is a chord of the parabola $y^{2}=4 a x$ with the end A at the vertex of the given parabola. $B C$ is drawn perpendiculars to $A B$ meeting the axis of the parabola at C. Find the projection of $B C$ on this axis.
Q. 14 M is the foot of the perpendicular from a point P on the parabola $y^{2}=(x-3)$ to its directrix and S is the focus of the parabola, if SPM is an equilateral triangle, find the length of each side of the triangle.
Q. 15 PQ is a double ordinate of a parabola $y^{2}=4 a x$. If the locus of its points of trisection is another parabola length of whose latus rectum is k times the length of the latus rectum of the given parabola, then find the value of k.
Q. 16 Find the equation of the parabola, the extremities of whose latus rectum are $(1,2)$ and $(1,-4)$.
Q. 17 Prove that the normal chord to a parabola at the point whose ordinate is equal to the abscissa subtends a right angle at the focus.
Q. 18 If from the vertex of the parabola $y^{2}=4 a x$ a pair of chords be drawn at right angles to one another and with these chords as adjacent sides a rectangle be drawn, prove that the locus of the vertex of the farther angle of the rectangle is the parabola $y^{2}=4 a(x-8 a)$.
Q. 19 Prove that the locus of the middle points of all chords of the parabola $y^{2}=4 a x$ which are drawn through the vertex is the parabola $y^{2}=2 a x$.
Q. 20 Show that the locus of the middle point of all chords of the parabola $y^{2}=4 a x$ passing through a fixed point (h, k) is $y^{2}-k y=2 a(x-h)$.
Q. 21 Prove that the area of the triangle formed by the tangents at points t_{1} and t_{2} on the parabola $y^{2}=4 a x$ with the chord joining these two points is $\frac{a^{2}}{2}\left|t_{1}-t_{2}\right|^{3}$.
Q. 22 Show that the portion of the tangent to a parabola cut off between the directrix and the curve subtends a right angle at the focus.
Q. 23 If the tangent to the parabola $y^{2}=4 a x$ meets the axis in T and the tangent at the vertex A in Y and rectangle TAYG is completed, show that the locus of G is $y^{2}+a x=0$.
Q. 24 Two equal parabolas have the same vertex and their axes are at right angles. Prove that they cut again at an angle $\tan ^{-1} \frac{3}{4}$.
Q. 25 Find the locus of the point of intersection of the tangents to the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ which include an angle α.
Q. 26 Find the set of points on the axis of the parabola $y^{2}-4 x-2 y+5=0$ from which all the three normals drawn to the parabola are real and distinct.
Q. 27 Show that the locus of points such that two of the three normals to the parabola $y^{2}=4 a x$ from them coincide is $27 a y^{2}=4(x-2 a)^{3}$.
Q. 28 If a circle passes through the feet of normals drawn from a point to the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$, Prove that the circle also passes through origin.
Q. 29 The middle point of a variable chord of the parabola $y^{2}=4 a x$ lies on the line $y=m x+c$. Show that it always touches the parabola $\left(y+\frac{2 a}{m}\right)^{2}=8 a\left(x+\frac{c}{m}\right)$.

Exercise 2

Single Correct Choice Type

Q. 1 The length of the chord intercepted by the parabola $y^{2}=4 x$ on the straight line $x+y=1$ is-
(A) 4
(B) $4 \sqrt{2}$
(C) 8
(D) $8 \sqrt{2}$
Q. 2 A parabola is drawn with its focus at $(3,4)$ and vertex at the focus of the parabola $y^{2}-12 x-4 y+4=$ 0 . The equation of the parabola is-
(A) $x^{2}-6 x-8 y+25=0$
(B) $x^{2}-8 x-6 y+25=0$
(C) $x^{2}-6 x+8 y-25=0$
(D) $x^{2}+6 x-8 y-25=0$
Q. 3 The curve describes parametrically by $x=t^{2}-2 t+$ $2, y=t^{2}+2 t+2$ represents-
(A) Straight line
(B) Pair of straight line
(C) Circle
(D) Parabola
Q. 4 If $y=2 x-3$ is a tangent to the parabola $y^{2}=4 a\left(x-\frac{1}{3}\right)$, then ' a ' is equal to-
(A) 1
(B) -1
(C) $\frac{14}{3}$
(D) $\frac{-14}{3}$
Q. 5 Two tangents to the parabola $y^{2}=4 a$ make angles a_{1} and a_{2} with the x-axis. The locus of their point of intersection if $\frac{\cot \alpha_{1}}{\cot \alpha_{2}}=2$ is-
(A) $2 y^{2}=9 a x$
(B) $4 y^{2}=9 a x$
(C) $y^{2}=9 a x$
(D) None
Q. 6 Through the vertex 'O' of the parabola $y^{2}=4 a x$, variable chords OP and OQ are drawn at right angles. If the variable chord $P Q$ intersects the axis of x at R, then distance OR-
(A) Varies with different positions of P and Q
(B) Equals the semi latus rectum of the parabola
(C) Equals latus rectum of the parabola
(D) Equals double the latus rectum of the parabola
Q. 7 A point P moves such that the difference between its distances from the origin and from the axis of ' x ' is always a constant c. The locus-
(A) A straight line having equal intercepts C on the axis
(B) A circle having its centre at $\left(0,-\frac{c}{2}\right) \&$ passing through $\left(\mathrm{c} \sqrt{2}, \frac{\mathrm{c}}{2}\right)$
(C) A parabola with its vertex at $\left(0,-\frac{c}{2}\right) \&$ passing through $\left(c \sqrt{2}, \frac{c}{2}\right)$
(D) None of these
Q. 8 Tangents are drawn from the point $(-1,2)$ on the parabola $y^{2}=4 x$. The length, these tangents will intercept on the line $x=2$, is-
(A) 6
(B) $6 \sqrt{2}$
(C) $2 \sqrt{6}$
(D) None
Q. 9 Which one of the following equations represented parametric-cally represents equation to a parabolic profile?
(A) $x=3 \cos t ; y=4 \sin t$
(B) $x^{2}-2=-\cos t ; y=4 \cos ^{2} \frac{t}{2}$
(C) $\sqrt{x}=\tan t ; \sqrt{y}=\sec t$
(D) $x=\sqrt{1-\sin t} ; y=\sin ^{2}+\cos \frac{1}{2}$
Q. 10 From an external point P, pair of tangent lines are drawn to the parabola, $\mathrm{y}^{2}=4 \mathrm{x}$. If q_{1} and q_{2} are the inclinations of these tangents with the axis of x such that, $q_{1}+q_{2}=\frac{\pi}{4}$, then the locus of P is-
(A) $x-y+1=0$
(B) $x+y-1=0$
(C) $x-y-1=0$
(D) $x+y+1=0$
Q. 11 From the point $(4,6)$ a pair of tangent lines are drawn to the parabola, $y^{2}=8 x$. The area of the triangle formed by these pair of tangent lines and the chord of contact of the point $(4,6)$ is-
(A) 8
(B) 4
(C) 2
(D) None
Q. 12 Let PSQ be the focal chord of the parabola, $y^{2}=8 x$. If the length of $S P=6$ then, $\ell(S Q)$ is equal to-
(A) 3
(B) 4
(C) 6
(D) None
Q. 13 The line $4 x-7 y+10=0$ intersects the parabola, y^{2} $=4 x$ at the points A and B. The coordinates of the point of intersection of the tangents drawn at the points A and B are-
(A) $\left(\frac{7}{2}, \frac{5}{2}\right)$
(B) $\left(-\frac{5}{2}, \frac{7}{2}\right)$
(C) $\left(\frac{5}{2}, \frac{7}{2}\right)$
(D) $\left(-\frac{7}{2}, \frac{5}{2}\right)$
Q. 14 A line passing through the point $(21,30)$ and normal to the curve $y=2 \sqrt{x}$ can have the slope-
(A) 2
(B) 3
(C) -2
(D) -5
Q. 15 If the chord of contact of tangents from a point P to the parabola $y^{2}=4 a x$ touches the parabola $x^{2}=4 b y$, the locus of P is-
(A) Circle
(B) Parabola
(C) Ellipse
(D) Hyperbola
Q. 16 If M is the foot of the perpendicular from a point P of a parabola $y^{2}=4 a x$ its directrix and SPM is an equilateral triangle, where S is the focus, the $S P$ is equal to-
(A) a
(B) 2 a
(C) 3 a
(D) $4 a$
Q. 17 The latus rectum of a parabola whose focal chord is PSQ such that $\mathrm{SP}=3$ and $\mathrm{SQ}=2$ is given by-
(A) $24 / 5$
(B) $12 / 5$
(C) $6 / 5$
(D) None
Q. 18 The normal chord of to a parabola $y^{2}=4 a x$ at the point whose ordinate is equal to the abscissa, then angle subtended by normal chord at the focus is-
(A) $\frac{\pi}{4}$
(B) $\tan ^{-1} \sqrt{2}$
(C) $\tan ^{-1} 2$
(D) $\frac{\pi}{2}$
Q. $19 P$ is any point on the parabola, $y^{2}=4 a x$ whose vertex is A. PA is produced to meet the directrix in D and M is the foot of the perpendicular from P on the directrix. The angle subtended by MD at the focus is-
(A) $\pi / 4$
(B) $\pi / 3$
(C) $5 \pi / 12$
(D) $\pi / 2$
Q. 20 A parabola $y=a x^{2}+b x+c$ crosses the x-axis at $(\alpha, 0),(\beta, 0)$ both to right of the origin. A circle also passes through these two points. The length of a tangent from the origin to the circle is-
(A) $\sqrt{\frac{b c}{a}}$
(B) ${a c^{2}}^{2}$
(C) $\frac{b}{a}$
(D) $\sqrt{\frac{c}{a}}$
Q. 21 TP and TQ are tangents to the parabola, $y^{2}=4 a x$ at P and Q. If the chord $P Q$ passes through the fixed point $(-a, b)$ then the locus of T is-
(A) $a y=2 b(x-b)$
(B) $b x=2 a(y-a)$
(C) by $=2 a(x-a)$
(D) $a x=2 b(y-b)$
Q. 22 The triangle PQR of area ' A ' is inscribed in the parabola $y^{2}=4 a x$ such that the vertex P lies at the vertex of the parabola and the base $Q R$ is a focal chord. The modulus of the difference of the ordinates of the point Q and R is-
(A) $\frac{\mathrm{A}}{2 \mathrm{a}}$
(B) $\frac{\mathrm{A}}{\mathrm{a}}$
(C) $\frac{2 \mathrm{~A}}{\mathrm{a}}$
(D) $\frac{4 \mathrm{~A}}{\mathrm{a}}$

Previous Years' Questions

Q. 1 If $x+y=k$ is normal to $y^{2}=12 x$, then k is- (2000)
(A) 3
(B) 9
(C) -9
(D) -3
Q. 2 If the line $x-1=0$ is the directrix of the parabola $y^{2}-k x+8=0$, then one of the values of k is- (2000)
(A) $\frac{1}{8}$
(B) 8
(C) 4
(D) $\frac{1}{4}$
Q. 3 The equation of the directrix of the parabola $\mathrm{y}^{2}+$ $4 y+4 x+2=0$ is-
(2000)
(A) $x=-1$
(B) $x=1$
(C) $x=-3 / 2$
(D) $x=3 / 2$
Q. 4 The locus of the midpoint of the line segment joining the focus to a moving point on the parabola $y^{2}=4 a x$ is another parabola with directrix-
(2000)
(A) $x=-a$
(B) $x=-\frac{a}{2}$
(C) $x=0$
(D) $x=\frac{a}{2}$
Q. 5 The equation of the common tangent to the curves $y^{2}=8 x$ and $x y=-1$ is-
(2000)
(A) $3 y=9 x+2$
(B) $y=2 x+1$
(C) $2 y=x+8$
(D) $y=x+2$
Q. 6 Let (x, y) be any point on the parabola $y^{2}=4 x$. Let P be the point that divides the line segment from $(0,0)$ to (x, y) in the ratio 1:3. Then, the locus of P is- (2011)
(A) $x^{2}=y$
(B) $y^{2}=2 x$
(C) $y^{2}=x$
(D) $x^{2}=2 y$
Q. 7 Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{y}_{1}<0, \mathrm{y}_{2}<0$, be the end points of the latus rectum of the ellipse $x^{2}+4 y^{2}=4$. The equations of parabolas with latus rectum PQ are-
(2008)
(A) $x^{2}+2 \sqrt{3} y=3+\sqrt{3}$
(B) $x^{2}-2 \sqrt{3} y=3+\sqrt{3}$
(C) $x^{2}+2 \sqrt{3} y=3-\sqrt{3}$
(D) $x^{2}-2 \sqrt{3} y=3-\sqrt{3}$
Q. 8 Let L be a normal to the parabola $y^{2}=4 x$. If L passes through the point $(9,6)$, then L is given by-
(2011)
(A) $y-x+3=0$
(B) $y+3 x-33=0$
(C) $y+x-15=0$
(D) $y-2 x+12=0$
Q. 9 The point of intersection of the tangents at the ends of the latus rectum of parabola $y^{2}=4 x$ is \qquad (1994)
Q. 10 Find the shortest distance of the point $(0, c)$ from the parabola $y=x^{2}$ where $0 \leq c \leq 5$.
(1982)
Q. 11 Find the equation of the normal to the curve $x^{2}=4 y$ which passes through the point $(1,2)$.
(1984)
Q. 12 Through the vertex O of parabola $y^{2}=4 x$, chords OP and OQ are drawn at right angles to one another. Show that for all positions of $P, P Q$ cuts the axis of the parabola at a fixed point. Also find the locus of the middle point of PQ .
(1994)
Q. 13 From a point ' A ' common tangents are drawn to the circle $x^{2}+y^{2}=\frac{a^{2}}{2}$ and parabola $y^{2}=4 a x$. Find the area of the quadrilateral formed by the common tangents, the chord of contact of the circle and the chord of contact of the parabola.
(1996)
Q. 14 The angle between a pair of tangents drawn from a point P to the parabola $y^{2}=4 a x$ is 45°. Show that the locus of the point P is a hyperbola.
(1998)
Q. 15 At any point P on the parabola $y^{2}-2 y-4 x+5=0$ a tangent is drawn which meets the directrix at Q . Find the locus of point R, which divides QP externally in the ratio $\frac{1}{2}: 1$.
(2004)
Q. 16 The slope of the line touching both the parabolas $y^{2}=4 x$ and $x^{2}=-32 y$ is
(2014)
(A) $\frac{1}{2}$
(B) $\frac{3}{2}$
(C) $\frac{1}{8}$
(D) $\frac{2}{3}$

JEE Advanced/Boards

Exercise 1

Q. 1 Find the equations of the tangents to the parabola $y^{2}=16 x$, which are parallel \& perpendicular respectively to the line $2 x-y+5=0$. Also find the coordinates of their points of contact.
Q. 2 Find the equations of the tangents of the parabola $y^{2}=12 x$, which pass through the point $(2,5)$.
Q. 3 Show that the locus of points of intersection of two tangents to $y^{2}=4 a x$ and which are inclined at an angle α is $\left(y^{2}-4 a x\right) \cos ^{2} \alpha=(x+a)^{2} \sin ^{2} \alpha$.
Q. 4 Two straight lines one being a tangent to $y^{2}=a x$ and the other to $x^{2}=4$ by are right angles. Find the locus of their point of intersection.
Q. 5 Prove that the locus of the middle point of portion of a normal to $y^{2}=4 a x$ intercepted between the curve and the axis is another parabola. Find the vertex and the latus rectum of the second parabola.
Q. 6 Show that the locus of a point, such that two of the three normals drawn from it to the parabola $y^{2}=4 a x$ are perpendicular is $y^{2}=a(x-3 a)$.
Q. 7 A variable chord $\mathrm{t}_{1} \mathrm{t}_{2}$ of the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$. Show that its passes through a fixed point. Also find the co-ordinates of the fixed point.
Q. 8 Through the vertex O of the parabola $y^{2}=4 a x$, a perpendicular is drawn to any tangent meeting it at P and the parabola at Q . Show that $\mathrm{OP} . \mathrm{OQ}=$ constant.
Q. 9 If the normal at $P(18,12)$ to the parabola $y^{2}=8 x$ cuts its again at Q , show that $9 \mathrm{PQ}=80 \sqrt{10}$.
Q. 10 O is the vertex of the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ and L is the upper end of the latus rectum. If LH is drawn perpendicular to OL meeting OX in H , prove that the length of the double ordinate through H is $4 \mathrm{a} \sqrt{5}$.
Q. 11 Thenormal at a pointPto the parabolay ${ }^{2}=4$ axmeets its axis at G. Q is another point on the parabola such that QG is perpendicular to the axis of the parabola. Prove that $\mathrm{QG}^{2}-\mathrm{PG}^{2}=$ constant.
Q. 12 Find the condition on ' a ' and ' b ' so that the two tangents drawn to the parabola $y^{2}=4 a x$ from a point are normals to the parabola $x^{2}=4 b y$.
Q. 13 Prove that the locus of the middle points of all tangents drawn from points on the directrix to the parabola $y^{2}=4 a x$ is $y^{2}(2 x+a)=a(3 x+a)^{2}$.
Q. 14 Prove that, the normal to $y^{2}=12 x$ at $(3,6)$ meets the parabola again in $(27,-18)$ and circle on this normal chord as diameter is $\mathrm{x}^{2}+\mathrm{y}^{2}-30 \mathrm{x}+12 \mathrm{y}-27=0$.
Q. 15 Show that, the normals at the points ($4 \mathrm{a}, 4 \mathrm{a}$) and at the upper end of the latus rectum of the parabola $y^{2}=4 a x$ intersect on the same parabola.
Q. 16 If from the vertex of a parabola a pair of chords be drawn at right angles to one another, \& with these chords as adjacent sides a rectangle be constructed, then find the locus of the outer corner of the rectangle.
Q. 17 Three normals to $y^{2}=4 x$ pass through the point $(15,12)$. Show that one of the normals is given by $y=x-3$ and find the equations of the others.
Q. 18 A circle is described whose centre is the vertex and whose diameter is three-quarters of the latus rectum of a parabola $y^{2}=4 a x$. Prove that the common chord of the circle and parabola bisects the distance between the vertex and the focus.
Q. 19 TP and TQ are tangents to the parabola and the normals at P and Q meet at a point R on the curve. Prove that the centre of the circle circumscribing the triangle TPQ lies on the parabola $2 y^{2}=a(x-a)$.
Q. 20 Find the equation of the circle which passes through the focus of the parabola $x^{2}=4 y$ and touches it at the point $(6,9)$.
Q. 21 P and Q are the point of contact of the tangents drawn from the point T to the parabola $y^{2}=4 a x$. If $P Q$ be the normal to the parabola at P, prove that TP is bisected by the directrix.
Q. 22 Prove that the locus of the middle points of the normal chords of the parabola $y^{2}=4 a x$ is
$\frac{y^{2}}{2 a}+\frac{4 a^{3}}{y^{2}}=x-2 a$.
Q. 23 Two tangents to the parabola $y^{2}=8 x$ meet the tangent at its vertex in the point P and Q . If $\mathrm{PQ}=4$ units, prove that the locus of the point of the intersection of the two tangents is $y^{2}=8(x+2)$.
Q. 24 Two perpendicular straight lines through the focus of the parabola $y^{2}=4 x$ meet its tangents to the parabola parallel to the perpendicular lines intersect in the mid point of TT^{\prime}.
Q. 25 A variable chord $P Q$ of the parabola $y^{2}=4 x$ is drawn parallel to the line $y=x$. If the parameters of the points P and Q on the parabola are p and q respectively, show, that $p+q=2$. Also show that the locus of the point of intersection of the normals at P and Q is $2 x-y=12$.
Q. 26 Show that the circle through three points the normals at which to the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ are concurrent at the point (h, k) is $2\left(x^{2}+y^{2}\right)-2(h+2 a) x-k y=0$.
Q. 27 Find the condition such that the chord $\mathrm{t}_{1} \mathrm{t}_{2}$ of the parabola $y^{2}=4 a x$ passes through the point ($\mathrm{a}, 3 \mathrm{a}$). Find the locus of intersection of t tangents at t_{1} and t_{2} under this condition.
Q. 28 A variable tangent to the parabola $y^{2}=4 a x$ meets the circle $x^{2}+y^{2}=r^{2}$ at P and Q. Prove that the locus of the mid point of $P Q$ is $x\left(x^{2}+y^{2}\right)+a y^{2}=0$.
Q. 29 A variable chord PQ of a parabola $\mathrm{y}^{2}=4 \mathrm{ax}$, subtends a right angle at the vertex. Show that it always passes through a fixed point. Also show that the locus of the point of intersection of the tangents at P and Q is a straight line. Find the locus of the mid point of $P Q$.

Exercise 2

Single Correct Choice Type

Q. 1 The tangent at P to a parabola $y^{2}=4 a x$ meets the directrix at U and the latus rectum at V then SUV (where S is the focus).
(A) Must be a right triangle
(B) Must be an equilateral triangle
(C) Must be an isosceles triangle
(D) Must be a right isosceles triangle
Q. 2 If the distances of two points P and Q from the focus of a parabola $y^{2}=4 a x$ are 4 and 9 , then the distance of the point of intersection of tangents at P and Q from the focus is-
(A) 8
(B) 6
(C) 5
(D) 13
Q. 3 The chord of contact of the pair of tangents drawn from each point on the line $2 x+y=4$ to the parabola $y^{2}=-4 x$ passes through a fixed point.
(A) $(-2,1)$
(B) $(-2,-1)$
(C) $(1 / 2,1 / 4)$
(D) $(-1 / 2,-1 / 4)$
Q. 4 The locus of the foot of the perpendiculars drawn from the vertex on a variable tangent to the parabola $y^{2}=a x$ is-
(A) $x\left(x^{2}+y^{2}\right)+a y^{2}=0$
(B) $y\left(x^{2}+y^{2}\right)+a x^{2}=0$
(C) $x\left(x^{2}-y^{2}\right)+a y^{2}=0$
(D) None of these
Q. 5 Locus of the point of intersection of the perpendicular tangents of the curve $y^{2}+4 y-6 x-2=0$ is-
(A) $2 x-1=0$
(B) $2 x+3=0$
(C) $2 y+3=0$
(D) $2 x+5=0$
Q. 6 If the tangent at the point $P\left(x_{1}, y_{1}\right)$ to the parabola $y^{2}=4 a x$ meets the parabola $y^{2}=4 a(x+b)$ at Q and R, then the mid point of $Q R$ is-
(A) $\left(x_{1}+b, y_{1}+b\right)$
(B) $\left(x_{1}-b, y_{1}-b\right)$
(C) $\left(x_{1}, y_{1}\right)$
(D) $\left(x_{1}+b, y_{1}\right)$
Q. 7 The point (s) on the parabola $y^{2}=4 x$ which are closest to the circle, $x^{2}+y^{2}-24 y+128=0$ is/are-
(A) $(0,0)$
(B) $(2,2 \sqrt{2})$
(C) $(4,4)$
(D) None
Q. 8 Length of the focal chord of the parabola $y^{2}=4 a x$ at a distance p from the vertex is-
(A) $\frac{2 a^{2}}{p}$
(B) $\frac{a^{3}}{p^{2}}$
(C) $\frac{4 a^{3}}{p^{2}}$
(D) $\frac{p^{2}}{a^{2}}$
Q. 9 If two normals to a parabola $y^{2}=4 a x$ intersect at right angles then the chord joining their feet passes through a fixed point whose co-ordinates are-
(A) $(-2 a, 0)$
(B) $(a, 0)$
(C) $(2 a, 0)$
(D) None
Q. 10 Locus of a point p if the three normals drawn from it to the parabola $y^{2}=4 a x$ are such that two of them make complementary angles with the axis of the parabola is-
(A) $y^{2}=a(x+a)$
(B) $y^{2}=2 a(x-a)$
(C) $y^{2}=a(x-2 a)$
(D) $y^{2}=a(x-a)$
Q. 11 A tangent to the parabola $x^{2}+4 a y=0$ cuts the parabola $x^{2}=4$ by at A and B the locus of the mid point of $A B$ is-
(A) $(a+2 b) x^{2}=4 b^{2} y$
(B) $(b+2 a) x^{2}=4 b^{2} y$
(C) $(a+2 b) y^{2}=4 b^{2} x$
(D) $(b+2 x) x^{2}=4 a^{2} y$
Q. 12 The circle drawn on the latus rectum of the parabola $4 y^{2}+25=4(y+4 x)$ as diameter cuts the axis of the parabola at the points-
(A) $\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{9}{2}, \frac{1}{2}\right)$
(B) $\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{9}{2}\right)$
(C) $\left(\frac{1}{2}, \frac{1}{2}\right),(0,0)$
(D) $\left(\frac{1}{2}, \frac{7}{2}\right),\left(\frac{1}{2}, \frac{9}{2}\right)$
Q. 13 The distance between a tangent to the parabola $y^{2}=4 \mathrm{Ax}(\mathrm{A}>0)$ and the parallel normal with gradient 1 is-
(A) 4 A
(B) $2 \sqrt{2} \mathrm{~A}$
(C) 2 A
(D) $\sqrt{2} \mathrm{~A}$
Q. 14 The equation to the directrix of a parabola if the two extremities of its latus rectum are $(2,4)$ and $(6,4)$ and the parabola passes through the point $(8,1)$ is-
(A) $y-5=0$
(B) $y-6=0$
(C) $y-1=0$
(D) $y-2=0$
Q. 15 A variable circle is drawn to touch the line $3 x-4 y=10$ and also the circle $x^{2}+y^{2}=4$ externally then the locus of its centre is-
(A) Straight line
(B) Circle
(C) Pair of real, distinct straight lines
(D) Parabola
Q. 16 The tangent and normal at $P(t)$, for all real positive t, to the parabola $y^{2}=4 a x$ meet the axis of the parabola in T and G respectively, then the angle at which the tangent at P to the parabola is inclined to the tangent at P to the circle through the points P, T and G is-
(A) $\cot ^{-1} t$
(B) $\cot ^{-1} \mathrm{t}^{2}$
(C) $\tan ^{-1} t$
(D) $\tan ^{-1} \mathrm{t}^{2}$
Q. $17 P$ is a point on the parabola $y^{2}=4 x$ where abscissa and ordinate are equal. Equation of a circle passing through the focus and touching the parabola at P is-
(A) $x^{2}+y^{2}-13 x+2 y+12=0$
(B) $x^{2}+y^{2}-13 x-18 y+12=0$
(C) $x^{2}+y^{2}+13 x-2 y-14=0$
(D) None of these
Q. 18 A circle is described whose centre is the vertex and whose diameter is three - quarters of the latus rectum of the parabola $y^{2}=4 a x$. If $P Q$ is the common chord of the circle and the parabola and $L_{1} L_{2}$ is the latus rectum, then the area of the trapezium $P L_{1} L_{2} Q$ is-
(A) $3 \sqrt{2} a^{2}$
(B) $2 \sqrt{2} a^{2}$
(C) $4 a^{2}$
(D) $\left(\frac{2+\sqrt{2}}{2}\right) a^{2}$

