Illustration 46: Find out