Multiple Correct Choice Type

Q. 19 Let P, Q and R are three co-normal points on the parabola $y^{2}=4 a x$. Then the correct statement(s) is/are-
(A) Algebraic sum of the slopes of the normals at P, Q and R vanishes
(B) Algebraic sum of the ordinates of the points P, Q and R vanishes
(C) Centroid of the triangle PQR lies on the axis of the parabola
(D) Circle circumscribing the triangle $P Q R$ passes through the vertex of the parabola
Q. 20 Let A be the vertex and L the length of the latus rectum of the parabola, $y^{2}-2 y-4 x-7=0$. The equation of the parabola with A as vertex, 2L, the length of the
latus rectum and the axis at right angles to the of the given curve is-
(A) $x^{2}+4 x+8 y-4=0$
(B) $x^{2}+4 x-8 y+12=0$
(C) $x^{2}+4 x+8 y+12=0$
(D) $x^{2}+8 x-4 y+8=0$
Q. 21 Two parabolas have the same focus. If their directrices are the x-axis and the y-axis respectively, then the slope of their common chord is-
(A) 1
(B) -1
(C) $4 / 3$
(D) $3 / 4$
Q. 22 Equation of common tangent to the circle, $x^{2}+y^{2}=50$ and the parabola, $y^{2}=40 x$ can be-
(A) $x+y-10=0$
(B) $x-y+10=0$
(C) $1+y+10=0$
(D) $x-y-10=0$
Q. 23 The equation $y^{2}+3=2(2 x+y)$ represents a parabola with the vertex at-
(A) $\left(\frac{1}{2}, 1\right)$ and axis parallel to x-axis
(B) $\left(1, \frac{1}{2}\right)$ and axis parallel to x-axis
(C) $\left(\frac{1}{2}, 1\right)$ and focus at $\left(\frac{3}{2}, 1\right)$
(D) $\left(\frac{1}{2}, 1\right)$ and axis parallel to y-axis
Q. 24 Let $y^{2}=4 a x$ be a parabola and $x^{2}+y^{2}+2 b x=$ 0 be a circle. If parabola and circle touch each other externally then-
(A) $a>0, b>0$
(B) $a>0, b<0$
(C) $a>0, b>0$
(D) $a<0, b<0$
Q. 25 P is a point on the parabola $\mathrm{y}^{2}=4 \mathrm{ax}(\mathrm{a}>0)$ whose vertex is A. PA is produced to meet the directrix in D and M is the foot of the perpendicular P on the directrix. If a circle is described on MD as a diameter then it intersects the x-axis at a point whose co-ordinates are-
(A) $(-3 a, 0)$
(B) $(-a, 0)$
(C) $(-2 \mathrm{a}, 0)$
(D) $(a, 0)$

Previous Years' Questions

Q. 1 The curve described parametrically by $\mathrm{x}=\mathrm{t}^{2}+\mathrm{t}+1$, $y=t^{2}-t+1$ represent
(1999)
(A) A pair of straight lines
(B) An ellipse
(C) A parabola
(D) A hyperbola
Q. 2 The equation of the common tangent touching the circle $(x-3)^{2}+y^{2}=9$ and the parabola $y^{2}=4 x$ above the x-axis is-
(2001)
(A) $\sqrt{3} y=3 x+1$
(B) $\sqrt{3} y=-(x+3)$
(C) $\sqrt{3} y=x+3$
(D) $\sqrt{3} y=-(3 x+1)$
Q. 3 The focal chord to $y^{2}=16 x$ is tangent to $(x-6)^{2}+y^{2}=2$, then the possible values of the slope of this chord, are-
(2003)
(A) $\{-1,1\}$
(B) $\{-2,2\}$
(C) $\{-2,1 / 2\}$
(D) $\{2,-1 / 2\}$
Q. 4 Axis of a parabola is $\mathrm{y}=\mathrm{x}$ and vertex and focus are at a distance $\sqrt{2}$ and $2 \sqrt{2}$ respectively from the origin. Then equation of the parabola is-
(2006)
(A) $(x-y)^{2}=8(x+y-2)$
(B) $(x+y)^{2}=2(x+y-2)$
(C) $(x-y)^{2}=4(x+y-2)$
(D) $(x+y)^{2}=2(x-y+2)$
Q. 5 Normals at P, Q, R are drawn to $y^{2}=4 x$ which intersect at (3, 0). Then

Column I	Column II
(A) Area of $\triangle \mathrm{PQR}$	(p) 2
(B) Radius of circumcircle of $\triangle \mathrm{PQR}$	(q) $\frac{5}{2}$
(C) Centroid of $\triangle \mathrm{PQR}$	(r) $\left(\frac{5}{2}, 0\right)$
(D) Circumcentre of $\triangle \mathrm{PQR}$	(s) $\left(\frac{2}{3}, 0\right)$

Q. 6 Equation of common tangent of $y=x^{2}$ and $y=-x^{2}+$ $4 x-4$ is-
(2006)
(A) $y=4(x-1)$
(B) $y=0$
(C) $y=-4(x-1)$
(D) $y=-30 x-50$
Q. 7 The tangent PT and the normal PN to the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ at a point P on it meet its axis at points T and N , respectively. The locus of the centroid of the triangle PTN is a parabola whose-
(2009)
(A) Vertex is $\left(\frac{2 a}{3}, 0\right)$
(B) Directrix is $x=0$
(C) Latus rectum is $\frac{2 \mathrm{a}}{3}$
(D) Focus is ($\mathrm{a}, 0$)
Q. 8 Let A and B be two distinct points on the parabola $y^{2}=4 x$. If the axis of the parabola touches a circle of radius r having $A B$ as its diameter, then the slope of the line joining A and B can be-
(2010)
(A) $-\frac{1}{r}$
(B) $\frac{1}{r}$
(C) $\frac{2}{r}$
(D) $-\frac{2}{r}$
Q. 9 Consider the parabola $y^{2}=8 x$. Let D_{1} be the area of the triangle formed by the end points of its latus rectum and the point $P\left(\frac{1}{2}, 2\right)$ on the parabola and D_{2} be the area of the triangle formed by drawing tangents at P and at the end points of the latus rectum. Then $\frac{\Delta_{1}}{\Delta_{2}}$
is . \qquad (2011)
Q. 10 Suppose that the normals drawn at three different points on the parabola $y^{2}=4 x$ pass through the point $(h, 0)$. Show that $h>2$.
(1981)
Q. 11 Three normals are drawn from the point $(c, 0)$ to the curve $y^{2}=x$. Show that c must be greater than $\frac{1}{2}$. One normal is always the x-axis. Find c for which the other two normals are perpendicular to each other.
(1991)
Q. 12 Show that the locus of a point that divides a chord of slope 2 of the parabola $y^{2}=4 a x$ internally in the ratio 1: 2 is a parabola. Find the vertex of this parabola.
(1995)
Q. 13 Points A, B and C lie on the parabola $y^{2}=4 a x$. The tangents to the parabola at A, B and C, taken in pairs, intersect at points P, Q and R. Determine the ratio of the areas of the triangle $A B C$ and $P Q R$.
(1996)
Q. 14 Let C_{1} and C_{2} be, respectively, the parabolas $x^{2}=y-1$ and $y^{2}=x-1$. Let P be any point on C_{1} and Q be any point on C_{2}. Let P_{1} and Q_{1} be the reflections of P and Q, respectively, with respect to the line $y=x$. Prove that P_{1} lies on C_{2}, Q_{1} lies on C_{1} and $P Q \geq$ min $\left\{P_{1_{1}}, Q_{1}\right\}$. Hence or otherwise, determine points P_{0} and Q_{0} on the parabolas C_{1} and C_{2} respectively such that $P_{0} Q_{0} \leq P Q$ for all pairs of points (P, Q) with P on C_{1} and Q on C_{2}.
(2000)
Q. 15 Normals are drawn from the point P with slopes $m_{1^{\prime}} m_{2^{\prime}} m_{3}$ to the parabola $y^{2}=4 x$. If locus of P with $m_{1} m_{2}=\alpha$ is a part of the parabola itself, then find α.
(2003)
Q. 16 Let L be a normal to the parabola $y^{2}=4 x$. If L passes through the point $(9,6)$, then L is given by
(2011)
(A) $y-x+3=0$
(B) $y+3 x-33=0$
(C) $y+x-15=0$
(D) $y-2 x+12=0$
Q. 17 Let (x, y) be any point on the parabola $y^{2}=4 x$. Let P be the point that divides the line segment from $(0,0)$ to (x, y) in the ratio $1: 3$. Then the locus of P is
(2011)
(A) $y^{2}=y$
(B) $y^{2}=2 x$
(C) $y^{2}=x$
(D) $x^{2}=2 y$
Q. 18 Let the straight line $x=b$ divide the area enclosed by $y=(1-x)^{2}, y=0$ and $x=0$ into two parts $R_{1}(0 \leq x \leq b)$ and $R_{2}(b \leq x \leq 1)$ such that $R_{1}-R_{2}=\frac{1}{4}$. Then b equals
(2011)
(A) $\frac{3}{4}$
(B) $\frac{1}{2}$
(C) $\frac{1}{3}$
(D) $\frac{1}{4}$
Q. 19 Consider the parabola $y^{2}=8 x$. Let Δ_{1} be the area of the triangle formed by the end points of its latus and the point $P\left(\frac{1}{2}, 2\right)$ on the parabola, and Δ_{2} be the area of the triangle formed by drawing tangents at P and at the end points of the latus rectum. Then $\frac{\Delta_{1}}{\Delta_{2}}$ is (2011)

Paragraph (Questions 20 and 21)

Let $P Q$ be a focal chord of the parabola $y^{2}=4 a x$. The tangents to the parabola at P and Q meet at a point lying on the line $y=2 x+a, a>0$.
Q. 20 Length of chord $P Q$ is
(A) 7 a
(B) 5 a
(C) 2 a
(D) 3a
Q. 21 If chord PQ subtends an angle θ at the vertex of $y^{2}=4 a x$, then $\tan \theta=$
(A) $\frac{2}{3} \sqrt{7}$
(B) $\frac{-2}{3} \sqrt{7}$
(C) $\frac{2}{3} \sqrt{5}$
(D) $\frac{-2}{3} \sqrt{5}$
Q. 22 A line $L: y=m x+3$ meets y-axis at $E(0,3)$ and the arc of the parabola $y^{2}=16 x, 0 \leq y \leq 6$ at the point $F\left(x_{0}, y_{0}\right)$. The tangent to the parabola at $F\left(x_{0}, y_{0}\right)$ intersects the y-axis at $G\left(0, y_{1}\right)$. The slope m of the line L is chosen such that the area of the triangle EFG has a local maximum.

Match List I with List II and select the correct answer using the code given below the lists:
(2013)

List I		List II	
(i)	$\mathrm{m}=$	(p)	$\frac{1}{2}$
(ii)	Maximum area of Δ EFG is	(q)	4
(iii)	$y_{0}=$	(r)	2
(iv)	$y_{1}=$	(s)	1

(A) $\mathrm{i} \rightarrow \mathrm{s}, \mathrm{ii} \rightarrow \mathrm{p}, \mathrm{iii} \rightarrow \mathrm{q}$, iv $\rightarrow \mathrm{iii}$
(B) $\mathrm{i} \rightarrow \mathrm{r}, \mathrm{ii} \rightarrow \mathrm{s}$, iii $\rightarrow \mathrm{p}$, iv $\rightarrow \mathrm{ii}$
(C) $\mathrm{i} \rightarrow \mathrm{p}$, ii $\rightarrow \mathrm{r}, \mathrm{iii} \rightarrow \mathrm{q}$, iv $\rightarrow \mathrm{iv}$
(D) $i \rightarrow p$, ii $\rightarrow r$, iii $\rightarrow s$, iv \rightarrow ii

Paragraph (Questions 23 and 24)

Let $\mathrm{a}, \mathrm{r}, \mathrm{s}, \mathrm{t}$ be non-zero real numbers. Let $\mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$, Q ($\mathrm{ar}^{2}, 2 \mathrm{ar}$) and $\mathrm{S}\left(\mathrm{as}^{2}, 2 \mathrm{as}\right)$ be distinct points on the parabola $y^{2}=4 a x$. Suppose that $P Q$ is the focal chord and lines QR and PK are parallel, where K is the point (2a, 0).
Q. 23 The value of r is
(2014)
(A) $-\frac{1}{\mathrm{t}}$
(B) $\frac{t^{2}+1}{t}$
(C) $\frac{1}{\mathrm{t}}$
(D) $\frac{t^{2}-1}{t}$
Q. 24 If $s t=1$, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is
(2014)
(A) $\frac{\left(t^{2}-1\right)^{2}}{2 t^{3}}$
(B) $\frac{a\left(t^{2}-1\right)^{2}}{2 t^{3}}$
(C) $\frac{a\left(t^{2}-1\right)^{2}}{t^{3}}$
(D) $\frac{a\left(t^{2}+2\right)^{2}}{t^{3}}$
Q. 25 Suppose that the foci of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ are ($f_{1^{\prime}}$) and ($f_{2^{\prime}} 0$) where $f_{1}>0$ and $f_{2}>0$. Let P_{1} and P_{2} be two parabolas with a common vertex at $(0,0)$ and with foci at ($\mathrm{f}_{1}, 0$) and ($2 \mathrm{f}_{2}, 0$), respectively. Let T_{1} be a tangent to P_{1} which passes through ($2 f_{2}, 0$) and T_{2} be a tangent P_{2} which passes through ($f_{1}, 0$), The m_{1} is the slope of T_{1} and m_{2} is the slope of $T_{2^{\prime}}$ then the value of $\left(\frac{1}{m^{2}}+m_{2}^{2}\right)$ is
(2015)

MASTERJEE Essential Questions

JEE Main/Boards

Exercise 1

Q. 12	Q. 15	Q. 18	Q. 19
Q. 23	Q. 27	Q. 29	

Exercise 2
$\begin{array}{llll}\text { Q. } 1 & \text { Q. } 10 & \text { Q. } 16 & \text { Q. } 21\end{array}$

Previous Years' Questions

Q. 4
Q. 7
Q. 12

JEE Advanced/Boards

Exercise 1

Q. 7	Q. 13
Q. 25	Q. 29

Q. 18
Q. 21

Exercise 2

Q. 1	Q. 7	Q. 9	Q. 15
Q. 19	Q. 21	Q. 22	Q. 25
Previous	Years'	Questions	
Q. 3	Q. 6	Q. 7	Q. 9
Q. 11	Q. 14		

Previous Years' Questions

Q. 11
Q. 14

Answer Key

JEE Main/Boards

Exercise 1

Q. $14 x^{2}+y^{2}-4 x y+8 x+46 y-71=0$
Q. $2\left(\frac{3}{8}, \frac{1}{2}\right),\left(\frac{3}{8}, \frac{9}{16}\right), 8 y-5=0,8 x-3=0$
Q. 31
Q. $7 \mathrm{y}+2 \mathrm{x}+1=0,2 \mathrm{y}=\mathrm{x}+8$
Q. $8 x+2 y+4=0, y-2 x+12=0$
Q. $102 x+3 y+36=0$
Q. $9 x+2 y+6=0$ at $(6,-6) 3 x+10 y+50=0$ at $\left(\frac{50}{3},-10\right)$
Q. $11\left(\frac{9}{4},-\frac{3}{2}\right)$
Q. 12 4 ($\sqrt{5}-1$)
Q. $13 \mathrm{y}(\mathrm{y} / \mathrm{x})=\mathrm{y}^{2} / \mathrm{x}=4 \mathrm{ax} / \mathrm{x}=4 \mathrm{a}$
Q. $142 \times 4=8$
Q. $15 \mathrm{k}=1 / 9$
Q. $16(y+1)^{2}=-3(2 x-5) ;(y+1)^{2}=3(2 x+1)$
Q. $25(x+a)^{2} \tan ^{2} \alpha=y^{2}-4 a x$
Q. $26\{(x, 1) ; x>3\}$

Exercise 2

Single Correct Choice Type

Q. 1 C
Q. 2 A
Q. 3 D
Q. 4 D
Q. 5 A
Q. 6 C
Q. 7 C
Q. 8 B
Q. 9 B
Q. 10 C
Q. 11 C
Q. 12 A
Q. 13 C
Q. 14 D
Q. 15 D
Q. 16 D
Q. 17 A
Q. 18 D
Q. 19 D
Q. 20 D
Q. 21 C
Q. 22 C

Previous Years' Questions
Q. 1 B
Q. 2 C
Q. 3 D
Q. 4 C
Q. 5 D
Q. 6 C
Q. 7 B, C
Q. 8 A, B, D
Q. $9(-1,0)$
Q. $10 \sqrt{c-\frac{1}{4}}, \frac{1}{2} \leq \mathrm{c} \leq 5$
Q. $11 x+y=3$
Q. $12 y^{2}=2(x-4)$
Q. $13 \frac{15 a^{2}}{4}$
Q. $15(x+1)(y-1)^{2}+4=0$
Q. 16 A

JEE Advanced/Boards

Exercise 1

Q. $12 x-y+2=0,(1,4) ; x+2 y+16=0,(16,-16)$
Q. $4(a x+b y)\left(x^{2}+y^{2}\right)+(a y-b x)^{2}=0$
Q. 7 [a(t $\left.\left.{ }_{0}{ }^{2}+4\right),-2 \mathrm{at}_{0}\right]$
Q. $16 y^{2}=4 a(x-8 a)$
Q. $23 x-2 y+4=0 ; x-y+3=0$
Q. 5 (a, 0) ; a
Q. $12 a^{2}>8 b^{2}$
Q. $17 y=-4 x+72, y=3 x-33$
Q. $20 x^{2}+y^{2}+18 x-28 y+27=0$
Q. $28 \mathrm{x}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)+\mathrm{ay} \mathrm{y}^{2}=0$
Q. $272-3\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)+2 \mathrm{t}_{1} \mathrm{t}_{2}=0 ; 2 \mathrm{x}-3 \mathrm{y}+2 \mathrm{a}=0$
Q. $29(4 a, 0) ; x+4 a=0 ; y^{2}=2 a(x-4 a)$

Exercise 2

Single Correct Choice Type

Q. 1 C	Q. 2 B	Q. 3 A	Q. 4 D	Q. 5 D	Q. 6 C
Q. 7 C	Q. 8 C	Q. 9 B	Q. 10 D	Q. 11 A	Q. 12 A
Q. 13 B	Q. 14 B	Q. 15 D	Q. 16 C	Q. 17 A	Q. 18 D

Multiple Correct Choice Type

Q. 19 A, B, C, D
Q. 20 A, B
Q. 21 A, B
Q. 22 B, C
Q. 23 A, C
Q. 24 A, D
Q. 25 A, D

Previous Years' Questions

Q. 1 C	Q. 2 C	Q. 3 A	Q. 4 A	Q. $5 \mathrm{~A} \rightarrow \mathrm{p} ; \mathrm{B} \rightarrow \mathrm{q} ; \mathrm{C} \rightarrow \mathrm{s} ; \mathrm{D} \rightarrow \mathrm{r}$	
Q. 6 A, B	Q. 7 A, D	Q. 8 C, D	Q. 92	Q. $10 \mathrm{~h}>2$	Q. $11 \mathrm{c}=3 / 4$
Q. $12\left(\frac{2}{9}, \frac{8}{9}\right)$	Q. 132	Q. $14 \mathrm{P}_{0}$	$\mathrm{Q}_{0}\left(\frac{5}{4}, \frac{1}{2}\right)$	Q. $15 \alpha=2$	Q. 16 A, B, D
Q. 17 C	Q. 18 B	Q. 192	Q. 20 B	Q. 21 D	Q. 22 A
Q. 23 B	Q. 24 D	Q. 254			

Solutions

JEE Main/Boards

Exercise 1

Sol 1: Vertex is the midpoint of point of intersection of directrix (let say $M(a, b)$) \& the focus and axis of parabola.
$\therefore(2,1)=\left(\frac{a+1}{2}, \frac{b-1}{2}\right)$
$\therefore \mathrm{M}(\mathrm{a}, \mathrm{b})=(3,3)$
Also directrix \perp to axis.
\therefore Slope of directrix $=-\frac{1}{2}$
The equation of directrix is $(y-3)=-\frac{1}{2}(x-3)$
$\therefore \mathrm{x}+2 \mathrm{y}-9=0$
Let (x, y) be the point on parabola
$\therefore \frac{x+2 y-9}{\sqrt{5}}=\sqrt{(x-1)^{2}+(y+1)^{2}}$
$\therefore(x+2 y-9)^{2}=5\left[(x-1)^{2}+(y+1)^{2}\right]$
$\therefore x^{2}+4 y^{2}+81+4 x y-18 x-36 y$
$=5 x^{2}+5 y^{2}-10 x+10 y+10$
$\therefore 4 x^{2}+y^{2}-4 x y+8 x+46 y-71=0$
Sol 2: $4 x^{2}-3 x+\frac{9}{16}=-y+\frac{9}{16}$
$\therefore\left(2 x-\frac{3}{4}\right)^{2}=\frac{\left(-y+\frac{9}{16}\right)}{1}$
$\therefore\left(\mathrm{x}-\frac{3}{8}\right)^{2}=\frac{1}{4}\left(-\mathrm{y}+\frac{9}{16}\right)$
Let $Y=-y+\frac{9}{16} \& X=x \frac{3}{8}$
$\therefore \mathrm{X}^{2}=-\frac{\mathrm{Y}}{4}$
Comparing to $\mathrm{X}^{2}=-4 \mathrm{aY} \Rightarrow \mathrm{a}=\frac{1}{16}$
Vertex is $(X=0, Y=0)$
\therefore Coordinates of vertex in original Cartesian system
is $\left(\frac{3}{8}, \frac{9}{16}\right)$
Focus $=\left(0,-\frac{1}{16}\right) \Rightarrow$ actual focus $=\left(\frac{3}{8}, \frac{1}{2}\right)$
and foot of directrix $=(0, a)=\left(0, \frac{1}{16}\right)$
\therefore Actual foot $=\left(\frac{3}{8}, \frac{5}{8}\right)$
equation of directrix is $y=\frac{5}{8} \&$ axis is $x=\frac{3}{8}$.
Sol 3: $\mathrm{y}^{2}=12 \mathrm{x} \therefore \mathrm{a}=3$
Focal distance $=$ distance from directrix
$\therefore \mathrm{x}+\mathrm{a}=4 \quad \Rightarrow \mathrm{x}=1$

Sol 4: Length of double ordinate $=8 \mathrm{a}$
\therefore The ends of ordinate are $(x, 4 a) \&(x-4 a)$. Substituting in $y^{2}=4 a x$ we get $x=4 a$
$\therefore \mathrm{A}(4 \mathrm{a}, 4 \mathrm{a}) \& \mathrm{~B}(4 \mathrm{a},-4 \mathrm{a})$ are the ends of ordinates $\mathrm{m}_{\mathrm{OA}}=1 \& \mathrm{~m}_{\mathrm{OB}}=-1$
\therefore These points subtend 90° at origin.

Sol 5: Equation of line is $y=-\frac{1}{m} x-\frac{n}{m}$.
but equation of tangent to a parabola with slope s is $y=s x+\frac{a}{s}$
$\therefore s=-\frac{1}{m} \& \frac{a}{s}=-\frac{n}{m} \Rightarrow \mathrm{am}^{2}=\ln$
Sol 6: $\mathrm{x}+\mathrm{y}+1=0 \& \mathrm{y}^{2}=1 \mathrm{x}$
From above result $\mathrm{ln}=\mathrm{am}^{2}$
$\therefore 1 \times 1=\frac{\lambda}{4} \times(-1)^{2} \quad \Rightarrow \lambda=4$

Sol 7: Let slope of line be m
$\therefore \tan \pm 45^{\circ}=\frac{m-3}{1+3 m}$
$1=\frac{(m-3)^{2}}{(3 m+1)^{2}}$
$\therefore 8 \mathrm{~m}^{2}+12 \mathrm{~m}-8=0$
$2 m^{2}+3 m-2=0 \Rightarrow(2 m-1)(m+2)=0$
$\therefore \mathrm{m}=-2$ or $\mathrm{m}=\frac{1}{2}$
\therefore Equation of tangent is $y=m x+\frac{a}{m}(a=2)$
$\therefore y=-2 x+\frac{2}{-2}$ or $y=\frac{1}{2} x+\frac{2}{\frac{1}{2}}$
$\Rightarrow 2 \mathrm{x}+\mathrm{y}+1=0$ or $\mathrm{x}-2 \mathrm{y}+8=0$

Sol 8: $y^{2}=4 x \quad\left(x_{1}, y_{1}\right)=(4,-4)$
Equation of tangent is $\mathrm{yy}_{1}=2\left(\mathrm{x}+\mathrm{x}_{1}\right)$
$\therefore-4 y=2 x+8$
Equation of normal $=\left(y-y_{1}\right)=-\frac{y_{1}}{2 a}\left(x-x_{1}\right)$
$\Rightarrow \mathrm{y}+4=2(\mathrm{x}-4)$
$\therefore 2 x-y-12=0$
Sol 9: Let tangents be $y=m x+\frac{6}{4 m}$
Now (10-8) lies on it $-8=10 m+\frac{3}{2 m}$
$20 \mathrm{~m}^{2}+16 \mathrm{~m}+3=0$
$\Rightarrow 20 \mathrm{~m}^{2}+10 \mathrm{~m}+6 \mathrm{~m}+3=0$
$\Rightarrow(10 \mathrm{~m}+3)(2 \mathrm{~m}+1)=0$
$\therefore \mathrm{m}=-\frac{3}{10}$ or $\mathrm{m}=-\frac{1}{2}$
\therefore Equation is $y=-\frac{3}{10} x-5$ or $3 x+10 y+50=0$
$\& y=-\frac{1}{2} x-3$ or $x+2 y+6=0$
\therefore Points of contact are $\left(\frac{\mathrm{a}}{\mathrm{m}^{2}}, \frac{2 \mathrm{a}}{\mathrm{m}}\right)$
\therefore For line $3 x+10 y+50$ point of contact
$=\left(\frac{3}{2 \times 9} \times 100, \frac{3}{-3 / 10}\right)=\left(\frac{50}{3},-10\right)$
and for line $2 y+x+6=0$ point of contact
$=\left(\frac{3}{2 \times 1} \times 4, \frac{3}{-\frac{1}{2}}\right)=(6,-6)$

Sol 10: Tangent to parabola $y^{2}=32 x$ is
$y=m x+\frac{8}{m} \&$ tangent to parabola
$x^{2}=108 y$ is $x=\frac{y}{m}+27 m$
$\therefore \frac{8}{m}=-27 m^{2}$
$\therefore \mathrm{m}^{3}=-\frac{8}{27} \Rightarrow \mathrm{~m}=-\frac{2}{3}$
\therefore Common tangent is $y=-\frac{2}{3} x-12$
$\therefore 2 x+3 y+36=0$
Sol 11: For the parabola $\mathrm{a}=\frac{1}{4}$
\therefore Point $=\left(\frac{1}{4}, \frac{1}{2}\right)$
$\therefore 2$ at $=\frac{1}{2} \Rightarrow t=1$
$\therefore \mathrm{t}_{2}=-\mathrm{t}_{1}-\frac{2}{\mathrm{t}_{1}} \Rightarrow \mathrm{t}_{2}=-1-2=-3$
\therefore Point, when the normal again cuts the parabola
is $\left(\frac{1}{4} \mathrm{t}_{2}^{2}, \frac{1}{2} \mathrm{t}_{2}\right)=\left(\frac{9}{4}, \frac{-3}{2}\right)$
Sol 12: The circle lies outside the parabola the shortest distance is when normal to parabola is normal to circle, i. e. , it passes through center of circle

The equation of normal in parametric form is
$y=-t x+2 a t+a t^{3} \Rightarrow y=-t x+2 t+t^{3}$
\Rightarrow It passes through $(0,12)$
$\therefore t^{3}+2 t-12=0$
$(t-2)\left(t^{2}+2 t+6\right)=0$
$t=2$ is only positive point
\therefore Point is $(4,4) \&$ shortest distance
$=\sqrt{4^{2}+(4-12)^{2}}-r=\sqrt{80}-4=4(\sqrt{5}-1)$
Sol 13: Let $B=\left(a t_{1}^{2}, 2 a t_{1}\right)$
$A=(0,0)$
\& let C be (h, 0)
we have to find $\left|\mathrm{h}-\mathrm{at}_{1}{ }^{2}\right|$
Since $B C \perp A B$
$\therefore \frac{2 a t_{1}}{a t_{1}^{2}-h} \times \frac{2 a t_{1}}{a t_{1}^{2}}=-1$
$\therefore 4 \mathrm{a}=\mathrm{h}-\mathrm{at}_{1}^{2}$
\therefore Projection of $B C$ on x-axis $=4 a$

Sol 14: Changing the coordinate system to $y=4$ \& $x=x+3$ won't change the dimensions of parabola
\therefore Let parabola be $y^{2}=8 x$
$\therefore P=\left(a t^{2}, 2 a t\right)$

$M=(-a, 2 a t) S=(a, 0)$
Since PM = SP always
$\therefore(2 a)^{2}+(2 a t)^{2}=\left(a+a t^{2}\right)^{2}$
$\Rightarrow 4+4 t^{2}=t^{4}+2 t^{2}+1$
$\therefore \mathrm{t}^{4}-2 \mathrm{t}^{2}-3=0 \Rightarrow \mathrm{t}^{2}=3$
\therefore Side of triangle $=a+a t^{2}=2+2 \times 3=8$

Sol 15: $y^{2}=4 a x$
$P=\left(a t^{2}, 2 a t\right) \& Q=\left(a t^{2},-2 a t\right)$
Let $\mathrm{M}=$ point of trisection $=(\mathrm{x}, \mathrm{y})$
$\therefore(x, y)=\left(\frac{2 a t^{2}+a t^{2}}{3}, \frac{2 \times(2 a t)-2 a t}{3}\right)$
$\therefore(\mathrm{x}, \mathrm{y})=\left(a \mathrm{t}^{2}, \frac{2 \mathrm{at}}{3}\right)$
$\therefore \mathrm{x}=\mathrm{at}^{2} \& \mathrm{y}=\frac{2 \mathrm{at}}{3}$
$\therefore x=a \times\left(\frac{3 y}{2 a}\right)^{2}$
$\therefore y^{2}=\frac{4 a x}{9}$
Length of latus rectum of $y^{2}=4 a x$ is $4 a$. Length of latus rectum of $y^{2}=\frac{4 a x}{9}$ is $\frac{4 a}{9} ; \therefore k=\frac{1}{9}$

Sol 16: Focus = mid point of ends of latus rectum = $(1,-1)$
$a=\frac{6}{4}=\frac{3}{2}$
Since latus rectum is \perp to x-axis
\therefore Only co-ordinates are shifted.
vertex $=\left(1 \pm \frac{3}{2},-1\right) \Rightarrow\left(-\frac{1}{2},-1\right)$ or $\left(\frac{5}{2},-1\right)$
When vertex lies to left of latus rectum equation parabola is

\therefore Equation of parabola is
$(y+1)^{2}=6\left(x+\frac{1}{2}\right) \Rightarrow(y+1)^{2}=3(2 x+1)$
or $(y+1)^{2}=-6\left(x-\frac{5}{2}\right) \Rightarrow(y+1)^{2}=-3(x-5)$
Sol 18: Let AP be the chord with $A=(0,0) \&$ $P\left(a t^{2}, 2 a t\right)$. Let $Q=\left(a t_{2}^{2}, 2 a t_{2}\right)$
Since $A Q \perp A P$
$\therefore \frac{2 \mathrm{at}_{2}}{\mathrm{at}_{2}^{2}} \times \frac{2 \mathrm{at}}{\mathrm{at}^{2}}=-1 \Rightarrow \mathrm{t}_{2}=-\frac{4}{\mathrm{t}}$
$\therefore Q=\left(\frac{16 a}{t^{2}},-\frac{8 a}{t}\right)$
Let R be the required point $=(\mathrm{h}, \mathrm{k})$
\therefore Since OPQR is a rectangle
\therefore Midpoint of $O R=$ Mid-point of $P \& Q$

$$
\begin{aligned}
& \therefore\left(\frac{h}{2}, \frac{k}{2}\right)=\left(\frac{a t^{2}+\frac{16 a}{t^{2}}}{2}, \frac{2 a t-\frac{8 a}{t}}{2}\right) \\
& \therefore h=a\left(t^{2}+\frac{16}{t^{2}}\right) ; k=2 a\left(t-\frac{4}{t}\right) \\
& \therefore\left(\frac{k}{2 a}\right)^{2}+8=\frac{h}{a} \quad \Rightarrow k^{2}=(h-8 a) \times 4 a \\
& \therefore \text { Locus of } R \text { is } y^{2} \quad=4 a(x-8 a)
\end{aligned}
$$

Sol 19: Let $\mathrm{P}\left(\mathrm{at}^{2}\right.$, 2at) be a point on parabola
\therefore The middle point of segment OP is
$(h, k)=\left(\frac{a t^{2}}{2}, a t\right)$
$\therefore h=\frac{a}{2}\left(\frac{k}{a}\right)^{2}$
\therefore Locus of M is $y^{2}=2 a x$
Sol 20: Let $A\left(\mathrm{at}_{1}^{2}, 2 a t_{1}\right) \& B\left(a t_{2}^{2}, 2 a t_{2}\right)$ be two points, then mid point
$(x, y)=\left(\frac{a\left(t_{1}^{2}+t_{2}^{2}\right)}{2}, \frac{2 a\left(t_{1}+t_{2}\right)}{2}\right)$
$\therefore\left(\mathrm{t}_{1}^{2}+\mathrm{t}_{2}^{2}\right)=\frac{2 \mathrm{x}}{\mathrm{a}} \& \mathrm{t}_{1}+\mathrm{t}_{2}=\frac{\mathrm{y}}{\mathrm{a}}$
The chord passing through A, B is
$y-2 a t_{1}=\frac{2}{t_{1}+t_{2}}\left(x-a t_{1}^{2}\right)$
Since (h, k) satisfies this
$\therefore\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) \mathrm{k}-2 \mathrm{at}_{1} \mathrm{t}_{2}=2 \mathrm{~h}$
$\therefore \frac{y \mathrm{k}}{\mathrm{a}}-\mathrm{a}\left(\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}-\left(\mathrm{t}_{1}^{2}+\mathrm{t}_{2}^{2}\right)\right)=2 \mathrm{~h}$
$\Rightarrow \frac{y k}{a}-a\left(\frac{y^{2}}{a^{2}}-\frac{2 x}{a}\right)=2 h$
$\therefore \frac{y(y-k)}{a}=2(x-h)$
$\therefore y^{2}-k y=2 a(x-h)$
Sol 21: Since point of intersection of
$P=\left(a t_{1}^{2}, 2 a t_{1}\right) \& Q=\left(a t_{2}^{2}, 2 a t_{2}^{2}\right)$ is $\left[a t_{1} t_{2} a\left(t_{1}+t_{2}\right)\right]$
Area of PQR

$$
\begin{aligned}
& A P Q R=\frac{1}{2}\left|\begin{array}{ccc}
a t_{1}^{2} & 2 a t_{1} & 1 \\
a t_{2}^{2} & 2 a t_{2} & 1 \\
a t_{1} t_{2} & a\left(t_{1}+t_{2}\right) & 1
\end{array}\right| \\
& \therefore A=\frac{1}{4}\left|\begin{array}{ccc}
a t_{1}^{2} & 2 a t_{1} & 1 \\
a t_{2}^{2} & 2 a t_{2} & 1 \\
2 a t_{1} t_{2} & 2 a\left(t_{1}+t_{2}\right) & 2
\end{array}\right| \\
& R_{3} \rightarrow R_{3}-R_{1}-R_{2} \\
& A=\frac{1}{4}\left|\begin{array}{ccc}
a t_{1}^{2} & 2 a t_{1} & 1 \\
a t_{2}^{2} & 2 a t_{2} & 1 \\
a\left(t_{1}-t_{2}\right)^{2} & 0 & 0
\end{array}\right|
\end{aligned}
$$

$\therefore A=\frac{1}{4} 2 a\left|\left(t_{1}-t_{2}\right)\right| \times a\left(t_{1}-t_{2}\right)^{2}$
$\therefore A=\frac{a^{2}}{2}\left|t_{1}-t_{2}\right|^{3}$

Sol 22: Consider the parabola with focus $S \& L$ as the directrix \& P is a point

SP = PM \& tangent bisects PM \& SP
$\therefore \mathrm{PO} \perp \mathrm{SM}$
$\therefore \angle \mathrm{PSM}=90-\theta . \angle \mathrm{PMR}=90^{\circ}$
$\therefore \angle \mathrm{SMR}=90-\angle \mathrm{PMS}=\theta$
Now in $\triangle M O R \& \Delta S O R$
$\mathrm{MO}=\mathrm{SO} \& \mathrm{OR}$ is common \&
$\angle \mathrm{MOR}=\angle \mathrm{SOR}=90^{\circ}$
\therefore By RHS $\triangle \mathrm{MOR}=\triangle \mathrm{SOR}$
$\therefore \angle \mathrm{ROS}=\angle \mathrm{RNO}=\theta$
\therefore Angle subtended by the position of tangent Between
P and $R=\theta+(90-\theta)=90^{\circ}$

Sol 23: Equation of tangent to parabola is
$y=m x+\frac{a}{m}$
Tangent at A is $\mathrm{x}=0$
$T=\left(-\frac{\mathrm{a}}{\mathrm{m}^{2}}, 0\right)$
$A=(0,0) \& Y=\left(0, \frac{a}{m}\right)$
Coordinations of G are $\left(\frac{-a}{m^{2}}, \frac{a}{m}\right)$
$\therefore x=-\frac{a}{m^{2}} ; y=\frac{a}{m}$
$\therefore x=-\frac{a}{\left(\frac{a}{y}\right)^{2}}$
$\therefore \mathrm{y}^{2}+\mathrm{ax}=0$ is the locus of point G

Sol 24: Let the parabolas be $y^{2}=4 a x \& x^{2}=4 a y$
Let P be their point of intersection
$\Rightarrow x^{4}=(4 a)^{2} \times(4 a x)$
$\therefore x=4 a \& y=\frac{(4 a)^{2}}{4 a}=4 a$
$\therefore P=(4 a, 4 a)$
The equation of tangents for $y^{2}=4 a x$ at $(4 a, 4 a)$ is
$4 a y=2 a(x+4 a)$
\therefore Slope $=\frac{1}{2}$
and equation of tangent to $x^{2}=4 a y$ at $(4 a, 4 a)$ is
$4 a x=2 a(y+4 a)$
\therefore Slope $=2$
\therefore Angle between parabolas $=\tan \theta=\left(\frac{2-\frac{1}{2}}{1+2 \times \frac{1}{2}}\right)=\frac{3}{4}$
Sol 25: Let tangents be $y=m x+\frac{a}{m}$
It passes through h, k
$\therefore \mathrm{k}=\mathrm{mh}+\frac{\mathrm{a}}{\mathrm{m}}$
$\Rightarrow \mathrm{m}^{2} \mathrm{~h}-\mathrm{km}+\mathrm{a}=0$
$m_{1} m_{2}=\frac{a}{h}$ and $m_{1}+m_{2}=\frac{k}{h}$
Angle between tangents $=\mathrm{a}$
$\therefore \tan \alpha=\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}$
$\therefore \tan ^{2} \alpha=\frac{\left(\frac{k}{h}\right)^{2}-4 \times \frac{a}{h}}{\left(1+\frac{a}{h}\right)^{2}} \Rightarrow \tan ^{2} \alpha=\frac{\mathrm{k}^{2}-4 h a}{(h+a)^{2}}$
\therefore Locus is $y^{2}=\tan ^{2} \alpha(x+a)^{2}+4 a x$

Sol 26: Let $(h, 0)$ be point on axis of parabola
Equation of normal is $y=m x-2 a m-a m^{3}$
$(h, 0)$ passes through it
$\therefore a \mathrm{~m}^{3}+2 \mathrm{am}-\mathrm{mh}=0$
$m\left(a m^{2}+2 a-h\right)=0$
For m to be real and distinct $-\frac{(2 a-h)}{a}>0$
$\therefore \frac{(\mathrm{h}-2 \mathrm{a})}{\mathrm{a}}>0$

The parabola is $(y-1)^{2}=4(x-1)$
$\therefore a=1 y=Y+1 \& x=X+1$
$h-2 a>0 \& y-1=0$
$x>(2 a+1) \& y=1$
\therefore The points which satisfy are $(x, 1)$ where $x>3$

Sol 27: The equation of normal to parabola is
$y=m x-2 a m-a m^{3}$
$\therefore(h, k)$ satisfies it
\therefore Let $\mathrm{f}(\mathrm{m})=\mathrm{am}^{3}+(2 \mathrm{a}-\mathrm{h}) \mathrm{m}+\mathrm{k}$
Two of the 3 tangents coincide
$\therefore \mathrm{f}(\mathrm{m})$ has two equal root
$\therefore f^{\prime}(m)$ at $m=p$ is $0 \& f(p)=0$
$f^{\prime}(m)=3 a m^{2}+(2 a-h)$
$\therefore f^{\prime}(\mathrm{m})$ is O at $\mathrm{m}^{2}=\frac{(\mathrm{h}-2 \mathrm{a})}{3 \mathrm{a}}$
Let $\mathrm{m}=\mathrm{p}$
$f(m)=m\left(a m^{2}+(2 a-h)\right)+k$
$\therefore f(p)=p\left(\frac{h-2 a}{3}+2 a-h\right)+k=0$
$\therefore \mathrm{k}=2 \frac{(\mathrm{~h}-2 \mathrm{a})}{3} \mathrm{p}$
$9 k^{2}=4(h-2 a)^{2} \times p^{2}=4(h-2 a)^{2} \times \frac{h-2 a}{3 a}$
$\therefore 4(h-2 a)^{3}=27 \mathrm{ak}^{2}$
\therefore For two tangents to be coincide locus of P is $27 \mathrm{ay}^{2}$
$=4(h-2 a)^{3}$

Sol 28: Let $\mathrm{A}\left(\mathrm{am}_{1}{ }^{2},-2 a m_{1}\right), \mathrm{B}\left(\mathrm{am}_{2}{ }^{2}, 2 a m_{2}\right)$ and $\mathrm{C}\left(a m_{3}{ }^{2}\right.$, $-2 \mathrm{am}_{3}$) be 3 points on parabola $\mathrm{y}^{2}=4 a x$

Since point of intersection of normals is (α, β) then
$a m^{3} \times(2 a-\alpha) m+\beta=0$
$m_{1}+m_{2}+m_{3}=0$
Let the equation of circle through A, B, C be
$x^{2}+y^{2}+2 g x+2 f y+c=0$

If the points $\left(\mathrm{am}^{2},-2 a m\right)$ lies on circle then
$\left(a m^{2}\right)^{2}+(-2 a m)^{2}+2 g\left(\mathrm{am}^{2}\right)+2 \mathrm{t}(-2 \mathrm{am})+\mathrm{c}=0$
This is a biquadratic equation in m. Hence these are four values of m, say $m_{1}, m_{2}, m_{3} \& m_{4}$ such that circle passes through these points
$m_{1}+m_{2}+m_{3}+m_{4}=0$
$0+m_{4}=0 ; \quad m_{4}=0$
$\therefore(0,0)$ lies on the circle

Sol 29: Let (h, k) be the middle point
\therefore Equation of chord is
$y k-2 a(x+h)=k^{2}-4 a h$
Now let $\mathrm{y}=\mathrm{Y}-\frac{2 \mathrm{a}}{\mathrm{m}} \& \mathrm{x}=\mathrm{X}-\frac{\mathrm{c}}{\mathrm{m}}$
$\therefore\left(Y-\frac{2 a}{m}\right) k-2 a\left(X-\frac{c}{m}+h\right)=k^{2}-4 a h$
$Y=\frac{2 a}{k} X+\left(\frac{2 a k}{m}+2 a h+k^{2}-4 a h-\frac{2 a c}{m}\right) / k$
$\&$ parabola is $Y^{2}=8 a X$
Line touches the parabola if $\mathrm{mc}=\mathrm{a}$
$\therefore \mathrm{mc}=\frac{2 \mathrm{a}}{\mathrm{k}}\left(\frac{2 \mathrm{a}}{\mathrm{m}}+2 \mathrm{ah}+\mathrm{k}^{2}-4 \mathrm{ah}-\frac{2 \mathrm{ac}}{\mathrm{m}}\right) / \mathrm{k}$
$=\frac{2 a}{k}\left(\frac{2 a k}{m}-2 a h+k^{2}-\frac{2 a c}{m}\right) / k$
$=\frac{2 a}{k}\left(\frac{2 a k}{m}-2 a h+k^{2}-\frac{2 a}{m}(k-m h)\right) / k$
$=\frac{2 \mathrm{a}}{\mathrm{k}}\left(\frac{2 \mathrm{ak}}{\mathrm{m}}-2 \mathrm{ah}+\mathrm{k}^{2}-\frac{2 \mathrm{ak}}{\mathrm{m}}+2 \mathrm{ah}\right) / \mathrm{k}=2 \mathrm{a}$
\therefore It is tangent to parabola

Exercise 2

Single Correct Choice Type

Sol 1: (C) $x=1-y$
$\therefore y^{2}=4-4 y$
$\therefore y^{2}+4 y-4=0$
$\left(y_{2}-y_{1}\right)^{2}=(4)^{2}+4 \times 4=32 \Rightarrow\left|y_{2}-y_{1}\right|=4 \sqrt{2}$
$\left|x_{2}-x_{1}\right|=\left(1-y_{2}\right)-\left(1-y_{1}\right)=\left|y_{2}-y_{1}\right|$
\therefore Length of chord $=\sqrt{2} \times\left|y_{2}-y_{1}\right|=8$

Sol 2: (A) $y^{2}-12 x-4 y+4=0$
$(y-2)^{2}=12 x$
Let $\mathrm{x}=\mathrm{X}$ and $\mathrm{y}=\mathrm{Y}+2$
$\therefore Y^{2}=12 X$
Focus of parabola is $(3,0)$
\therefore Focus in original coordinate system is $(3,2)$
\therefore Vertex of new parabola is $(3,2) \&$ focus $=(3,4)$
$\therefore a=2$
Let $x=X+3 \& y=Y+2$
\therefore Equation is $X^{2}=8 Y \Rightarrow(x-3)^{2}=8(y-2)$
$\therefore x^{2}-6 x-8 y+25=0$ is the equation of parabola

Sol 3: (D) $x=t^{2}-2 t+2, y=t^{2}+2 t+2$
$x+y-4=2 t^{2}$
$y-x=4 t$
$\therefore(x+y-4, y-x)$ lies on a parabola
$\Rightarrow(x+y, y-x)$ lies on a parabola by rotating axis (x, y) lies on parabola

Sol 4: (D) $y^{2}=4 a\left(x-\frac{1}{3}\right)$
Let $y=Y$ and $x=X+\frac{1}{3}$
\therefore Equation of parabola is $\mathrm{Y}^{2}=4 \mathrm{aX}$
\therefore equation of line is $Y=2 X-\frac{7}{3}$
$c=\frac{a}{m} \Rightarrow-\frac{7}{3}=\frac{a}{2}$
$\therefore a=-\frac{14}{3}$
Sol 5: (A) $\operatorname{cota}_{1}=2 \operatorname{cota}_{2} \therefore \operatorname{tana}_{1}=\frac{\tan \alpha_{2}}{2}$
let $P=\left(a t_{1}^{2}, 2 a t_{1}\right) \& Q=\left(a t_{2}^{2}, 2 a t_{2}\right)$
$\mathrm{T}=$ point of intersection $=\left(a \mathrm{t}_{1} \mathrm{t}_{2^{\prime}} \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right)=(\mathrm{x}, \mathrm{y})$
Slope of $P=\frac{1}{t_{1}}$ and slope of $Q=\frac{1}{t_{2}}$
$\Rightarrow \frac{1}{\mathrm{t}_{1}}=\frac{1}{2 \mathrm{t}_{2}}$
$\therefore t_{1}=2 t_{2}$
$\therefore x=2 a t_{2}^{2} \quad y=3 a t_{2}$
$\therefore\left(\frac{\mathrm{y}}{3 \mathrm{a}}\right)^{2} \times 2 \mathrm{a}=\mathrm{x}$
$\therefore 2 y^{2}=9 a x$ is locus of T

Sol 6: (C) Let P be $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and Q be $\left(a t_{2}^{2}, 2 a t_{2}\right)$
$\mathrm{OP} \perp \mathrm{OQ}$
$\therefore \frac{2 \mathrm{t}_{1}}{\mathrm{t}_{1}^{2}} \times \frac{2 \mathrm{t}_{2}}{\mathrm{t}_{2}^{2}}=-1$
$\therefore \mathrm{t}_{2}=-\frac{4}{\mathrm{t}_{1}}$
The equation of $P Q$ is
$\left(y-a t_{1}\right)=\frac{2}{t_{1}-\frac{4}{t_{1}}}\left(x-a t_{1}^{2}\right)$
$x_{R}=\left(t_{1}-\frac{4}{t_{1}}\right) \times \frac{-2 a t}{2}+a t_{1}^{2}=4 a$
$\therefore R=(0,4 a) \therefore O R=4 a$

Sol 7: (C) $\sqrt{x^{2}+y^{2}}-y=c$
$\therefore \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{y}^{2}+2 \mathrm{cy}+\mathrm{c}^{2}$
$x^{2}=2 c\left(y+\frac{c}{2}\right) \quad \therefore$ Vertex is $\left(0,-\frac{c}{2}\right)$
It passes through $\left(c \sqrt{2}, \frac{c}{2}\right)$
Sol 8: (B) Equation of tangent is $y=m x+\frac{1}{m}$ $(-1,2)$ lies on it, then

$$
\begin{aligned}
& 2=-m+\frac{1}{m} \Rightarrow m^{2}+2 m-1=0 \\
& x=2, \text { so } y_{1}-y_{2}=2\left(m_{1}-m_{2}\right)+\frac{m_{2}-m_{1}}{m_{1} m_{2}}
\end{aligned}
$$

$$
\therefore\left(y-y_{2}\right)^{2}=\left(m_{1}-m_{2}\right)^{2}\left(2-\frac{1}{m_{1} m_{2}}\right)^{2}
$$

$$
=\left[\left(m_{1}+m_{2}\right)^{2}-4 m_{1} m_{2}\right]\left(2-\frac{1}{m_{1} m_{2}}\right)^{2}
$$

$$
=\left[\left(m_{1}+m_{2}\right)^{2}-4 m_{1} m_{2}\right]\left(2-\frac{1}{m_{1} m_{2}}\right)^{2}
$$

$$
\left(y_{1}-y_{2}\right)^{2}=(4+4)(2+1)^{2}=8 \times 9
$$

$$
\therefore\left|y_{1}-y_{2}\right|=6 \sqrt{2}
$$

Sol 9: (B)

(A) is an ellipse
(B) $x^{2}=2-$ cost
$=2-\left(2 \cos ^{2} \frac{t}{2}-1\right)=2-\left(\frac{y}{2}-1\right)$
$\therefore x^{2}=\frac{1}{2}(6-y)$
\therefore It is a parabola
(C) is a line in $1^{\text {st }}$ quadrant
(D) $x=\sqrt{1-\sin t}, y=\sin \frac{t}{2}+\cos \frac{t}{2}$
$\Rightarrow \mathrm{y}^{2}=\sin ^{2} \frac{\mathrm{t}}{2}+\cos ^{2} \frac{\mathrm{t}}{2}+2 \sin \frac{\mathrm{t}}{2} \cos \frac{\mathrm{t}}{2}=1+\sin \mathrm{t}$
$=1+1-x^{2}($ A circle $)$

Sol 10: (C) Let $A\left(a t_{1}^{2}, 2 a t_{2}\right) \& B\left(a t_{2}^{2}, 2 a t_{2}\right)$ be points on parabola. $\mathrm{P}=\left(\mathrm{at}_{1} \mathrm{t}_{2}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right)=(\mathrm{x}, \mathrm{y})$
slope of $A P$ is $\frac{1}{t_{1}} \&$ slope of $B P$ is $\frac{1}{t_{2}}$
$\tan \left(\theta_{1}+\theta_{2}\right)=1$
$\therefore \frac{\frac{1}{t_{1}}+\frac{1}{t_{2}}}{1-\frac{1}{t_{1} t_{2}}}=1$
$\therefore \frac{t_{1}+t_{2}}{t_{1} t_{2}-1}=1$
$\therefore \frac{y}{x-1}=1$
$\therefore x-y-1=0$ is locus of P

Sol 11: (C) Parabola is $y^{2}=8 x . a=2$
The point P is $(2 \times(2 \times 1), 2(2+1))$
\therefore The points of contact Q, R are
$\left(2 \times(2)^{2}, 2 \times 2 \times 2\right) \&\left(2 \times(1)^{2}, 2 \times 2 \times 1\right)$
$\therefore \mathrm{Q} \& \mathrm{R}$ are $(8,8) \&(2,4)$
$\Delta=\frac{1}{2}\left|\begin{array}{lll}4 & 6 & 1 \\ 8 & 8 & 1 \\ 2 & 4 & 1\end{array}\right|=\frac{1}{2}|4|=2$
Sol 12: (A) Let $P=\left(a t^{2}, 2 a t\right)$
$\because a=2 \quad P=\left(2 t^{2}, 4 t\right) ; S=(2,0)$
$S P=\sqrt{\left(2 t^{2}-2\right)^{2}+(4 t)^{2}}=6$
$\therefore 4\left[\left(\mathrm{t}^{2}-1\right)^{2}+4 \mathrm{t}^{2}\right]=36$
$\therefore\left(t^{2}+1\right)^{2}=9 \Rightarrow t^{2}=2$
The length of focal chord of a parabola is $a\left(t+\frac{1}{t}\right)^{2}$
$=2 \frac{\left(\mathrm{t}^{2}+1\right)^{2}}{\mathrm{t}^{2}}=2 \cdot \frac{9}{2}=9$
$\therefore \ell(\mathrm{SQ})=\ell(\mathrm{PQ})-\ell(\mathrm{SP})=3$

Sol 13: (C) Let (h, k) be the point of intersection
\therefore Chord of contact is $\mathrm{yk}=2(\mathrm{x}+\mathrm{h})$
$\Rightarrow 2 \mathrm{x}-\mathrm{ky}+2 \mathrm{~h}=0 \Rightarrow 4 \mathrm{x}-2 \mathrm{ky}+4 \mathrm{~h}=0$
$\therefore \mathrm{k}=\frac{7}{2}$ and $\mathrm{h}=\frac{5}{2}$
\therefore Point of contact is $\left(\frac{5}{2}, \frac{7}{2}\right)$
Sol 14: (D) The curve is $y^{2}=4 x \& y>0$
Normal to parabola is

$$
y=m x-2 m-m^{3}
$$

It passes through $(21,30)$
$m^{3}+2 m-21 m+30=0$
$m^{3}-19 m+30=0$
$\Rightarrow \mathrm{m}=2, \mathrm{~m}=3 \& \mathrm{~m}=-5$
For $m=2,3 ; \quad y$ - coordinate <0
$\therefore \mathrm{m}=-5$ is only possible solution

Sol 15: (D) Let $P=(h, k)$
The chord of contact is given by
$k y=2 a(x+h)$
$\therefore x=\frac{k}{2 a} y-h$
It is a tangent to $x^{2}=4 b y$
$\therefore-\mathrm{h}=\frac{\mathrm{b}}{\frac{\mathrm{k}}{2 \mathrm{a}}} \Rightarrow-\mathrm{kh}=2 \mathrm{ab}$
$\therefore \mathrm{xy}=-2 \mathrm{ab}$ is locus of P . It is a hyperbola.

Sol 16: (D) Let $P=\left(a t^{2}, 2 a t\right)$
$\therefore \mathrm{M}=(-\mathrm{a}, 2 \mathrm{at}) ; \mathrm{S}=(\mathrm{a}, 0)$
For SPM to be equilateral triangle
SM = PM (as PM = SP always)
$\therefore(2 a)^{2}+(2 a t)^{2}=\left(a t^{2}+a\right)^{2}$
$(2 a)^{2}=\left(a t^{2}-a\right)^{2} \Rightarrow a t^{2}=3 a \Rightarrow t=\sqrt{3}$
$S P=M P=a t^{2}+a=4 a$

Sol 17: (A) Let $P=\left(a t^{2}, 2 a t\right)$
$\therefore\left(a t^{2}-a\right)^{2}+(2 a t)^{2}=(3)^{2}$
The length of focal chord $=a\left(t+\frac{1}{t}\right)^{2}=5$
(1) $\Rightarrow\left(a t^{2}+a\right)^{2}=9$
$a\left(t^{2}+1\right)=3 \Rightarrow a\left(t^{2}+1\right)=3$
$\therefore a \times \frac{9}{a^{2} \times t^{2}}=5 \Rightarrow t^{2}=\frac{9}{5 a}$
From (iii) $\left(\frac{9}{5}+a\right)^{2}=9$
$\Rightarrow a=3-\frac{9}{5}=\frac{6}{5}$ (Since a cannot be negative)
\therefore Length of latus rectum $=4 a=\frac{24}{5}$

Sol 18: (D) Ordinate = abscissa
$\therefore a t^{2}=2 a t \Rightarrow t=2$
t_{2} (other end of normal) $=-t-\frac{2}{t}=-3$
$P=(4 a, 4 a) ; Q=(9 a,-6 a)$ and $S=(a, 0)$
\therefore Slope of $\mathrm{SP}=\frac{4}{3}$ and slope of $\mathrm{SQ}=-\frac{3}{4}$
\therefore Angle subtend at focus $=90^{\circ}$

Sol 19: (D) Let P be (at ${ }^{2}$, 2at)
\therefore Equation of PA is $y=\frac{2 x}{t}$
$M=(-a, 2 a t) ; D=\left(-a,-\frac{2 a}{t}\right)$
Slope of SM is $\frac{2 a t}{-2 a}=-t$
and slope of $S D$ is $\frac{-2 a}{t \times(-2 a)}=\frac{1}{t}$
$\therefore \mathrm{SD} \perp \mathrm{SM} \therefore$ angle between $=90^{\circ}$

Sol 20: (D) Let equation of circle be
$x^{2}+y^{2}+2 g x+2 f y+c=0$
It passes through $(\alpha, 0)$ and $(\beta, 0)$
$\therefore a^{2}+2 y \alpha+c=0$ and $\beta^{2}+2 g \beta+c=0$
$\therefore C(\beta-\alpha)+a \beta(\alpha-\beta)=0$
$\therefore C=\alpha \beta$
\therefore Length of tangent $=\sqrt{800}=\sqrt{C}=\sqrt{\alpha \beta}$
$\alpha \beta=\frac{c}{a} \therefore$ LT $=\sqrt{\frac{c}{a}}$

Sol 21: (C) Let $P=\left(a t_{1}^{2}, 2 a t_{1}\right) \& Q=\left(a t_{2}^{2}, 2 a t_{2}\right)$ and PQ passes through $F(-a, b)$
$\therefore \frac{2 a t_{1}-b}{2 a t_{1}^{2}+a}=\frac{2 a t_{2}-b}{a t_{2}^{2}+9}$
$\therefore\left(2 \mathrm{at}_{1}-\mathrm{b}\right)\left(\mathrm{t}_{2}+1\right)=\left(2 \mathrm{at}_{2}-\mathrm{b}\right)\left(\mathrm{t}_{1}^{2}+1\right)$
$\therefore 2 \mathrm{at}_{1} \mathrm{t}_{2}^{2}++2 \mathrm{at}_{1}-\mathrm{bt}_{2}^{2}=2 \mathrm{at}_{2} \mathrm{t}_{1}^{2}+2 \mathrm{at}_{2}-\mathrm{bt}_{1}^{2}$
$\therefore 2 \mathrm{at}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)=2 \mathrm{a}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)+\mathrm{b}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
$\therefore 2 \mathrm{at}_{1} \mathrm{t}_{2}=2 \mathrm{a}+\mathrm{b}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
Let $T=(x, y)=\left(a t_{1} t_{2^{\prime}} a\left(t_{1}+t_{2}\right)\right)$
$\therefore 2 x=2 a+\frac{b y}{a} \Rightarrow 2 a(x-a)=b y$

Sol 22: (C)

Area of $\triangle A B C=$ area of $\triangle A B S+$ area $\triangle B C S$
$=\frac{1}{2} \times B S \times h_{1}+\frac{1}{2} B S \times h_{2}$
$=\frac{1}{2} \mathrm{ax}\left(\mathrm{h}_{1}+\mathrm{h}_{2}\right)$
$h_{1}+h_{2}=$ diff. in y-coordinates of $A \& C$
$\therefore \frac{1}{2} a\left|y_{2}-y_{1}\right|=A$
$\therefore\left|y_{2}-y_{1}\right|=\frac{2 A}{a}$

Previous Years' Questions

Sol 1: (B) If $y=m x+c$ is normal to the parabola $y^{2}=4 a x$,
Then $\mathrm{c}=-2 \mathrm{am}-\mathrm{am}^{3}$.
From given condition, $y^{2}=12 x$
$\Rightarrow y^{2}=4.3 . x \Rightarrow a=3$ and $x+y=k$
$\Rightarrow \mathrm{y}=(-1) \mathrm{x}+\mathrm{k} \Rightarrow \mathrm{m}=-1$

And $c=k$
$\therefore c=k=-2(3)(-1)-3(-1)^{3}=9$

Sol 2: (C) Given, $y^{2}=k x-8$
$\Rightarrow \mathrm{y}^{2}=\mathrm{k}\left(\mathrm{x}-\frac{8}{\mathrm{k}}\right)$
Shifting the origin
$Y^{2}=k X$, where $Y=y, X=x-8 / k$.
Directrix of standard parabola is $X=-\frac{k}{4}$
Directrix of original parabola is $x=\frac{8}{k}-\frac{k}{4}$
Now, $x=1$ also coincides with $x=\frac{8}{k}-\frac{k}{4}$
On solving, we get $k=4$

Sol 3: (D) Given, $y^{2}+4 y+4 x+2=0$
$\Rightarrow(y+2)^{2}+4 x-2=0$
$\Rightarrow(y+2)^{2}=-4\left(x-\frac{1}{2}\right)$
Replace $y+2=Y, x-\frac{1}{2}=X$
We have, $\mathrm{Y}^{2}=-4 \mathrm{X}$
This is a parabola with directrix at $X=1$
$\Rightarrow x-\frac{1}{2}=1 \Rightarrow x=\frac{3}{2}$

Sol 4: (C) Let $P(h, k)$ be the midpoint of the line segment joining the focus ($a, 0$) and a general point $Q(x, y)$ on the parabola. Then
$h=\frac{x+a}{2}, k=\frac{y}{2}$
$\Rightarrow \mathrm{x}=2 \mathrm{~h}-\mathrm{a}, \mathrm{y}=2 \mathrm{k}$
Substitute these values of $x \& y$ in $y^{2}=4 a x$, we get
$4 \mathrm{k}^{2}=4 \mathrm{a}(2 \mathrm{~h}-\mathrm{a})$
$\Rightarrow 4 \mathrm{k}^{2}=8 \mathrm{ah}-4 \mathrm{a}^{2}$
$\Rightarrow \mathrm{k}^{2}=2 \mathrm{ah}-\mathrm{a}^{2}$
So, locus of $P(h, k)$ is $y^{2}=2 a x-a^{2}$
$\Rightarrow y^{2}=2 a\left(x-\frac{a}{2}\right)$
Its directrix is $x-\frac{a}{2}=-\frac{a}{2}$
$\Rightarrow \mathrm{x}=0 \Rightarrow \mathrm{y}$-axis

Sol 5: (D) Tangent to the curve $y^{2}=8 x$ is $y=m x+\frac{2}{m}$. Substituting this in $x y=-1$
$\Rightarrow x .\left(m x+\frac{2}{m}\right)=-1$
$\Rightarrow m x^{2}+\frac{2}{m} x+1=0$
Since, it has equal roots.
$\therefore \mathrm{D}=0$
$\Rightarrow \frac{4}{\mathrm{~m}^{2}}-4 \mathrm{~m}=0 \Rightarrow \mathrm{~m}^{3}=1 \Rightarrow \mathrm{~m}=1$
Hence, equation of common tangent is $y=x+2$.
$\Rightarrow(x-y)=8(x+y-2)$

Sol 6: (C) By section formula,

$h=\frac{x+0}{4}, k=\frac{y+0}{4}$
$\therefore \mathrm{x}=4 \mathrm{~h}, \mathrm{y}=4 \mathrm{k}$
Substituting in $y^{2}=4 x$
$(4 k)^{2}=4(4 h) \Rightarrow k^{2}=h$
Or $y^{2}=x$ is required locus.
(C) Centroid of $\triangle \mathrm{PQR}=\left(\frac{2}{3}, 0\right)$

Equation of circle passing through P, Q, R is
$(x-1)(x-1)+(y-2)(y+2)+\lambda(x-1)=0$
$\Rightarrow 1-4-\lambda=0 \Rightarrow \lambda=-3$
\therefore required equation of circle is
$x^{2}+y^{2}-5 x=0$
\therefore Centre $\left(\frac{5}{2}, 0\right)$ and radius $\frac{5}{2}$.

Sol 7: (\mathbf{B}, \mathbf{C}) The equation $x^{2}+4 y^{2}=4$ represents an ellipse with 2 and 1 as semi-major and semi-minor axes and eccentricity $\frac{\sqrt{3}}{2}$.
Thus, the ends of latus rectum are $\left(\sqrt{3}, \frac{1}{2}\right)$
and $\left(\sqrt{3},-\frac{1}{2}\right),\left(-\sqrt{3}, \frac{1}{2}\right)$ and $\left(-\sqrt{3},-\frac{1}{2}\right)$.
According to the question, we consider only
$P\left(-\sqrt{3},-\frac{1}{2}\right)$ and $Q\left(\sqrt{3},-\frac{1}{2}\right), y_{1} y_{2}<0$

Now, PQ $=2 \sqrt{3}$
Thus, the coordinates of the vertex of the parabolas are $A\left(0, \frac{-1+\sqrt{3}}{2}\right)$ and $A^{\prime}\left(0, \frac{-1-\sqrt{3}}{2}\right)$ and corresponding equations are
$(x-0)^{2}=-4 \cdot \frac{\sqrt{3}}{2}\left(y+\frac{1-\sqrt{3}}{2}\right)$
and $(x-0)^{2}=4 \cdot \frac{\sqrt{3}}{2}\left(y-\frac{1-\sqrt{3}}{2}\right)$
i.e., $x^{2}+2 \sqrt{3} y=3-\sqrt{3}$ and $x^{2}-2 \sqrt{3} y=3+\sqrt{3}$

Sol 8: $(\mathbf{A}, \mathbf{B}, \mathbf{D})$ Normal to $y^{2}=4 x$, is
$y=m x-2 m-m^{3}$ which passes through $(9,6)$
$\Rightarrow 6=9 \mathrm{~m}-2 \mathrm{~m}-\mathrm{m}^{3}$
$\Rightarrow \mathrm{m}^{3}-7 \mathrm{~m}+6=0$
$\Rightarrow \mathrm{m}=1,2,-3$
\therefore Equation of normals are,
$y-x+3=0, y+3 x-33=0$ and $y-2 x+12=0$

Sol 9: The coordinates of the extremities of the latus rectum of $\mathrm{y} 2=4 \mathrm{ax}$ are $(1,2)$ and $(1,-2)$.
The equations of tangents at these points are gievn by $y .2=4(x+1) / 2$

This gives $2 y=2(x+1)$
and $y(-2)=4(x+1) / 2$
which gievs $-2 y=2(x+1)$
The points of intersection of these tangents can be obtained by solving these two equatiosn simultaneously.

Therefore, $-2(x+1)=2(x+1)$
which gives $0=4(x+1)$
this yields $x=-1$ and $y=0$.
Hence, the required point is $(-1,0)$.

Sol 10: Let the point be $Q\left(x, x^{2}\right)$ on $x^{2}=y$ whose distance from $(0, c)$ is minimum.

Now, $\mathrm{PQ}^{2}=\mathrm{x}^{2}+\left(\mathrm{x}^{2}-\mathrm{c}\right)^{2}$
Let $f(x)=x^{2}+\left(x^{2}-c\right)^{2}$
$f^{\prime}(x)=2 x+2\left(x^{2}-c\right) \cdot 2 x$
$=2 x\left(1+2 x^{2}-2 c\right)$
$=4 x\left(x^{2}-c+\frac{1}{2}\right)$

$=4 x\left(x-\sqrt{c-\frac{1}{2}}\right)\left(x+\sqrt{c-\frac{1}{2}}\right)$
When $\mathrm{c}>\frac{1}{2}$
For maxima, put $\mathrm{f}^{\prime}(\mathrm{x})=0$
$\Rightarrow 4 x\left(x^{2}-c+\frac{1}{2}\right)$
$\Rightarrow x=0, x= \pm \sqrt{c-\frac{1}{2}}$
Now, $f^{\prime \prime}(x)=4\left[x^{2}-c+\frac{1}{2}\right]+4 x[2 x]$
At $x= \pm \sqrt{c-\frac{1}{2}}$
$f^{\prime \prime}(x)>0$.
$\therefore \mathrm{f}(\mathrm{x})$ is minimum

Hence, minimum value of $f(x)=|P Q|$
$=\sqrt{\left(\sqrt{c-\frac{1}{2}}\right)^{2}+\left(\left(\sqrt{c-\frac{1}{2}}\right)^{2}-c\right)^{2}}$
$=\sqrt{c-\frac{1}{2}+\left(c-\frac{1}{2}-c\right)^{2}}=\sqrt{c-\frac{1}{4}}, \frac{1}{2} \leq c \leq 5$.

Sol 11: Equation of normal to $x^{2}=4 y$ is $x=m y-2 m-m^{3}$ and passing through (1,2).
$\therefore 1=2 m-2 m-m^{3}$
$\Rightarrow \mathrm{m}^{3}=-1$ or $\mathrm{m}=-1$
Thus, the required equation of normal is, $x=-y+2+$ 1 or $x+y=3$.

Sol 12: Let the equation of chord OP be $y=m x$ and then, equation of chord will be $y=-\frac{1}{m} x$ and P is point of intersection of $y=m x$ and $y^{2}=4 x$ is $\left(\frac{4}{m^{2}}, \frac{4}{m}\right)$ and Q is point intersection of $y=-\frac{1}{m n}$ and $y^{2}=4 x$ is $\left(4 m^{2},-4 m\right)$

Now, equation of PQ is

$$
y+4 m=\frac{\frac{4}{m}+4 m}{\frac{4}{m^{2}}-4 m^{2}}\left(x-4 m^{2}\right)
$$

$\Rightarrow y+4 m=\frac{m}{1-m^{2}}\left(x-4 m^{2}\right)$
$\Rightarrow\left(1-m^{2}\right) y+4 m-4 m^{3}=m x-4 m^{3}$
$\Rightarrow \mathrm{mx}-\left(1-\mathrm{m}^{2}\right) \mathrm{y}-4 \mathrm{~m}=0$
This line meets x-axis, where $y=0$
i.e., $x=4 \Rightarrow \mathrm{OL}=4$ which is constant as independent of m.

Again, let (h, k) be the midpoint of $P Q$, then
$h=\frac{4 m^{2}+\frac{4}{m^{2}}}{2}$ and $k=\frac{\frac{4}{m}-4 m}{2}$
$\Rightarrow h=2\left(m^{2}+\frac{1}{m^{2}}\right) \& k=2\left(\frac{1}{m}-m\right)$
$\Rightarrow \mathrm{h}=2\left(\left(\mathrm{~m}-\frac{1}{\mathrm{~m}}\right)^{2}+2\right) \& \mathrm{k}=2\left(\frac{1}{\mathrm{~m}}-\mathrm{m}\right)$
Eliminating m, we get $2 \mathrm{~h}=\mathrm{k}^{2}+8$
Or $y^{2}=2(x-4)$ is required equation of locus.

Sol 13: Equation of any tangent to the parabola,
$y^{2}=4 a x$ is $y=m x+\frac{a}{m}$.
This line will touch the circle $x^{2}+y^{2}=\frac{a^{2}}{2}$

If $\left(\frac{a}{m}\right)^{2}=\frac{a^{2}}{2}\left(m^{2}+1\right)$ [Tangency condition]
$\Rightarrow \frac{1}{\mathrm{~m}^{2}}=\frac{1}{2}\left(\mathrm{~m}^{2}+1\right) \Rightarrow 2=\mathrm{m}^{4}+\mathrm{m}^{2}$
$\Rightarrow \mathrm{m}^{4}+\mathrm{m}^{2}-2=0$
$\Rightarrow\left(m^{2}-1\right)\left(m^{2}+2\right)=0$
$\Rightarrow \mathrm{m}^{2}-1=0, \mathrm{~m}^{2}=-2$
$\Rightarrow m= \pm 1$ ($m^{2}=-2$ is not possible)
Therefore, two common tangents are
$y=x+a$ and $y=-x-a$
These two intersect at $A(-a, 0)$
The chord of contact of $A(-a, 0)$ for the circle
$x^{2}+y^{2}=a^{2} / 2$ is
$(-a) x+0 . y=a^{2} / 2 \Rightarrow x=-a / 2$

Sol 14: Let $P(\alpha, \beta)$ be any point on the locus. Equation of pair of tangents from $P(\alpha, \beta)$ to the parabola $y^{2}=4 a x$ is
$[b y-2 a(x+\alpha)]^{2}=\left(b^{2}-4 a \alpha\right)\left(y^{2}-4 a x\right)$
$\left[\because \mathrm{T}^{2}=S . S_{1}\right]$
$\Rightarrow b^{2} y^{2}+4 a^{2}\left(x^{2}+a^{2}+2 x . a\right)-4 a b y(x+\alpha)$
$=b^{2} y^{2}-4 b^{2} a x-4 a a y^{2}+16 a^{2} a x$
$\Rightarrow \mathrm{b}^{2} \mathrm{y}^{2}+4 \mathrm{a}^{2} \mathrm{x}^{2}+4 \mathrm{a}^{2} \mathrm{a}^{2}$
$=b^{2} y^{2}-4 b^{2} a x-4 a a y^{2}+16 a^{2} a x$

- 4abxy - 4abay

Now, coefficient of $x^{2}=4 a^{2}$
Coefficient of $x y=-4 a \beta$
Coefficient of $y^{2}=4 a \alpha$
Again, angle between the two of Eq.(i) is given as 45°
$\therefore \tan 45^{\circ}=\frac{2 \sqrt{\mathrm{~h}^{2}-\mathrm{ab}}}{\mathrm{a}+\mathrm{b}}$
$\Rightarrow 1=\frac{2 \sqrt{\mathrm{~h}^{2}-\mathrm{ab}}}{\mathrm{a}+\mathrm{b}} \Rightarrow a+\mathrm{b}=2 \sqrt{\mathrm{~h}^{2}-\mathrm{ab}}$
$\Rightarrow(\mathrm{a}+\mathrm{b})^{2}=4\left(\mathrm{~h}^{2}-\mathrm{ab}\right)$
$\Rightarrow\left(4 a^{2}+4 a \alpha\right)^{2}=4\left[4 a^{2} b^{2}-\left(4 a^{2}\right)(4 a \alpha)\right]$
$\Rightarrow 16 \mathrm{a}^{2}(\mathrm{a}+\alpha)^{2}=4.4 \mathrm{a}^{2}\left[\mathrm{~b}^{2}-4 \mathrm{aa}\right]$
$\Rightarrow \mathrm{a}^{2}+6 \mathrm{a} \alpha+\mathrm{a}^{2}-\mathrm{b}^{2}=0$
$\Rightarrow(\alpha+3 \mathrm{a})^{2}-\mathrm{b}^{2}=8 \mathrm{a}^{2}$
Thus, the required equation of the locus $(x+3 a)^{2}-y^{2}$ $=8 a^{2}$ which is hyperbola.

Sol 15: Given equation can be written as
$(y-1)^{2}=4(x-1)$
Whose parametric coordinate are
$x-1=t^{2}$ and $y-1=2 t$
i.e., $P\left(1+t^{2}, 1+2 t\right)$
\therefore Equation of tangent at P is,
$t(y-1)=x-1+t^{2}$, which meets the directrix $x=0$ at Q.
$\Rightarrow \mathrm{y}=1+\mathrm{t}-\frac{1}{\mathrm{t}}$
or $Q\left(0,1+t-\frac{1}{t}\right)$
Let $R(h, k)$ which divides $Q P$ externally in the ratio $\frac{1}{2}: 1$
or Q is mid point of $R P$. or Q is mid point of $R P$,
$\Rightarrow 0=\frac{\mathrm{h}+\mathrm{t}^{2}+1}{2}$ or $\mathrm{t}^{2}=-(\mathrm{h}+1)$
and $1+t-\frac{1}{t}=\frac{k+2 t+1}{2}$
or $t=\frac{2}{1-k}$
\therefore From Eqs. (i) and (ii),
$\frac{4}{(1-k)^{2}}+(h+1)=0$
$\operatorname{or}(k-1)^{2}(h+1)+4=0$
\therefore Locus of a point is $(x+1)(y-1)^{2}+4=0$

Sol 16: (A) Let any point P on the Parabola $y^{2}=4 x$ be ($\mathrm{t}^{2}, 2 \mathrm{t}$)

Eq. of tangent is $t y=x+t^{2}$
Now, this equation is tangent to $x^{2}=-32 y$, then

$$
\begin{aligned}
& x^{2}=-32\left(\frac{x+t^{2}}{t}\right) \\
& \Rightarrow x^{2}+32 x+32 t^{2}=0 \\
& \Rightarrow D=0 \\
& \Rightarrow(32)^{2}-4 \times 32 t^{2} \times t=0 \Rightarrow t^{3}=8 \\
& \Rightarrow t=2
\end{aligned}
$$

Slope of tangent $=\frac{1}{t}=\frac{1}{2}$

JEE Advanced/Boards

Exercise 1

Sol 1: Slope of tangent || to $L=2$
Slope of tangent \perp to $L=-\frac{1}{2}$
$P: y^{2}=16 x \Rightarrow a=4$
\therefore Equation of tangent $\|$ to L is
$y=2 x+\frac{4}{2} \therefore y=2(x+1)$
Equation of tangent \perp to L is $y=-\frac{1}{2} x+\frac{4}{-\frac{1}{2}}$
$\therefore 2 y+x+16=0$
Point of contact $=\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right)$
For || line $P_{1}=\left(\frac{4}{2^{2}}, \frac{2 \times 4}{2}\right)=(1,4)$
For \perp line $P_{1}=\left(\frac{4}{\left(\frac{1}{2}\right)^{2}}, \frac{2 \times 4}{-\frac{1}{2}}\right)=(16,-16)$

Sol 2 Let equation be $y=m x+\frac{3}{m}$
It passes through $(2,5)$
$\therefore 5=2 \mathrm{~m}+\frac{3}{\mathrm{~m}}$
$\therefore 2 m^{2}-5 m+3=0$
$\therefore 2 m^{2}-2 m-3 m+3=0$
$\therefore \mathrm{m}=1$ or $\mathrm{m}=\frac{3}{2}$
\therefore Equation of tangents are
$y=x+3$ and $y=\frac{3 x}{2}+2 \Rightarrow 3 x-2 y+4=0$

Sol 3: Let two points be $\left(a t_{1}^{2}, 2 a t_{1}\right) \&\left(a t_{2}^{2}, 2 a t_{1}\right)$ point of intersection is $\left(a\left(t_{1} t_{2}\right), a\left(t_{1}+t_{2}\right)\right)$ slope of $T_{1}=\frac{1}{t_{1}} \&$ that of $T_{2}=\frac{1}{t_{2}}$
$\therefore \tan \alpha=\frac{\frac{1}{\mathrm{t}_{1}}-\frac{1}{\mathrm{t}_{2}}}{1+\frac{1}{\mathrm{t}_{1} \mathrm{t}_{2}}}$
$\therefore \tan \alpha=\left|\frac{\mathrm{t}_{2}-\mathrm{t}_{1}}{1+\mathrm{t}_{1} \mathrm{t}_{2}}\right|$
$\therefore \tan ^{2} \alpha=\frac{\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}-4 \mathrm{t}_{1} \mathrm{t}_{2}}{\left(1+\mathrm{t}_{1} \mathrm{t}_{2}\right)^{2}}$
$\frac{\mathrm{x}}{\mathrm{a}}=\mathrm{t}_{1} \mathrm{t}_{2} \& \frac{\mathrm{y}}{\mathrm{a}}=\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
$\therefore \tan ^{2} \alpha=\frac{\left(\frac{y}{a}\right)^{2}-\frac{4 x}{a}}{\left(1+\frac{x}{a}\right)^{2}}$
$\tan ^{2} \alpha=\frac{\mathrm{y}^{2}-4 \mathrm{ax}}{(\mathrm{x}+\mathrm{a})^{2}}$
$\therefore(\mathrm{x}+\mathrm{a})^{2} \sin ^{2} \alpha=\cos ^{2} \alpha\left(y^{2}-4 a \mathrm{x}\right)$
Sol 4: Let $y=m x+\frac{a}{m}$ be tangent to
$y^{2}=4 a x$ the tangent to $x^{2}=4 b y$ is
$y=m_{1} x-b m_{1}^{2}$ where m_{1} is slope of tangent $m_{1} m=-1$
$\Rightarrow \mathrm{m}_{1}=-\frac{1}{\mathrm{~m}}$
$\therefore \mathrm{y}=-\frac{1}{\mathrm{~m}} \mathrm{x}-\frac{\mathrm{a}}{\mathrm{m}^{2}}$
$\Rightarrow m^{2} y+m x+b=0 \& m^{2} x-m y+a=0$
both have a common root
$\therefore\left(c_{1} a_{2}-a_{2} c_{1}\right)^{2}=\left(b_{1} c_{2}-b_{2} c_{1}\right)\left(a_{1} b_{2}-a_{2} b_{1}\right)$
$\Rightarrow(a y-b x)^{2}=(a x+b y)\left(-y^{2}-x^{2}\right)$
$\therefore\left(x^{2}+y^{2}\right)(a x+b y)+(a y-b x)^{2}=0$
is the locus of (h, k)
Sol 5: For a point $\left(a t_{1}^{2}, 2 a t_{1}\right)$ the equation of normal is $y=-t x+2 a t+a t^{3}$
\therefore Interception axis $=\left(2 a+a t^{2}, 0\right)$
$\therefore \mathrm{M}=(\mathrm{a}+\mathrm{at}, \mathrm{at})=(\mathrm{x}, \mathrm{y})$
$\therefore x=\frac{a+y^{2}}{a}$
$\therefore y^{2}=a(x-a)$
Vertex is ($\mathrm{a}, 0$) and latus rectum $=\frac{\mathrm{a}}{4} \times 4=\mathrm{a}$
Sol 6: The equation of normals is $y=m x-2 a m-a m^{3}$ $P(h, k)$ satisfies it
$\therefore \mathrm{am}^{3}+\mathrm{m}(2 a-\mathrm{h})+\mathrm{k}=0$
$m_{1}+m_{2}+m_{3}=0$
$m_{1} m_{2}=-1$
$m_{1} m_{2} m_{3}=-\frac{k}{a} \Rightarrow m_{3}=\frac{k}{a}$
$m_{1} m_{2}+m_{3}\left(m_{1}+m_{2}\right)=\frac{2 a-h}{a}$
$\Rightarrow \mathrm{m}_{1} \mathrm{~m}_{2}-\mathrm{m}_{3}^{2}=\frac{2 \mathrm{a}-\mathrm{h}}{\mathrm{a}} \Rightarrow-\left(1+\mathrm{m}_{3}^{2}\right)=\frac{2 \mathrm{a}-\mathrm{h}}{\mathrm{a}}$
$\Rightarrow 1+\frac{k^{2}}{a^{2}}=\frac{h-2 a}{a} \Rightarrow k^{2}=a(h-3 a)$ or $y^{2}=a(x-3 a)$
Sol 7: Let $\mathrm{P}=\left(\mathrm{at}_{1}^{2}, 2 \mathrm{at} \mathrm{t}_{1}\right)$
$R=\left(a t_{0}^{2}, 2 a t_{0}\right)$
$\mathrm{Q}=\left(\mathrm{at}{ }_{0}^{2}, 2 \mathrm{at}{ }_{0}\right)$
$\therefore \frac{2 a\left(\mathrm{t}_{1}-\mathrm{t}_{0}\right)}{\mathrm{a}\left(\mathrm{t}_{1}^{2}-\mathrm{t}_{0}^{2}\right)} \times \frac{2 \mathrm{a}\left(\mathrm{t}_{2}-\mathrm{t}_{0}\right)}{\mathrm{a}\left(\mathrm{t}_{2}^{2}-\mathrm{t}_{0}^{2}\right)}=-1$
$\frac{4}{\left(t_{1}+t_{0}\right)}\left(\mathrm{t}_{2}+\mathrm{t}_{0}\right)=-1$
The equation of chord PQ is $\frac{y-2 a t_{1}}{x-a t_{1}^{2}}=\frac{2}{t_{1}+t_{2}}$

$$
\begin{aligned}
& t_{2}=-t_{0}-\frac{4}{t_{1}-t_{0}} \\
& \therefore y-2 a t_{1}=\frac{2\left(x-a t_{1}^{2}\right)}{t_{1}-t_{0}-\frac{4}{t_{1}+t_{0}}} \\
& \therefore\left(y-2 a t_{1}\right)\left(t_{1}^{2}-t_{0}^{2}-4\right)=2\left(t_{1}+t_{0}\right)\left(x-a t_{1}^{2}\right) \\
& \therefore \mathrm{t}_{1}^{2} y-\mathrm{t}_{0}^{2} y-4 y-2 a t_{1}^{3}+2 a \mathrm{t}_{1} \mathrm{t}_{0}^{2}+8 \mathrm{at} \mathrm{t}_{1} \\
& =2\left(t_{1} x-a t_{1}^{3}+t_{0} x-a t_{1}^{2} t_{0}\right) \\
& \therefore \mathrm{t}_{1}^{2} y-\mathrm{t}_{0}^{2} y-4 y+2 a t_{1} \mathrm{t}_{0}^{2}+8 a t_{1} \\
& =2 \mathrm{t}_{1} \mathrm{x}+2 \mathrm{t}_{0} \mathrm{x}-2 \mathrm{at}_{1}^{2} \mathrm{t}_{0} \\
& t_{1}^{2} y+2 a t_{1} t_{0}\left(t_{1}+t_{0}\right)+8 a t_{1}-2 t_{1} x \\
& =t_{0}^{2} y+4 y+2 t_{0} x \\
& \therefore \mathrm{t}_{1}\left(\mathrm{t}_{1} \mathrm{y}+2 \mathrm{a} \mathrm{t}_{0} \mathrm{t}_{1}+2 a \mathrm{t}_{0}^{2}+8 \mathrm{a}-2 \mathrm{a}\right) \\
& =\mathrm{t}_{0}^{2} \mathrm{y}+4 \mathrm{y}+2 \mathrm{t}_{0} \mathrm{x}
\end{aligned}
$$

\therefore It passes through intersection if $2 \mathrm{t}_{0} \mathrm{x}+4 \mathrm{y}+\mathrm{t}_{0}^{2} \mathrm{y}=0$ $\mathrm{t}_{1} \mathrm{y}-2 \mathrm{x}+2 \mathrm{at}_{0} \mathrm{t}_{1}+2 \mathrm{at}_{0}^{2}+8 \mathrm{a}=0$
\therefore The point of intersection which is the required fixed point $\left(a\left(t_{0}^{2}+4\right),-2 a t_{0}\right)$

Sol 8: Equation of tangent is $y=m x+\frac{a}{m}$
Equation of \perp line through origin is
$y=-\frac{1}{m} x$
$\therefore y^{2}=4 a(-m y)$
$\therefore \mathrm{y}=-4 \mathrm{am}$ is the y -coordinate of $\mathrm{Q} .8 \mathrm{x}=4 \mathrm{am}^{2}$
$\therefore \mathrm{OQ}=\sqrt{(4 \mathrm{am})^{2}+\left(4 \mathrm{am}^{2}\right)^{2}}=4 \mathrm{am} \sqrt{1+\mathrm{m}^{2}}$
$\mathrm{OP}=\frac{\mathrm{a}}{\mathrm{m} \sqrt{1+\mathrm{m}^{2}}}(\perp$ distance of $(0,0)$ from line
$\left.y=m x+\frac{a}{m}\right)$
$\therefore O P \times O Q=4 a^{2}=$ constant

Sol 9: $\mathrm{P}=\left(2(3)^{2}, 4(3)\right)$
\therefore Parameter $\left(\mathrm{t}_{1}\right)=3$
$\mathrm{t}_{2}=-\mathrm{t}_{1}-\frac{2}{\mathrm{t}_{1}}=-3-\frac{2}{3}=-\frac{11}{3}$
$\therefore Q=\left(\frac{2 \times 121}{9}, \frac{-44}{3}\right)$
$\therefore \mathrm{PQ}=\sqrt{\left(18-\frac{2 \times|2|}{9}\right)^{2}+\left(12+\frac{44}{3}\right)^{2}}$
$=\frac{1}{9} \sqrt{(80)^{2}+9(80)^{2}}=\frac{80}{9} \sqrt{10}$
$\therefore 9 P Q=80 \sqrt{10}$
Sol 10: $O=(0,0), L=(2 a, a)$
Let $\mathrm{H}=(\mathrm{h}, 0)$
$\therefore \frac{a}{2 a-h} \times \frac{1}{2}=-1 \Rightarrow a=-4 a+h$
$\therefore h=5 a$
$\therefore \mathrm{H}=(5 \mathrm{a}, 0)$
\therefore Length of double ordinate $=2 \sqrt{4 a \times 5 a}=4 a \sqrt{5}$
Sol 11: $y^{2}=4 a x$
Equation of normal at (at2, 2at) is
$y=-t x+2 a t+a t^{3}$
It meets $\mathrm{y}=0$ at G
$\therefore G=\left(2 a+a t^{2}, 0\right)$
$Q G=\sqrt{4 a x}=\sqrt{4 a\left(2 a+a t^{2}\right)}$
$P G=\sqrt{\left(a t^{2}-\left(2 a+a t^{2}\right)\right)^{2}+(2 a t)^{2}}$
$\therefore Q G G^{2}-P G^{2}=4 a(2 a+a t)^{2}-\left(4 a^{2}+4 a^{2} t^{2}\right)$
$=8 a^{2}-4 a^{2}=4 a^{2}$

Sol 12: The equation of tangent to $y^{2}=4 a x$ of slope
m is $y=m x+\frac{a}{m}$
$\therefore \mathrm{xm}^{2}-\mathrm{my}+\mathrm{a}=0$
The equation of normal to $x^{2}=4$ by of slope m
is $y=m x+2 b+\frac{b}{m^{2}}$
$\therefore \mathrm{m}^{3} \mathrm{x}+(2 \mathrm{~b}-\mathrm{y}) \mathrm{m}^{2}+\mathrm{b}=0$
Let the point (x, y) satisfy both the equation.
\therefore From (i) $m_{1} m_{2}=\frac{a}{x} \& m_{1}+m_{2}=\frac{y}{x}$
These two tangents are normal to $x^{2}=4$ by
$\therefore \mathrm{m}_{1}, \mathrm{~m}_{2}$ satisfy (ii)
$\therefore \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}=-\frac{\mathrm{b}}{\mathrm{x}} \Rightarrow \mathrm{m}_{3}=-\frac{\mathrm{b}}{\mathrm{a}}$
$m_{1}+m_{2}+m_{3}=\frac{y-2 b}{x} \Rightarrow \frac{y}{x}+m_{3}=\frac{y}{x}-\frac{2 b}{x}$
$\Rightarrow m_{3}=-\frac{2 b}{x} \& m_{1} m_{2}+m_{3}\left(m_{1}+m_{2}\right)=0$
$\therefore m_{3}=-\frac{a}{y} \Rightarrow-\frac{b}{a}=-\frac{2 b}{x}=-\frac{a}{y}$
$\Rightarrow \mathrm{x}=2 \mathrm{ay}=\frac{\mathrm{a}^{2}}{\mathrm{~b}}$
Now m_{1}, m_{2} are distinct \& real
$\therefore \mathrm{D}$ of equation (i) >0
$\therefore y^{2}-4 a x>0 \Rightarrow \frac{a^{4}}{b^{2}}>8 a^{2} \Rightarrow \mathrm{a}^{2}>8 \mathrm{~b}+2$

Sol 13: Let point be $P\left(a t^{2}, 2 a t\right)$
The directrix is $x=-a$
The equation of tangent is $y=\frac{1}{x} x+$ at
\therefore The point where is meets the directrix is
$Q=\left(-a, a\left(t-\frac{1}{t}\right)\right)$
$\left.M=(x, y)=\frac{\left(a\left(t^{2}-1\right)\right)}{2}, \frac{a}{2}\left(3 t-\frac{1}{t}\right)\right]$ midpoint
$t^{2}=\frac{2 x+1}{a} 2 y t=a\left(3 t^{2}-1\right)$
$\therefore 4 y^{2} \times\left(\frac{2 x+a}{a}\right)=a^{2}\left(3 \times\left(\frac{2 x}{a}+1\right)-1\right)^{2}$
$\therefore 4 y^{2} \frac{(2 x+a)}{a}=2^{2}(3 x+a)^{2}$
$\therefore y^{2}(2 x+a)=a(3 x+a)^{2}$

Sol 14: Parabola $y^{2}=12 x$
$a=3$
$\therefore P=(3,6) \therefore t=1$
$\therefore \mathrm{t}_{2}$ to the other point $=-\mathrm{t}-\frac{2}{\mathrm{t}}=-3$
$\therefore \mathrm{Q}=\left(\mathrm{a}(-3)^{2}, 2 \mathrm{a}(-3)\right)=(27,-18)$
\therefore Equation of circle with PQ as diameter is
$(x-3)(x-27)+(y-6)(y+18)=0$
$\therefore x^{2}+y^{2}-30 x+12 y-27=0$

Sol 15: Let upper end of latus rectum be P \&
$Q=(4 a, 4 a)$
$\therefore P=(a, 2 a) \therefore t=1$
$\&$ for $Q(4 a, 4 a) \therefore t_{2}=2$
\therefore let t_{3} be the other end of normal for P
$\therefore \mathrm{t}_{3}=-1-\frac{2}{1}=-3$

And let t_{4} be the other end of normal for Q
$\therefore \mathrm{t}_{4}=-2-\frac{2}{2}=-3$
$\therefore \mathrm{t}_{3}=\mathrm{t}_{4}$
\therefore The both the normals intersect on parabola it self

Sol 16: Let O be vertex $\& P$ be ($\left.\mathrm{at}^{2}, 2 \mathrm{at}\right)$
\therefore Slope of OP is $\frac{2}{t}$
Let Q be $\left(\mathrm{at}_{2}^{2}, 2 \mathrm{at}_{2}\right)$
$\mathrm{OQ} \perp \mathrm{OP} \Rightarrow \frac{2}{\mathrm{t}} \times \frac{2}{\mathrm{t}_{2}}=-1 \Rightarrow \mathrm{t}_{2}=-\frac{4}{\mathrm{t}}$
$\mathrm{Q}=\left(\frac{16 \mathrm{a}}{\mathrm{t}^{2}},-\frac{8 \mathrm{a}}{\mathrm{t}}\right)$
Now let R be to other end of rectangle (x, y) since it is a rectangle \& OP $\perp \mathrm{OQ}$
\therefore Midpoint of $\mathrm{R} \& \mathrm{O}=$ midpoint of $\mathrm{P} \& \mathrm{Q}$
$\therefore\left(\frac{\mathrm{x}}{2}, \frac{\mathrm{y}}{2}\right)=\left(\frac{a \mathrm{t}^{2}+\frac{16 \mathrm{a}}{\mathrm{t}^{2}}}{2}, \frac{2 \mathrm{a}\left(\mathrm{t}-\frac{4}{\mathrm{t}}\right)}{2}\right)$
$\therefore x=a\left(\left(t-\frac{4}{t}\right)^{2}+8\right) ; \quad y=2 a\left(t-\frac{4}{t}\right)$
$\therefore x=a\left(\frac{y^{2}}{4 a^{2}}+8\right) ; \quad \therefore y^{2}=\frac{(x-8 a) \times 4 a^{2}}{a}$
$\therefore y^{2}=4 a(x-8 a)$ is the locus of other end

Sol 17: The equation of normals is $y=m x-2 a m-a m^{3}$
$\Rightarrow \mathrm{a}=1 \&(15,12)$ lies on it
$\therefore 12=15 m-2 m-m^{3}$
$\therefore \mathrm{m}^{3}-13 \mathrm{~m}+12=0$
$(m-1)\left(m^{2}+m-12\right)=0$
$(m-1)(m+4)(m-3)=0$
$\therefore 1,-4,3$ are three possible normals
\therefore Equation is $(y-12)=(x-15) \Rightarrow y=x-3$
and $(y-12)=3(x-15) \Rightarrow y=3 x-33$
and $(y-12)=-4(x-15) \Rightarrow 4 x+y-72=0$

Sol 18:

Centre of circle $=(0,0)$ diameter $=2 r=\frac{3}{4} \times 4 a$
$\therefore r=\frac{3 a}{2}$
\therefore Equation of circle is $\mathrm{x}^{2}+\mathrm{y}^{2}=\left(\frac{3 \mathrm{a}}{2}\right)^{2}$
$\Rightarrow 4 \mathrm{x}^{2}+16 \mathrm{ax}-9 \mathrm{a}^{2}=0$
$\Rightarrow 4 \mathrm{x}^{2}+18 \mathrm{ax}-2 \mathrm{ax}-9 \mathrm{a}^{2}=0$
$\Rightarrow(2 x-a)(2 x+9 a)=0$
But $x=-\frac{9 a}{2}$ is not possible as y becomes imaginary
$\therefore x=\frac{a}{2}$ is the abscissa of the two points of intersection
\therefore The common chord bisects the line joining Vertex.

Sol 19: Let $P\left(a t_{1}^{2}, 2 a t_{1}\right) \& Q\left(a t_{2}^{2}, 2 a t_{2}\right)$
Let R be $\left(a T^{2}, 2 a T\right)$ on the parabola $y^{2}=4 a x$
$\mathrm{T}=-\mathrm{t}_{1}-\frac{2}{\mathrm{t}_{1}}=-\mathrm{t}_{2}-\frac{2}{\mathrm{t}_{2}} \Rightarrow \mathrm{t}_{1} \mathrm{t}_{2}=2$
Tangents at P and Q intersect at $\mathrm{T}\left(\mathrm{at}_{1} \mathrm{t}_{2^{\prime}} \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right)$
$T\left(2 a, a\left(t_{1}+t_{2}\right)\right)$
Coordinates of R the point of intersection, are
$\left(2 a+a\left(t_{1}^{2}+t_{2}^{2}+t_{1} t_{2}\right),-a t_{1} t_{2}\left(t_{1}+t_{2}\right)\right)$
$\equiv\left(4 \mathrm{a}+\mathrm{a}\left(\mathrm{t}_{1}^{2}+\mathrm{t}_{2}^{2}\right), 2 \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right)$
$\Rightarrow \angle \mathrm{TPR}=\Rightarrow \angle \mathrm{TQR}=90^{\circ} \Rightarrow \angle \mathrm{TPR}+\angle \mathrm{TQR}=180^{\circ}$
\Rightarrow Quadrilateral TPQR is a cyclic quadrilateral \& the centre of circle lies on the midpoint of TR.

Let midpoint be M (h, k)
$\therefore 2 h=2 a+4 a+a\left(t_{1}{ }^{2}+t_{2}{ }^{2}\right)$
$\frac{2 h-6 a}{a}=\left(t_{1}+t_{2}{ }^{2}\right)-2 t_{1} t_{2}$
$\frac{2 h-2 a}{a}=\left(t_{1}+t_{2}\right)^{2}\left(\because t_{1} t_{2}=2\right)$
$2 \mathrm{k}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)-2 \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
$\frac{2 k}{a}=\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)$
$\therefore\left(\frac{2 h-2 a}{9}\right)=\left(\frac{-2 k}{a}\right)^{2}$
$\therefore 2 R^{2}=a(h-a)$
\therefore Locus of $\mathrm{M}(\mathrm{h}, \mathrm{k})$ is $2 \mathrm{y}^{2}=\mathrm{a}(\mathrm{x}-\mathrm{a})$

Sol 20: The focus of $x^{2}=4 y$ is $(0,1)$
\therefore Tangent to parabola at $(6,9)$ is $6 x=2(y+9)$
$\therefore 3 x-y-9=0$
\therefore Equation of normal is
$(y-9)=-\frac{1}{3}(x-6) \Rightarrow x+3 y-33=0$
Centre lies on it $\quad \therefore g+3 f+33=0$
$(-g-6)^{2}+(-t-9)^{2}=(-g-0)^{2}+(-f-1)^{2}$
$\therefore 12 g+36+18+81=2 f+1$
$\therefore 12 g+16 f+116=0$
$\Rightarrow 3 \mathrm{~g}+4 \mathrm{f}+29=0$
Solving we get $\mathrm{g}=9 \& \mathrm{f}=-14$
$\therefore r=\sqrt{(-g)^{2}+(-f-1)^{2}}=\sqrt{g^{2}+13^{2}}=\sqrt{250}$
$\therefore C=g^{2}+f^{2}-r^{2}=27$
\therefore Equation of circle is $x^{2}+y^{2}+18 x-28 y+27=0$

Sol 21: Let $P\left(a t_{1}^{2}, 2 a t_{1}\right)$
since Q is the other end of the normal from P
$\mathrm{t}_{2}=-\mathrm{t}_{1}-\frac{2}{\mathrm{t}_{1}}$
$Q=\left(a\left(t_{1}+\frac{2}{t_{1}}\right)^{2},-2 a\left(t_{1}+\frac{2}{t_{1}}\right)\right]$
$\mathrm{T}=\left(a \mathrm{t}_{1} \times\left(-\mathrm{t}_{1}-\frac{2}{\mathrm{t}_{1}}\right), \mathrm{a}\left(\frac{-2}{\mathrm{t}_{1}}\right)\right)$
\therefore The x-coordinate of midpoint of $T \& P$ is
$x=-\frac{a t_{1}^{2}-2 a+a t_{1}^{2}}{2}=-a$
$\therefore \mathrm{TP}$ is bisected by directrix

Sol 22: Let $P=\left(a t_{1}^{2}, 2 a t_{1}\right)$
The other end of normal chord $Q=\left(a t_{2}^{2}, 2 a t_{2}\right)$
$\therefore \mathrm{t}_{2}=-\mathrm{t}_{1}-\frac{2}{\mathrm{t}_{1}}$
$\therefore Q=\left(a\left(t_{1}+\frac{2}{t_{1}}\right)^{2},-2 a\left(t_{1}+\frac{2}{t_{1}}\right)\right]$
Let $M(x, y)$ be midpoint of $P \& Q$
$\therefore y=\frac{-2 a}{t_{1}} \quad \therefore t_{1}=-\frac{2 a}{y}$
$\Rightarrow 2 x=a \times\left(\frac{-2 a}{y}\right)^{2}+a\left(\frac{-2 a}{y}-\frac{y}{a}\right)^{2}$
$\therefore 2 x=\frac{4 a^{3}}{y^{2}}+\frac{4 a^{3}}{y^{2}}+\frac{y^{2}}{a}+4 a$
$\therefore x-2 a=\frac{4 a^{3}}{y^{2}}+\frac{y^{2}}{2 a}$
Sol 23: Let $A=\left(a t_{1}^{2}, 2 a t_{1}\right) a=2$
$B=\left(a t_{2}^{2}, 2 a t_{2}\right)$
Tangent at A is $y=\frac{1}{t_{1}} x+\mathrm{at}_{1}$
Tangent at B is $y=\frac{1}{t_{2}} x+a t_{2}$
The y-coordinate of point of intersection of $A \&$ tangent at vertex $(x=0)$ is
$\mathrm{y}_{1}=\left(2 \mathrm{t}_{1}\right) ; \quad \mathrm{y}_{2}=2 \mathrm{t}_{2}$
$\therefore P Q=2\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)=4$
$\therefore\left|\mathrm{t}_{1}-\mathrm{t}_{2}\right|=2$
\& point of intersect is $(x, y)=\left(2 t_{1} t_{2}, 2\left(t_{1}+t_{2}\right)\right.$
$\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}-4 \mathrm{t}_{1} \mathrm{t}_{2}=\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)^{2}$
$\therefore \frac{y^{2}}{4}-2 x=4$
$\therefore y^{2}-8 x=16$
$\therefore y^{2}=8(x+2)$ is the locus of point of intersection

Sol 24: Let m be the slope of $1^{\text {st }}$ line
$\therefore-\frac{1}{m}$ is the slope of the other line equation of tangents is $y=m x+\frac{a}{m}$
and $y=-\frac{1}{m} x-a m$
$\Rightarrow \mathrm{T}(-\mathrm{a}, 2 \mathrm{am}) \& \mathrm{~T}^{\prime}\left(-\mathrm{a}, \frac{-\mathrm{a}}{\mathrm{m}}\right)$
\therefore Point of intersection of tangents
$M=\left(-a, \frac{a}{m}-a m\right)$
One line passing through $(a, 0)$ with slope m is
$(y)=m(x-a)$
And \perp line is $(y)=-\frac{1}{m}(x-a)$
$\therefore \mathrm{T}=(-\mathrm{a},-2 \mathrm{am})$
$\mathrm{T}^{\prime}=\left(-\mathrm{a}, \frac{2 \mathrm{a}}{\mathrm{m}}\right)$
\therefore Midpoint of T and T^{\prime} is
$A=\left(-a, \frac{a}{m}-a m\right)$
\therefore Point of intersection of tangents is the midpoint of T and T^{\prime}

Sol 25: Let $P=\left(a t_{1}^{2}, 2 a t_{1}\right)$
$\mathrm{Q}=\left(\mathrm{at}_{2}^{2}, 2 \mathrm{at}{ }_{2}\right)$
Slope of PQ $=\frac{2 a\left(t_{2}-t_{1}\right)}{a\left(t_{2}^{2}-t_{1}^{2}\right)}=\frac{2}{t_{1}+t_{2}}=1$
$\therefore \mathrm{t}_{1}+\mathrm{t}_{2}=2$
Point of intersection of points with parameter $t_{1} \& t_{2}$ is
$\left(2 a+a\left(t_{1}^{2}+t_{2}^{2}+t_{12}\right),-a t_{1} t_{2}\left(t_{1}+t_{2}\right)\right)$
$\therefore \mathrm{x}=2 \mathrm{a}+\mathrm{a}\left(\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}-\mathrm{t}_{1} \mathrm{t}_{2}\right)$
$y=-a\left(t_{1}+t_{2}\right) \times t_{1} t_{2}$
$\therefore \mathrm{x} \times\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)-\mathrm{y}=2 \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)+\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}=0$
$2 x-y=2 a \times 2+a \times 8$
Putting $\mathrm{a}=1$
$\therefore 2 x-y=12$ is the locus of point of intersection of normals.

Sol 26: Let $A\left(a m_{1}^{2}, 2 a m_{1}\right), B\left(a m_{2}^{2},-2 a m_{2}\right)$ and
$C\left(\mathrm{am}_{3}^{2},-2 \mathrm{am}_{3}\right)$ be points on parabola $y^{2}=4 a x$
Let point of intersection of normals be (h, k) then
$a m^{3}+(2 a-h) m+k=0$
$m_{1}+m_{2}+m_{3}=0$
$m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}=\frac{(2 a-h)}{a}$
$m_{1} m_{2} m_{3}=-\frac{k}{a}$
Let equation of circle through $A B C$ be
$x^{2}+y^{2}+2 g x+2 f y+c=0$
The point $\left(\mathrm{am}^{2},-2 \mathrm{am}\right)$ lies on it
$a^{2} m^{4}+\left(4 a^{2}+2 a g\right) m^{2}-4 a f m+c=0$
$\therefore \mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{4}=0$
\therefore From (i)
$m_{4}=0-0=0$
$\therefore(0,0)$ two lies on circle
$\therefore \mathrm{c}=0$
From (4) $a^{2} m^{4}+\left(4 a^{2}+2 a g\right) m^{2}-4 a f m=0$
$\Rightarrow \mathrm{am}^{3}+(4 \mathrm{a}+2 \mathrm{~g}) \mathrm{m}-4 \mathrm{f}=0$

Now, equation A \& 5 are identicals
$\therefore 1=\frac{4 a+2 g}{2 a-b}=-\frac{4 t}{k}$
$\therefore 2 g=-(2 a+h)$
$2 t=-\frac{k}{2}$
\therefore The equation of circle is $x^{2}+y^{2}-(2 a+h) x-\frac{k}{2} y=0$ or $2\left(x^{2}+y^{2}\right)-2(h+2 a) x-k y=0$

Sol 27: Let $P\left(a t_{1}^{2}, 2 a t_{1}\right)$ and Q be $\left(a t_{2}^{2}, 2 a t_{2}\right)$
Now chord PQ passes through A(a, 3a)
$\therefore \frac{2 a t_{2}-3 a}{a t_{2}^{2}-a}=\frac{2 a t_{1}-3 a}{a t_{1}^{2}-a}$
$\therefore \frac{2 \mathrm{t}_{2}-3}{\mathrm{t}_{2}^{2}-1}=\frac{2 \mathrm{t}_{1}-3}{\mathrm{t}_{1}^{2}-1}$
$2 \mathrm{t}_{1}^{2} \mathrm{t}_{2}+3 \mathrm{t}_{1}^{2}-2 \mathrm{t}_{1}+3=2 \mathrm{t}_{1} \mathrm{t}_{2}^{2}-3 \mathrm{t}_{2}^{2}-2 \mathrm{t}+3$
$\therefore 2 \mathrm{t}_{1} \mathrm{t}_{2}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)-3\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)\left(\mathrm{t}_{2}+\mathrm{t}_{1}\right)+2\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)=0$
$\therefore 2 \mathrm{t}_{1} \mathrm{t}_{2}-3\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)+2=0$
Point of intersection of tangent at $t_{1} t_{2}$ is
$\left(\mathrm{at}_{1} \mathrm{t}_{2^{\prime}} \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right)$
$\therefore \mathrm{x}=\mathrm{at}_{1} \mathrm{t}_{2}$ and $\mathrm{y}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
$\therefore 2 \frac{x}{a}-\frac{3 y}{a}+2=0$
$\therefore 2 x-3 y+2 a=0$ is the locus of point of intersection of tangent

Sol 28: Equation of tangent is
$y=m x+\frac{a}{m} \Rightarrow m x-y+\frac{a}{m}$
\therefore Midpoint of $P \& Q$ is foot of \perp of $(0,0)$ on the tangent let M be (x, y)
$\therefore \frac{x-0}{m}=\frac{y-0}{-1}=-\frac{\left(\frac{a}{m}\right)}{m^{2}+1}$
$\therefore x=-\frac{a}{m^{2}+1} y=\frac{a}{m\left(m^{2}+1\right)}$
$\therefore \mathrm{m}^{2}=-1-\frac{\mathrm{a}}{\mathrm{x}}$
$\therefore y^{2}=\frac{a^{2}}{-\left(1+\frac{a}{x}\right)\left(1-1-\frac{a}{x}\right)^{2}} \quad y^{2}=\frac{a^{2}}{-\frac{(x+a)}{x} \frac{a^{2}}{x^{2}}}$
$\therefore y^{2}(x+a)+x^{3}=0$
$\Rightarrow x\left(x^{2}+y^{2}\right)+a y^{2}=0$

Sol 29: Let P be $\left(a t_{1}^{2}, 2 a t_{1}\right) \& Q$ be $\left(a t_{2}^{2}, 2 a t_{2}\right)$
$\therefore \mathrm{OP} \perp \mathrm{OQ}$
$\Rightarrow \frac{2}{\mathrm{t}_{1}} \times \frac{2}{\mathrm{t}_{2}}=-1 \Rightarrow \mathrm{t}_{2}=-\frac{4}{\mathrm{t}_{1}}$
\therefore Equation of PQ is
$\frac{y-2 a t_{1}}{x-a t_{1}^{2}}=\frac{2\left(t_{2}-t_{1}\right)}{\left(t_{2}^{2}-t_{1}^{2}\right)}$
$\therefore \frac{y-2 a t_{1}}{x-a t_{1}^{2}}=\frac{2}{\left(t_{1}-\frac{4}{t_{1}}\right)}$
$\therefore\left(y-2 a t_{1}\right)\left(t_{1}^{2}-4\right)=2 t_{1}\left(x-a t_{1}^{2}\right)$
$\therefore \mathrm{t}_{1}^{2} \mathrm{y}-4 \mathrm{y}-2 a \mathrm{t}_{1}^{3}+8 a \mathrm{t}_{1}=2 \mathrm{t}_{1} \mathrm{x}-2 a \mathrm{t}_{1}^{3}$
$\therefore \mathrm{t}_{1}\left(\mathrm{t}_{1} \mathrm{y}+8 \mathrm{a}-2 \mathrm{x}\right)-4 \mathrm{y}=0$
\therefore The line passes through point of intersection of
$t_{1} y+8 a-2 x=0 \& y=0$
The point is $(4 a, 0)$
Let $M=(x, y)$ be midpoint
$\therefore(\mathrm{x}, \mathrm{y})=\frac{\mathrm{a}\left(\mathrm{t}_{1}^{2}+\mathrm{t}_{2}^{2}\right)}{2}, \frac{2 \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)}{2}$
$\left.2 x=a\left(t_{1}^{2}+t_{2}^{2}\right)=a\left(t_{1}+t_{2}\right)^{2}-2 t_{1} t_{2}\right)$
$\mathrm{t}_{1} \mathrm{t}_{2}=-4$
$\therefore 2 \mathrm{x}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}+8$
$y=a\left(t_{1}+t_{2}\right)$
$\therefore 2 x=a\left(\frac{y^{2}}{a^{2}}+8\right)$
$y^{2}=2 a x-8 a^{2}=2 a(x-4 a)$ is the locus of M.

Exercise 2

Single Correct Choice Type

Sol 1: (C) Let equation of tangent be
$y=m x+\frac{a}{m}$ directrix is $x=-a \&$ latus rectum is
$x=a ; S=(a, 0)$
$U=\left(-a, a\left(\frac{1}{m}-m\right)\right) ; V=\left(a, a\left(m+\frac{1}{m}\right)\right)$
$S U=\sqrt{4 a^{2}+a^{2}\left(m^{2}-2+\frac{1}{m^{2}}\right)}=m+\frac{1}{m}$
$S V=m+\frac{1}{m}$
\therefore It is always an is isosceles triangle
Angle between SU \& SV is not always 90° as slope of SV $=\infty$ and slope of SU depends on m
\therefore It is just an isosceles triangle
Sol 2: (B) Let points be $\left(a t_{1}^{2}, 2 a t_{1}\right) \&\left(a t_{2}^{2}, 2 a t_{2}\right)$
$\therefore\left(\mathrm{a}\left(\mathrm{t}_{1}^{2}-1\right)\right)^{2}+4 \mathrm{a}^{2} \mathrm{t}_{1}^{2}=16$
$\&\left(a\left(t_{2}^{2}-1\right)\right)^{2}+4 a t_{2}^{2}=81$
$\therefore\left(a t_{1}^{2}+a\right)^{2}=16$
$\therefore a t_{1}^{2}+a= \pm 4$
And $a t_{2}^{2}+a= \pm 9$
The point of intersection is $\left(a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right)$
$\therefore P^{2}=a^{2}\left(\mathrm{t}_{1} \mathrm{t}_{2}-1\right)^{2}+\mathrm{a}^{2}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}$
$=a^{2}\left(t_{1}^{2} t_{2}^{2}+t_{1}^{2} t_{2}^{2}+1\right)=1 \times 2=36$

Sol 3: (A) Let (h, k) be a point on line $(2 x+y=4)$
\therefore Chord of contact is ky $=-2(x+h)$
$\therefore 2 x+k y=-2 h \&(h, k)$ also satisfy
$2 h+k=4 \& 2 h+k y=-2 x$
\therefore It passes through $\mathrm{y}=1 \& \mathrm{x}=-2$
$\therefore(-2,1)$

Sol 4: (D) Parabola is $y^{2}=a x$
$\therefore a^{\prime}=\frac{a}{4}$
Tangent is $y=m x+\frac{a}{4 m}$
or $m x-y+\frac{a}{4 m}=0$
\therefore Foot of \perp from $(0,0)$ is (x, y)
$\therefore \frac{x-0}{m}=\frac{y-0}{-1}=-\left(\frac{a}{4 m\left(m^{2}+1\right)}\right)$
$\therefore x=\frac{-a}{4\left(m^{2}+1\right)}$ and $y=\frac{a}{4 m\left(m^{2}+1\right)}$
$\Rightarrow \mathrm{m}=-\frac{\mathrm{x}}{\mathrm{y}} \Rightarrow \mathrm{x}=\frac{-\mathrm{ay}^{2}}{4\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}$
$\therefore 4 x\left(x^{2}+y^{2}\right)+a y^{2}=0$

Sol 5: (D) $(y+2)^{2}=6(x+1)$
let $y=Y-2 \& \quad x=X-1$
$\therefore \mathrm{Y}^{2}=6 \mathrm{X}$
The locus of \perp tangents is $X=-a=-\frac{3}{2}$
$\therefore x+1=-\frac{3}{2} \Rightarrow 2 x+5=0$

Sol 6: (C) The tangent at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to $\mathrm{y}^{2}=4 \mathrm{ax}$
$\Rightarrow \mathrm{yy}_{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_{1}\right)$
$\Rightarrow 2 \mathrm{ax}^{-\mathrm{yy}_{1}+2 \mathrm{ax}_{1}=0}$
Let (h, k) be midpoint
\therefore Locus of chord to $\mathrm{y}^{2}=4 \mathrm{a}(\mathrm{x}+\mathrm{b})$ with $\mathrm{M}(\mathrm{h}, \mathrm{k})$ is
$y k-2 a(x+h)-4 a b=k^{2}-4 a h-4 a b$
$\Rightarrow \mathrm{ky}-2 \mathrm{ax}=\mathrm{k}^{2}-2 \mathrm{ah}$
or $2 a x-k y+k^{2}-2 a h=0$
$\therefore 2 a \mathrm{x}-\mathrm{yy}_{1}+2 \mathrm{ax}_{1}=0$
And $2 a x-k y+k^{2}-2 a h=0$ represent the same line
$\therefore \mathrm{k}=\mathrm{y}_{1} \& \mathrm{k}^{2}-2 \mathrm{ah}=2 \mathrm{ax}_{1}$
$2 \mathrm{ah}=\mathrm{y}_{1}^{2}-2 \mathrm{ax}_{1}$
$y_{1}^{2}-4 a x_{1}=0 \Rightarrow y_{1}^{2}-2 a x_{1}=2 a x_{1}$
$\Rightarrow 2 \mathrm{ah}=2 \mathrm{ax}_{1} \Rightarrow \mathrm{~h}=\mathrm{x}_{1}$

Sol 7: (C) For closest points normal to parabola should be normal to circle equation of normal at (at ${ }^{2}, 2 a t$) is
$y=-t x+2 a t+a t^{3}$
$a=1$
$\therefore \mathrm{y}=-\mathrm{tx}+2 \mathrm{t}+\mathrm{t}^{3}$ is equation of normal it should pass through $(0,2)$
$\therefore 12=2 \mathrm{t}+\mathrm{t}^{3} \Rightarrow \mathrm{t}^{3}+2 \mathrm{t}-12=0$
$(t-2)\left(t^{2}+2 t+6\right)=0$
$t=2$ is only possible solution
\therefore The point on parabola closest to the circle is $(4,4)$

Sol 8: (C) $P=\left(a t^{2}, 2 a t\right)$
\therefore Equation of focal chord is $y=\frac{2 a t}{a\left(t^{2}-1\right)}(x-a)$
$2 t x-\left(t^{2}-1\right) y-2 a t=0$
The distance from $(0,0)$ is
$\frac{2 t}{\sqrt{\left(t^{2}+1\right)^{2}}}=P$
$\therefore \frac{|2 a t|}{t^{2}+1}=P$

Now length of focal chord is $a\left(t+\frac{1}{t}\right)^{2}$
$\therefore\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)=\left|\frac{2 \mathrm{a}}{\mathrm{P}}\right|$
$\therefore L_{f}=a \times \frac{4 a^{2}}{P^{2}}=\frac{4 a^{3}}{P^{2}}$

Sol 9: (B) Let the points be $A\left(a m_{1}^{2},-2 a m_{1}\right)$
$\& B=\left(a m_{2}^{2}-2 a m_{2}\right)$
$m_{1} m_{2}=-1 \Rightarrow m_{2}=-\frac{1}{m}$
The line joining $A \& B$ is
$\left(y+2 a m_{1}\right)=\frac{2 a\left(m_{2}-m_{1}\right)}{a\left(m_{1}-m_{2}\right)\left(m_{1}+m_{2}\right)}\left(x-a m_{1}^{2}\right)$
$y+2 a m_{1}=\frac{-2 a m_{1}}{m_{1}^{2}-1}\left(x-a m_{1}^{2}\right)$
$\therefore \mathrm{ym}_{1}^{2}-\mathrm{y}+2 \mathrm{am}_{1}^{3}-2 \mathrm{am}_{1}=-2 \mathrm{~m}_{1} \mathrm{x}+2 \mathrm{am}_{1}^{3}$
$\therefore y+m_{1}\left(-m_{1} y+2 a-2 x\right)=0$
\therefore It passes through intersection of $y=0 \&$
$-m_{1} y+2 a-2 x=0$
\therefore It always passes through $(\mathrm{a}, 0)$

Sol 10: (D) Let (h, k) be the point
The equation of normals through (h, k) is
$\therefore \mathrm{k}=\mathrm{mh}-2 \mathrm{am}-\mathrm{am}^{3}$
$\therefore \mathrm{am}^{3}+(2 a-h) m+k=0$
θ_{1} and θ_{2} are complimentary
$\therefore \tan \left(\theta_{1}+\theta_{2}\right)=\tan \left(90^{\circ}\right)$
$\therefore \mathrm{m}_{1} \mathrm{~m}_{2}=1$
$m_{1}+m_{2}+m_{3}=0$
$m_{1} m_{2}+m_{3}\left(m_{1}+m_{2}\right)=\frac{2 a-h}{a}$
$m_{1} m_{2} m_{3}=-\frac{k}{a} \Rightarrow m_{3}=-\frac{k}{a}$
$\therefore 1-\mathrm{m}_{3}^{2}=\frac{2 \mathrm{a}-\mathrm{h}}{\mathrm{a}}$
$\therefore y^{2}+2 a^{2}-a x=a^{2}$
$\therefore y^{2}=a x-a^{2} \Rightarrow y^{2}=a(x-a)$ is locus of P

Sol 11: (A) Let the tangent to parabola be
$x=m y-\frac{a}{m}$ or $m x-m^{2} y+a=0$

Let midpoint of A, B be (h, k)
\therefore Equation of chord through (h, k) is
$x h-2 b(y+k)=h^{2}-4 b k$
$h x-2 b y+2 b k-h^{2}=0$
Equation (i) and (ii) are the same lines
$\therefore \frac{\mathrm{m}}{\mathrm{h}}=\frac{\mathrm{m}^{2}}{2 \mathrm{~b}}=\frac{\mathrm{a}}{2 \mathrm{bk}-\mathrm{h}^{2}}$
$\therefore \frac{2 a b}{2 b k-h^{2}}=\frac{(a b)^{2}}{\left(2 b k-h^{2}\right)^{2}}$
$\therefore 2 b\left(2 b y-x^{2}\right)=a x^{2}$
$\therefore x^{2}(a+2 b)=4 b^{2} y$ is locus of M

Sol 12: (A) $4 y^{2}-4 y+1=16 x-24$
$(2 y-1)^{2}=16\left(x-\frac{3}{2}\right) \Rightarrow\left(y-\frac{1}{2}\right)^{2}=4\left(x-\frac{3}{2}\right)$
let $x=X+\frac{3}{2}$ and $y=Y+\frac{1}{2}$
$\therefore Y^{2}=4 a X \quad \Rightarrow a=1$
The circle cuts the axis at $(-a, 0)$ and $(3 a, 0)$
\therefore The points in original system are $\left(\frac{1}{2}, \frac{1}{2}\right) \&\left(\frac{9}{2}, \frac{1}{2}\right)$
Sol 13: (B) $m=1$
\therefore Equation of tangent is $\mathrm{y}=\mathrm{x}+\mathrm{A}$ and equation of normal is
$y=m x-2 A m-A m^{3}$
$\mathrm{m}=1 \quad \therefore \mathrm{y}=\mathrm{x}-3 \mathrm{~A}$
$\therefore \perp$ distance $=\frac{A-(-3 A)}{\sqrt{2}}=2 \sqrt{2} A$

Sol 14: (B) $4 \mathrm{a}=4 \therefore \mathrm{a}=1$
\therefore Equation of latus rectum is $\mathrm{y}=4$
\therefore Equation of directrix is $y=4 \pm 2$
Now focus $=(4,4)$
When directrix is $\mathrm{y}=6$
\therefore Tangent at vertex is $\mathrm{y}=5$
And parabola lies below $y=5$
When directrix is $\mathrm{y}=2$
\therefore Tangent at vertex x is $\mathrm{y}=3$
\therefore Parabola lies above $y=3$
But y-coordinate of point is (1)
$\therefore y=6$ is the directrix
Sol 15: (D) Consider a line $L_{2^{\prime}} 2$ units to left of L_{1} \& parallel to L_{1}

\therefore Distance of centre of circle c from $L_{2}=2+r$
\& distance of C from origin $=2+r$
\therefore Locus of C is a parabola

Sol 16: (C) $P=\left(a t^{2}, 2 a t\right)$
Equation of tangent is $y=\frac{x}{t}+$ at
Equation of normal is $y=-t x+2 a t+a t^{3}$
$T=\left(-a t^{2}, 0\right) \& G=\left(2 a+a t^{2}, 0\right)$
Since PT \perp PG
\therefore The circle passing through PTG will have its centre at midpoint of T and G
$\therefore \mathrm{C}=(\mathrm{a}, 0)$
Slope $P C=\frac{2 a t}{a\left(t^{2}-1\right)}=\frac{2 t}{t^{2}-1}$
\therefore Slope of tangent at $\mathrm{P}=\frac{1-\mathrm{t}^{2}}{2 \mathrm{t}}$
Slope of tangent to parabola $=\frac{1}{t}$
$\tan \left(\theta_{1}-\theta_{2}\right)=\left|\frac{\frac{1}{t}-\frac{\left(1-t^{2}\right)}{2 t}}{1+\frac{1}{t} \times \frac{\left(1-t^{2}\right)}{2 t}}\right|=\left|\frac{\left(1+t^{2}\right) t}{\left(1+t^{2}\right)}\right|=|t|$
$\therefore\left|\theta_{1}-\theta_{2}\right|=\tan ^{-1} t$
Sol 17: (A) Let P be (h, h)
$\therefore h^{2}-4 h=0 \Rightarrow h=(4,4)$ or $h=(0,0)$
Let centre be (h, k)
Centre lies on normal at $(4,4)$
$2 \mathrm{t}=4 \Rightarrow \mathrm{t}=2$
\therefore Equation of normal is $y=-2 x+4+8$
$\Rightarrow \mathrm{y}+2 \mathrm{x}=12$

Centre passes through this
$\therefore \mathrm{k}=12-2 \mathrm{~h}$
\therefore Centre is (h, $12-2 \mathrm{~h}$)
and distance from focus $=$ distance from $(4,4)$
$\therefore(h-4)^{2}+(8-2 h)^{2}=(h-1)^{2}+(12-2 h)^{2}$
$\therefore-8 h-32 h+64+16$
$=-2 h-48 h+144+10 h=145-80$
$\therefore \mathrm{h}=\frac{13}{2}$
\therefore Centre $=\left(\frac{13}{2},-1\right)$ and radius $=\sqrt{\left(\frac{11}{2}\right)^{2}}=\frac{5 \sqrt{5}}{2}$
\therefore Equation of circle is $\mathrm{x}^{2}+\mathrm{y}^{2}-13 \mathrm{x}+2 \mathrm{y}+12=0$
Sol 18: (D) Three quarters of the latus rectum $=3 \mathrm{a}$
\therefore Equation of circle is $\mathrm{x}^{2}+\mathrm{y}^{2}=\left(\frac{3 \mathrm{a}}{2}\right)^{2}$
and equation of parabola is $y^{2}=4 x$
\therefore Point of intersection of parabola \& circle is
$x^{2}+4 a x-\left(\frac{3 a}{2}\right)^{2}=0$
$\therefore 4 x^{2}+16 a x-9 a^{2}=0$
$4 x^{2}+16 a x-2 a x-9 a^{2}=0$
But $y^{2}>0 \& x>0$.
$\therefore \mathrm{x}=\frac{\mathrm{a}}{2}$ is only possible solution
$\Rightarrow y= \pm \sqrt{2} a$
$\therefore P=\left(\frac{a}{2}, \sqrt{2} a\right) ; Q=\left(\frac{a}{2},-\sqrt{2} a\right)$
$L_{1} L_{2}=4 a$
Area of trapezium $=\frac{1}{2} h\left(P Q+L_{1} L_{2}\right)$
$=\frac{1}{2} \times \frac{a}{2}(2 \sqrt{2} a+4 a)=\left(\frac{2+\sqrt{2}}{2}\right) a^{2} \operatorname{Ans}(D)$

Multiple Correct Choice Type

Sol 19: (A, B, C, D)
Equation of normal is $y=m x-2 a m-a m^{3}$
or $a m^{2}+(2 a-x) m+y=0$
The points are $\left(\mathrm{am}_{\mathrm{i}}^{2},-2 \mathrm{am}_{\mathrm{i}}\right)$
$m_{1}+m_{2}+m_{3}=0$
Algebraic sum of ordinates is $-2 a\left(m_{1}+m_{2}+m_{3}\right)=0$

The y-coordinate of centroid of triangle is
$\frac{-2 a}{3}\left(m_{1}+m_{2}+m_{3}\right)=0$
\therefore It lies on x -axis

Sol 20: (A, B) $y^{2}-2 y-4 x-7=0$
$\therefore(y-1)^{2}=4(x+2) \quad a=1$
Its axis is x-axis
a^{\prime} of the $2^{\text {nd }}$ parabola $=2 \times a=2$
\therefore Equation of $2^{\text {nd }}$ parabola is $(x+2)^{2}= \pm 8(y-1)$
$\therefore x^{2}+4 x-8 y+12=0 \& x^{2}+4 x+8 y-4=0$
can be the equation of $2^{\text {nd }}$ parabola

Sol 21: (\mathbf{A}, \mathbf{B}) Equation of parabola 1 is
$(x-a)^{2}+(y-b)^{2}=y^{2}$ and of parabola 2 is
$(x-a)^{2}+(y-b)^{2}=x^{2}$
Their common chord is such that $x^{2}=y^{2}$
$\therefore\left(\frac{\mathrm{y}}{\mathrm{x}}\right)^{2}=1 \rightarrow \mathrm{y}= \pm \mathrm{x}$
\therefore Slope $= \pm 1$

Sol 22: (B, C) For parabola $y^{2}=40 x, a=10$
\therefore Equation of tangent to parabola is
$\therefore y=m x+\frac{10}{m}$
$\therefore \perp$ distance from origin is $\frac{10}{\mathrm{~m} \sqrt{1+\mathrm{m}^{2}}}$
Since it is tangent to circle
$\therefore \perp$ from centre $=$ radius
$\Rightarrow \frac{10^{2}}{m \sqrt{1+\mathrm{m}^{2}}}=5 \sqrt{2}$
$\therefore 2=\mathrm{m}^{2}\left(1+\mathrm{m}^{2}\right)$
$\therefore \mathrm{m}^{4}+\mathrm{m}^{2}-2=0$
$m^{4}+2 m^{2}-m^{2}-2=0$
$\therefore \mathrm{m}^{2}=1 \therefore \mathrm{~m}= \pm 1$
\therefore Possible equation of tangents are $\mathrm{y}=\mathrm{x}+10$ and $x+y+10=0$

Sol 23: $(\mathbf{A}, \mathbf{C}) \mathrm{y}^{2}-2 \mathrm{y}=4 \mathrm{x}-3$
$\therefore(y-1)^{2}=4\left(x-\frac{1}{2}\right)$
\therefore Vertex is at $\left(\frac{1}{2}, 1\right)$
And axis is parallel to x-axis $a=1$
\therefore Focus is at $\left(\frac{3}{2}, 1\right)$

Sol 24: (A, D) The Parabola \& circle both pass through origin
\therefore The circle touches parabola at $(0,0)$
\therefore Centre of circle $=(-b, 0)$
If $\mathrm{a}>0 \therefore-\mathrm{b}<0 \therefore \mathrm{~b}>0 \&$ if $\mathrm{a}<0 \mathrm{~b}<0$

Sol 25: (A, D) Let $P=\left(a t^{2}, 2 a t\right)$
$\therefore P A$ is $y=\frac{2 x}{t}$
$M=(-a, 2 a t)$ and $D=\left(-a,-\frac{2 a}{t}\right)$, end points of diameter
\therefore Equation of circle is
$(x+a)(x+a)+(y-2 a t)\left(y+\frac{2 a}{t}\right)=0$,
It intersects x-axis therefore satisfying $y=0$
$(x+a)^{2}=4 a^{2}$
$\therefore x=2 a-a$ or $x=-2 a-a$
\therefore It intersects x -axis at $(\mathrm{a}, 0) \&(-3 \mathrm{a}, 0)$

Previous Years' Questions

Sol 1: (C) Given curves are $x=t^{2}+t+1$
and $y^{2}=t^{2}-t+1$
On subtracting Eq. (ii) from Eq. (i),
$x-y=2 t$
Now, substituting the value of ' t ' in (i)
$\Rightarrow x=\left(\frac{x-y}{2}\right)^{2}+\left(\frac{x-y}{2}\right)+1$
$\Rightarrow 4 \mathrm{x}=(\mathrm{x}-\mathrm{y})^{2}+2 \mathrm{x}-2 \mathrm{y}+4$
$\Rightarrow(x-y)^{2}=2(x+y-2)$
$\Rightarrow x^{2}+y^{2}-2 x y-2 x-2 y+4=0$
Now, $\quad \Delta=1 \cdot 1 \cdot 4+2 \cdot(-1)(-1)(-1)$
$-1 \times(-1)^{2}-1 \times(-1)^{2}-4(-1)^{2}$
$=4-2-1-1-4=-4$
$\therefore \Delta \neq 0$
and $a b-h^{2}=1 \cdot 1-(-1)^{2}=1-1=0$
Hence, it represents a equation of a parabola.

Sol 2: (C) Any tangent to $y^{2}=4 x$ is of the form $y=m x+\frac{1}{m},(\because a=1)$ and this touches the circle $(x-3)^{2}+y^{2}=9$,

If $\left|\frac{m(3)+\frac{1}{m}-0}{\sqrt{m^{2}+1}}\right|=3$
[\therefore Centre of the circle is $(3,0)$ and radius is 3]
$\Rightarrow \frac{3 m^{2}+1}{m}= \pm 3 \sqrt{m^{2}+1}$
$\Rightarrow 3 m^{2}+1= \pm 3 m \sqrt{m^{2}+1}$
$\Rightarrow 9 \mathrm{~m}^{4}+1+6 \mathrm{~m}^{2}=9 \mathrm{~m}^{2}\left(\mathrm{~m}^{2}+1\right)$
$\Rightarrow 9 m^{4}+1+6 m^{2}=9 m^{4}+9 m^{2}$
$\Rightarrow 3 \mathrm{~m}^{2}=1$
$\Rightarrow \mathrm{m}= \pm \frac{1}{\sqrt{3}}$
If the tangent touches the parabola and circle above the x-axis, then slope m should be positive.
$\therefore \mathrm{m}=\frac{1}{\sqrt{3}}$ and the equation is $\mathrm{y}=\frac{1}{\sqrt{3}} \mathrm{x}+\sqrt{3}$ or $\sqrt{3} y=x+3$.

Sol 3: (A) Here, the focal chord of $y^{2}=16 x$ is tangent to circle $(x-6)^{2}+y^{2}=2$
\Rightarrow Focus of parabola as $(a, 0)$ ie. $(4,0)$
Now, tangents are drawn from $(4,0)$ to $(x-6)^{2}+y^{2}=2$
Since, PA is tangent to circle.
$\therefore \tan \theta=$ slope of tangent
$\tan \theta=\frac{\mathrm{AC}}{\mathrm{AP}}=\frac{\sqrt{2}}{\sqrt{2}}=1$,
Slope of other tangent $=-\tan \theta=-1$

\therefore Slope of focal chords as tangent to circle $= \pm 1$

Sol 4: (A)

Since, distance of vertex from origin is $\sqrt{2}$ and focus is $2 \sqrt{2}$
$\therefore \mathrm{V}(1,1)$ and $\mathrm{F}(2,2)$ (ie, lying on $\mathrm{y}=\mathrm{x}$)
Where, length of latusrectum
$=4 a=4 \sqrt{2} \quad(\because a=\sqrt{2})$
\therefore By definition of parabola
$P M^{2}=(4 a)(P N)$
Where, $P N$ is length of perpendicular upon $x+y-2=0$ (ie, tangent at vertex).
$\Rightarrow \frac{(x-y)^{2}}{2}=4 \sqrt{2}\left(\frac{x+y-2}{\sqrt{2}}\right)$
$\Rightarrow(x-y)^{2}=8(x+y-2)$
Sol 5: Since, equation of normal to the parabola $y^{2}=4 a x$ is $y+x t=2 a t+a t^{3}$ passes through $(3,0)$
$\Rightarrow 3 \mathrm{t}=2 \mathrm{t}+\mathrm{t}^{3} \quad(\because \mathrm{a}=1)$
$\Rightarrow t=0,1,-1$
\therefore Coordinates of the normals are
$P(1,2), Q(0,0), R(1,-2)$. Thus,
(A) Area of $\triangle \mathrm{PQR}=\frac{1}{2} \times 1 \times 4=2$
(C) Centroid of $\triangle \mathrm{PQR}=\left(\frac{2}{3}, 0\right)$

Equation of circle passing through P, Q, R is
$(x-1)(x-1)+(y-2)(y+2)+\lambda(x-1)=0$
$\Rightarrow 1-4-\lambda=0 \Rightarrow \lambda=-3$
\therefore Required equation of circle is $\mathrm{x}^{2}+\mathrm{y}^{2}-5 \mathrm{x}=0$
\therefore Centre $\left(\frac{5}{2}, 0\right)$ and radius $\frac{5}{2}$

Sol 6: (A, B) The equation of tangent to $y=x^{2}$, be
$y=m x-\frac{m^{2}}{4}$.
Putting in $y=-x^{2}+4 x-4$, we should only get one value of x i.e.,
Discriminant must be zero.
$\therefore m x-\frac{m^{2}}{4}=-x^{2}+4 x-4$
$\Rightarrow x^{2}+x(m-4)+4-\frac{m^{2}}{4}=0$
$D=0$
Now, $(m-4)^{2}-\left(16-m^{2}\right)=0$
$\Rightarrow 2 \mathrm{~m}(\mathrm{~m}-4)=0$
$\Rightarrow \mathrm{m}=0,4$
$\therefore y=0$ and $y=4(x-1)$ are the required tangents.
Hence, (A) and (B) are correct answers.

Sol 7: (A, D) Equation of tangent and normal at point $P\left(a t^{2}, 2 a t\right)$ is $t y=x=a t^{2}$ and $y=-t x+2 a t+a t^{3}$

Let centroid of \triangle PTN is $R(h, k)$
$\therefore \mathrm{h}=\frac{\mathrm{at}^{2}+\left(-\mathrm{at}^{2}\right)+2 \mathrm{a}+\mathrm{at}^{2}}{3}=\frac{2 \mathrm{a}+\mathrm{at}^{2}}{3}$

$k=\frac{2 a t}{3}$
$\Rightarrow 3 \mathrm{~h}=2 \mathrm{a}+\mathrm{a} \cdot\left(\frac{3 \mathrm{k}}{2 \mathrm{a}}\right)^{2} \Rightarrow 3 \mathrm{~h}=2 \mathrm{a}+\frac{9 \mathrm{k}^{2}}{4 \mathrm{a}}$
$\Rightarrow 9 \mathrm{k}^{2}=4 \mathrm{a}(3 \mathrm{~h}-2 \mathrm{a})$
\therefore Locus of centroid is $y^{2}=\frac{4 a}{3}\left(x-\frac{2 a}{3}\right)$
\therefore Vertex $\left(\frac{2 \mathrm{a}}{3}, 0\right)$;
Directrix $x-\frac{2 a}{3}=-\frac{a}{3} \Rightarrow x=\frac{a}{3}$
Latus rectum $=\frac{4 a}{3}$
\therefore Focus $\left(\frac{a}{3}+\frac{2 a}{3}, 0\right)$ i.e., $(a, 0)$

Sol 8: (C, D) Here, coordinates of
$M=\left(\frac{t_{1}^{2}+t_{2}^{2}}{2}, t_{1}+t_{2}\right)$ i.e., mid point of chord $A B$.

$M P=t_{1}+t_{2}=r$
$m_{A B}=\frac{2 t_{2}-2 t_{1}}{t_{2}^{2}-t_{1}^{2}}=\frac{2}{t_{2}+t_{1}}$
(When $A B$ is chord)
$\Rightarrow \mathrm{m}_{\mathrm{AB}}=\frac{2}{\mathrm{r}}$ [from Eq.(i)]
Also, $\mathrm{m}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}=-\frac{2}{r}$
(When $A^{\prime} B^{\prime}$ is chord)

Sol 9: $(2) y=8 x=4.2 . x$

$\frac{\Delta \mathrm{LPM}}{\Delta \mathrm{ABC}}=2$
$\frac{\Delta_{1}}{\Delta_{2}}=2$
Sol 10: If three different normals are drawn from (h, 0) to $y^{2}=4 x$. Then, equation of normals are $y=m x-2 m-m^{3}$ which passes through (h, 0)
$\Rightarrow \mathrm{mh}-2 \mathrm{~m}-\mathrm{m}^{3}=0$
$\Rightarrow \mathrm{h}=2+\mathrm{m}^{2}$
$2+\mathrm{m}^{2} \geq 2$
$\therefore \mathrm{h}>2$ (Neglect equality as if $2+\mathrm{m}^{2}=2 \Rightarrow \mathrm{~m}=0$)
Therefore, three normals are coincident.
$\therefore \mathrm{h}>2$

Sol 11: We know that, normal for $y^{2}=4 a x$ is given by, $y=m x-2 a m-a m^{3}$.
\therefore Equation of normal for $\mathrm{y}^{2}=\mathrm{x}$ is
$y=m x-\frac{m}{2}-\frac{m^{3}}{4}\left(\because a=\frac{1}{4}\right)$
Since, normal passes through ($c, 0$)
$\therefore \mathrm{mc}-\frac{\mathrm{m}}{2}-\frac{\mathrm{m}^{3}}{4}=0$
$\Rightarrow \mathrm{m}\left(\mathrm{c}-\frac{1}{2}-\frac{\mathrm{m}^{2}}{4}\right)=0$
$\Rightarrow \mathrm{m}=0$ or $\mathrm{m}^{2}=4\left(\mathrm{c}-\frac{1}{2}\right)$
$\Rightarrow m=0$, the equation of normal is $y=0$
Also, $\mathrm{m}^{2} \geq 0$
$\Rightarrow c-\frac{1}{2} \geq 0 \Rightarrow c \geq \frac{1}{2}$
$A t, c=\frac{1}{2} \Rightarrow m=0$
Now, for other normals to be perpendicular to each other, we must have $m_{1} . m_{2}=-1$
or $\frac{m^{2}}{4}+\left(\frac{1}{2}-c\right)=0$, has $m_{1} m_{2}=-1$
$\Rightarrow \frac{\left(\frac{1}{2}-c\right)}{1 / 4}=-1$
$\Rightarrow \frac{1}{2}-\mathrm{c}=-\frac{1}{4} \Rightarrow \mathrm{c}=\frac{3}{4}$
Sol 12: Let $A\left(t_{1}{ }^{2}, 2 t_{1}\right)$ and $B\left(t_{2}{ }^{2}, 2 t_{2}\right)$ be coordinates of the end points of a chord of the parabola $y^{2}=4 x$ having slope 2.
Now, slope of $A B$ is
$m=\frac{2 t_{2}-2 t_{1}}{t_{2}^{2}-t_{1}^{2}}=\frac{2\left(t_{2}-t_{1}\right)}{\left(t_{2}-t_{1}\right)\left(t_{2}+t_{1}\right)}$
$=\frac{2}{t_{2}+t_{1}}$

But $m=2$ (given)
$\Rightarrow 2=\frac{2}{t_{2}+t_{1}}$
$\Rightarrow \mathrm{t}_{1}+\mathrm{t}_{2}=1$
Let $P(h, k)$ be a point on $A B$ such that, it divides $A B$ internally in the ratio $1: 2$.
Then, $\mathrm{h}=\frac{2 \mathrm{t}_{1}^{2}+\mathrm{t}_{2}^{2}}{2+1}$ and $\mathrm{k}=\frac{2\left(2 \mathrm{t}_{1}\right)+2 \mathrm{t}_{2}}{2+1}$
$\Rightarrow 3 \mathrm{~h}=2 \mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}$
and $3 \mathrm{k}=4 \mathrm{t}_{1}+2 \mathrm{t}_{2}$
On substituting value of t_{1} from Eq. (i) in Eq. (iii)
$3 k=4\left(1-t_{2}\right)+2 t_{2}$
$\Rightarrow 3 \mathrm{k}=4-2 \mathrm{t}_{2}$
$\Rightarrow \mathrm{t}_{2}=2-\frac{3 \mathrm{k}}{2}$

On substituting $t_{1}=1-t_{2}$ in Eq.(ii), we get
$3 h=2\left(1-t_{2}\right)^{2}+t_{2}{ }^{2}$
$=2\left(1-2 t_{2}+t_{2}^{2}\right)+t_{2}^{2}=3 t_{2}^{2}-4 t_{2}+2$
$=3\left(\mathrm{t}_{2}^{2}-\frac{4}{3} \mathrm{t}_{2}+\frac{2}{3}\right)=3\left[\left(\mathrm{t}_{2}-\frac{2}{3}\right)^{2}+\frac{2}{3}-\frac{4}{9}\right]=3\left(\mathrm{t}_{2}-\frac{2}{3}\right)^{2}+\frac{2}{3}$
$\Rightarrow 3 \mathrm{~h}-\frac{2}{3}=3\left(\mathrm{t}_{2}-\frac{2}{3}\right)^{2} \Rightarrow 3\left(\mathrm{~h}-\frac{2}{9}\right)=3\left(2-\frac{3 \mathrm{k}}{2}-\frac{2}{3}\right)^{2}$
[From Eq. (iv)]
$\Rightarrow 3\left(h-\frac{2}{9}\right)=3\left(\frac{4}{3}-\frac{3 k}{2}\right)^{2} \Rightarrow\left(h-\frac{2}{9}\right)=\frac{9}{4}\left(k-\frac{8}{9}\right)^{2}$
$\Rightarrow\left(\mathrm{k}-\frac{8}{9}\right)^{2}=\frac{4}{9}\left(\mathrm{~h}-\frac{2}{9}\right)$
On generating, we get the required locus
$\left(y-\frac{8}{9}\right)^{2}=\frac{4}{9}\left(x-\frac{2}{9}\right)$
This represents a parabola with vertex at $\left(\frac{2}{9}, \frac{8}{9}\right)$
Sol 13: Let the three points on the parabola be $\mathrm{A}\left(\mathrm{at}_{1}{ }^{2}, 2 a t_{1}\right), \mathrm{B}\left(\mathrm{at}_{2}{ }^{2}, 2 a t_{2}\right)$ and $\mathrm{C}\left(\mathrm{at}_{3}{ }^{2}, 2 a t_{3}\right)$.
Equation of the tangent to the parabola at (at $\left.{ }^{2}, 2 a t\right)$ is
$t y=x+a t^{2}$
Therefore, equations of tangents at A and B are
$t_{1} y=x+a t_{1}{ }^{2}$
And $t_{2} y=x+a t_{2}^{2}$
From Eqs. (i) and (ii)
$t_{1} y=t_{2} y-a t_{2}^{2}+a t_{1}^{2}$
$\Rightarrow \mathrm{t}_{1} \mathrm{y}-\mathrm{t}_{2} \mathrm{y}=\mathrm{at}_{1}{ }^{2}-\mathrm{at}_{2}{ }^{2}$
$\Rightarrow \mathrm{y}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\left(\because \mathrm{t}_{1} \neq \mathrm{t}_{2}\right)$
And $\mathrm{t}_{1} \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)=\mathrm{x}+\mathrm{at}_{1}^{2}$
[from Eq.(i)] $\Rightarrow x=a t_{1} t_{2}$
Therefore, coordinates of P are $\left(a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right)$
Similarly, the coordinates of Q and R are respectively
$\left[a t_{2} t_{3^{\prime}} a\left(t_{2}+t_{3}\right)\right]$ and $\left[\mathrm{at}_{1} \mathrm{t}_{3^{\prime}} \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{3}\right)\right]$
Let $\Delta_{1}=$ Area of the triangle $A B C$
$=\frac{1}{2}\left\|\begin{array}{lll}a t_{1}^{2} & 2 a t_{1} & 1 \\ \mathrm{at}_{2}^{2} & 2 a t_{2} & 1 \\ \mathrm{at}_{3}^{2} & 2 a t_{3} & 1\end{array}\right\|$

Applying $R_{3} \rightarrow R_{3}-R_{2}$ and
$R_{2} \rightarrow R_{2}-R_{1}$, we get
$\Delta_{1}=\frac{1}{2}\left\|\begin{array}{ccc}a t^{2} & 2 a t_{1} & 1 \\ a\left(t_{2}^{2}-t_{1}^{2}\right) & 2 a\left(t_{2}-t_{1}\right) & 0 \\ a\left(t_{3}^{2}-t_{2}^{2}\right) & 2 a\left(t_{3}-t_{2}\right) & 0 \|\end{array}\right\|$
$=\frac{1}{2}\left\|\begin{array}{ll}a\left(t_{2}^{2}-t_{1}^{2}\right) & 2 a\left(t_{2}-t_{1}\right) \\ a\left(t_{3}^{2}-t_{2}^{2}\right) & 2 a\left(t_{3}-t_{2}\right)\end{array}\right\|$
$=\frac{1}{2} a \cdot 2 a\left\|\left(t_{2}-t_{1}\right)\left(t_{2}+t_{1}\right) \quad\left(t_{2}-t_{1}\right)\right\|$
$=a^{2}\left(t_{2}-t_{1}\right)\left(t_{3}-t_{2}\right)\left\|\begin{array}{ll}t_{2}+t_{1} & 1 \\ t_{3}+t_{2} & 1\end{array}\right\|$
$=\mathrm{a}^{2}\left|\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)\left(\mathrm{t}_{3}-\mathrm{t}_{2}\right)\left(\mathrm{t}_{1}-\mathrm{t}_{3}\right)\right|$
Again, let $\Delta_{2}=$ area of the triangle PQR
$=\frac{1}{2}\left\|\begin{array}{lll}a t_{1} t_{2} & a\left(t_{1}+t_{2}\right) & 1 \\ a t_{2} t_{3} & a\left(t_{2}+t_{3}\right) & 1 \\ a t_{3} t_{1} & a\left(t_{3}+t_{1}\right) & 1\end{array}\right\|=\frac{1}{2} a \cdot a\left\|\begin{array}{lll}t_{1} t_{2} & \left(t_{1}+t_{2}\right) & 1 \\ t_{2} t_{3} & \left(t_{2}+t_{3}\right) & 1 \\ t_{3} t_{1} & \left(t_{3}+t_{1}\right) & 1\end{array}\right\|$
Applying $R_{3} \rightarrow R_{3}-R_{2^{\prime}} R_{2} \rightarrow R_{2}-R_{1^{\prime}}$ we get
$=\frac{a^{2}}{2}\left\|\begin{array}{ccc}t_{1} t_{2} & t_{1}+t_{2} & 1 \\ t_{2}\left(t_{3}-t_{1}\right) & t_{3}-t_{1} & 0 \\ t_{3}\left(t_{1}-t_{2}\right) & t_{1}-t_{2} & 0\end{array}\right\|$
$=\frac{a^{2}}{2}\left(t_{3}-t_{1}\right)\left(t_{1}-t_{2}\right) \times\left\|\begin{array}{ccc}t_{1} t_{2} & t_{1}+t_{2} & 1 \\ t_{2} & 1 & 0 \\ t_{3} & 1 & 0\end{array}\right\|$
$=\frac{a^{2}}{2}\left(t_{3}-t_{1}\right)\left(t_{1}-t_{2}\right)\left\|\begin{array}{ll}t_{2} & 1 \\ t_{3} & 1\end{array}\right\|$
$=\frac{a^{2}}{2}\left|\left(t_{3}-t_{1}\right)\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right)\right|$
Therefore,
$\frac{\Delta_{1}}{\Delta_{2}}=\frac{a^{2}\left|\left(t_{2}-t_{1}\right)\left(t_{3}-t_{2}\right)\left(t_{1}-t_{3}\right)\right|}{\frac{1}{2} a^{2}\left|\left(t_{3}-t_{1}\right)\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right)\right|}=2$
Sol 14: Let coordinates of P be $\left(t, t^{2}+1\right)$
Reflection of P in $y=x$ is $P_{1}\left(t^{2}+1, t\right)$
Which clearly lies on $y^{2}=x-1$
Similarly, let coordinates of Q be $\left(s^{2}+1, s\right)$
Its reflection in $\mathrm{y}=\mathrm{x}$ is
$Q_{1}\left(s, s^{2}+1\right)$ which lies on $x^{2}=y-1$
We have,
$\mathrm{PQ}_{1}{ }^{2}=(\mathrm{t}-\mathrm{s})^{2}+\left(\mathrm{t}^{2}-\mathrm{s}^{2}\right)^{2}=\mathrm{P}_{1} \mathrm{Q}^{2}$
$\Rightarrow \mathrm{PQ}_{1}=\mathrm{P}_{1} \mathrm{Q}$
Also, $\mathrm{PP}_{1}| | \mathrm{QQ}_{1}$
(\because both perpendicular to $\mathrm{y}=\mathrm{x}$)
Thus, $\mathrm{PP}_{1} \mathrm{QQ}_{1}$ is an isosceles trapezium.
Also, P lies on PQ_{1} and Q lies on $\mathrm{P}_{1} \mathrm{Q}$, we have $\mathrm{PQ} \geq$ $\min \left\{\mathrm{PP}_{1}, \mathrm{QQ}_{1}\right\}$
Let us take $\min \left\{\mathrm{PP}_{1^{\prime}} \mathrm{QQ}_{1}\right\}=\mathrm{PP}_{1}$
$\therefore \mathrm{PQ}^{2} \Rightarrow \mathrm{PP}_{1}^{2}=\left(\mathrm{t}^{2}+1-\mathrm{t}\right)^{2}+\left(\mathrm{t}^{2}+1-\mathrm{t}\right)^{2}$
$=2\left(t^{2}+1-t\right)^{2}=f(t)$ (say)

We have,
$f^{\prime}(t)=4\left(t^{2}+1-t\right)(2 t-1)=4\left[(t-1 / 2)^{2}+3 / 4\right][2 t-1]$
Now, $f^{\prime}(t)=0 \Rightarrow t=1 / 2$
Also, $\mathrm{f}^{\prime}(\mathrm{t})<0$ for $\mathrm{t}<1 / 2$ and $\mathrm{f}^{\prime}(\mathrm{t})>0$ for $\mathrm{t}>1 / 2$
Corresponding to $t=1 / 2$, point P_{0} on C_{1} is $(1 / 2,5 / 4)$ and P_{1} (which we take as Q_{0}) on C_{2} are $(5 / 4,1 / 2)$. Note that $\mathrm{P}_{0} \mathrm{Q}_{0} \leq \mathrm{PQ}$ for all pairs of (P, Q) with P on C_{1} and Q on C_{2}.

Sol 15: We know, equation of normal to $y^{2}=4 a x$ is
$y=m x-2 a m-a m^{3}$
Thus, equation of normal to $y^{2}=4 x$ is,
$y=m x-2 m-m^{3}$, let it passes through (h, k).
$\Rightarrow \mathrm{k}=\mathrm{mh}-2 \mathrm{~m}-\mathrm{m}^{3}$
Or $\mathrm{m}^{3}+\mathrm{m}(2-\mathrm{h})+\mathrm{k}=0$
Here, $m_{1}+m_{2}+m_{3}=0$,
$m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}=2-h$
$m_{1} m_{2} m_{3}=-k$, where $m_{1} m_{2}=\alpha$
$\Rightarrow m_{3}=-\alpha$ it must satisfy Eq.(i)

$$
\begin{aligned}
& \Rightarrow-\frac{k^{3}}{\alpha^{3}}-\frac{k}{\alpha}(2-h)+k=0 \\
& \Rightarrow k^{2}=\alpha^{2} h-2 \alpha^{2}+\alpha^{3} \\
& \Rightarrow y^{2}=\alpha^{2} x-2 \alpha^{2}+\alpha^{3}
\end{aligned}
$$

On comparing with $y^{2}=4 x$
$\Rightarrow \alpha^{2}=4$ and $-2 \alpha^{2}+\alpha^{3}=0 \quad \Rightarrow \alpha=2$

Sol 16: (A,B,D) Equation of normal to parabola $y^{2}=4 x$ is given by
$y=m x-2 m-m^{3}$
It passes through Point $(9,6)$
$6=9 m-2 m-m^{3}$
$\Rightarrow m^{3}-7 m+6=0$
$\Rightarrow \mathrm{m}^{3}-1-7 \mathrm{~m}+7=0$
$\Rightarrow(m-1)\left(m^{2}+1+m\right)-7(m-1)=0$
$\Rightarrow(\mathrm{m}-1)\left(\mathrm{m}^{2}+\mathrm{m}-6\right)=0$
$\Rightarrow(\mathrm{m}-1)(\mathrm{m}+3)(\mathrm{m}-2)=0$
$\Rightarrow \mathrm{m}=-3,1,2$
\therefore The equations of normal are
$y-x+3=0, y+3 x-33=0$ and $y-2 x+12=0$

Sol 17: (C) let Co-ordinates of point Q are (h, k)
According to the given condition

$h=\frac{0 \times 3+x \times 1}{1+3}=\frac{x}{4} \Rightarrow x=4 h$
$k=\frac{0 \times 3+y \times 1}{1+3}=\frac{y}{4} \Rightarrow y=4 k$
$P(x, y)$ lies on the Parabola $y^{2}=4 x$
$(4 \mathrm{k})^{2}=4(4 \mathrm{~h}) \Rightarrow \mathrm{k}^{2}=\mathrm{h}$
\Rightarrow Locus is $y^{2}=x$

Sol 18: (B)

$R_{1}=\int_{o}^{b}(1-x)^{2} d x$
$R_{2}=\int_{b}^{1}(1-x)^{2} d x$
Given, $R_{1}-R_{2}=\frac{1}{4}$
$\int_{0}^{b}(1-x)^{2} d x-\int_{b}^{1}(1-x)^{2} d x=\frac{1}{4}$
$\Rightarrow\left[-\frac{(1-x)^{3}}{3}\right]_{0}^{b}+\left[\frac{(1-x)^{3}}{3}\right]_{b}^{1}=\frac{1}{4}$
$\Rightarrow \frac{-1}{3}\left[(1-b)^{3}-1\right]+\left[0-\frac{(1-b)^{3}}{3}\right]=\frac{1}{4}$
$\Rightarrow \frac{-2}{3}(1-b)^{3}=\frac{1}{4}-\frac{1}{3}=-\frac{1}{12}$
$\Rightarrow 2(1-b)^{3}=\frac{1}{4} \quad \Rightarrow(1-b)^{3}=\frac{1}{3}$
$\Rightarrow(1-\mathrm{b})=\frac{1}{2} \Rightarrow \mathrm{~b}=\frac{1}{2}$

Sol 19: (2) The end points of latus rectum are $A(2,4)$, B $(2,-4)$
Area of Δ formed by $A(2,4), B(2,-4)$ and $P\left(\frac{1}{2}, 2\right)$

$$
\begin{aligned}
& \Delta_{1}=\frac{1}{2}\left|\begin{array}{ccc}
2 & 4 & 1 \\
2 & -4 & 1 \\
\frac{1}{2} & 2 & 1
\end{array}\right| \\
& =\frac{1}{2}\left[2(-4-2)-4\left(2-\frac{1}{2}\right)+1\left(4+4 \times \frac{1}{2}\right)\right] \\
& =\frac{1}{2}[12-6+6]=6 \text { sq. units }
\end{aligned}
$$

Tangents at end points of latus rectum are $y=x+2$ and $-y=x+2$, intersection point $(-2,0)$

Equation of tangent at $P\left(\frac{1}{2}, 2\right)$ is given by $y=2 x+$ 1. Points of intersection of tangent at $P\left(\frac{1}{2}, 2\right)$ and tangents at latus rectum are $(-1,-1)$ and $(1,3)$

Area of Δ formed by Points $(-2,0),(-1,-1)$ and $(1,3)$

$\Delta_{2}=\frac{1}{2}\left|\begin{array}{ccc}-2 & 0 & 1 \\ -1 & -1 & 1 \\ 1 & 3 & 1\end{array}\right|$
$=\frac{1}{2}[-2(-1-3)+0+1(-3+1)]=\frac{1}{2}[8-2]=3$
$\Rightarrow \frac{\Delta_{1}}{\Delta_{2}}=\frac{6}{3}=2$
Sol 20: (B) Let Point P be $\left(a t^{2}, 2 a t\right)$ then other end of focal Chord Q is $\left(\frac{a}{t^{2}},-\frac{2 a}{t}\right)$
We know that point of intersection of tangent at $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$ is given by $\left[a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right]$

$\Rightarrow \mathrm{T}\left[-\mathrm{a}, \mathrm{a}\left(\mathrm{t}-\frac{1}{\mathrm{t}}\right)\right]$, which lies on $\mathrm{y}=2 \mathrm{x}+\mathrm{a}$
$\Rightarrow \mathrm{a}\left(\mathrm{t}-\frac{1}{\mathrm{t}}\right)=-2 \mathrm{a}+\mathrm{a}=-\mathrm{a}$
$\Rightarrow t-\frac{1}{\mathrm{t}}=-1=\mathrm{t}^{2}+\frac{1}{\mathrm{t}^{2}}=1+2$
$\Rightarrow\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)^{2}=5$
Length of Chord $=a\left(t+\frac{1}{t}\right)^{2}=5 a$
Sol 21: (D) Slope $O P=\frac{2}{t}$
Slope $\mathrm{OQ}=-2 \mathrm{t}$
$\tan \theta=\frac{\frac{2}{t}-(-2 t)}{1+\frac{2}{t}(-2 t)}=\frac{\frac{2}{t}+2 t}{1-4}=\frac{2\left(\frac{1}{t}+t\right)}{-3}$
$=\frac{2 \times \sqrt{5}}{-3}=-\frac{2 \sqrt{5}}{3}$

$\left(t+\frac{1}{t}\right)^{2}=5$
From previous question
Since, $t-\frac{1}{t}=-1$
$\Rightarrow t+\frac{1}{t}=\sqrt{5}$

Sol 22: (A)

Tangent at $F \quad y t=x+4 t^{2}$
$a: x=0 \quad y=4 t(0,4 t)$
$\left(4 t^{2}, 8 t\right)$ satisfies the line $8 t=4 m t^{2}+3$
$4 m t^{2}-8 t+3=0$
Area $=\frac{1}{2}\left|\begin{array}{ccc}0 & 3 & 1 \\ 0 & 4 t & 1 \\ 4 t^{2} & 8 t & 1\end{array}\right|=\frac{1}{2}\left(4 t^{2}(3-4 t)\right)=2 t^{2}(3-4 t)$
$A=2\left[3 t^{2}-4 t^{3}\right]$
$\frac{d A}{d t}=2\left[6 t-12 t^{2}\right]=24 t(1-2 t)$

$t=1 / 2$ maxima
$\mathrm{G}(0,4 \mathrm{t}) \Rightarrow \mathrm{G}(0,2)$
$y_{1}=2$
$\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\left(4 \mathrm{t}^{2}, 8 \mathrm{t}\right)=(\mathrm{t}, 4)$
$y_{0}=4$
Area $=2\left(\frac{3}{4}-\frac{1}{2}\right)=2\left(\frac{3-2}{4}\right)=\frac{1}{2}$

Sol 23: (B)

PK \| QR
$\frac{2 a t-0}{a t^{2}-2 a}=\frac{2 a r+\frac{2 a}{t}}{a r^{2}-\frac{a}{t^{2}}}$
$\Rightarrow \frac{2 t}{t^{2}-2}=\frac{2\left(r+\frac{1}{t}\right)}{\left(r+\frac{1}{t}\right)\left(r-\frac{1}{t}\right)} \Rightarrow \frac{t}{t^{2}-2}=\frac{1}{r-\frac{1}{t}}$
$\Rightarrow \mathrm{tr}-1=\mathrm{t}^{2}-2 \quad \Rightarrow \mathrm{tr}=\mathrm{t}^{2}-1 \Rightarrow \mathrm{r}=\frac{\mathrm{t}^{2}-1}{\mathrm{t}}$

Sol 24: (B)

Equation of tangent at O

$$
\begin{equation*}
t y=x+a t^{2} \tag{i}
\end{equation*}
$$

Equation of normal at S
$y=-s x+2 a s+a s^{3}$
From (i) and (ii)
$y=-s\left[t y-a t^{2}\right]+2 a s+a s^{2}$
$\Rightarrow y=-s t y+a s t^{2}+2 a s+a s^{3}$
$\Rightarrow y=-y+a t+\frac{2 a}{t}+\frac{a}{t^{3}}[s t=1]$
$\Rightarrow 2 y=\frac{a t^{4}+2 a t^{2}+a}{t^{3}} \Rightarrow y=\frac{a\left(1+t^{2}\right)^{2}}{2 t^{3}}$

Sol 25: The given Parabola $y^{2}=4 x$ has vertex $(0,0)$ and focus $(1,0)$
Image of Vertex $(0,0)$ about the given line $x+y+4=0$ is given by

$$
\begin{aligned}
& \frac{x-0}{1}=\frac{y-0}{1}=-2 \frac{[0+0+4]}{1^{2}+1^{2}} \\
& \Rightarrow \frac{x-0}{1}=\frac{y-0}{1}=-4 \\
& \Rightarrow V^{\prime}(x, y) \equiv(-4,-4)
\end{aligned}
$$

Image of focus $(1,0)$ about the line
$x+y+4=0$
$\frac{x-1}{1}=\frac{y-0}{1}=-2 \frac{[1+0+4]}{1^{2}+1^{2}}=-5$
$\Rightarrow F^{\prime}(x, y) \equiv(-4,-5)$
The line $y=5$ Passes through the focus of the parabola C, so $y=-5$ is latus rectum of Parabola (C), and. A and B are end points of latus rectum.
The length of latus of C is same as of $y^{2}=4 x$
$\Rightarrow A B=4 a=4 \times 1=4$

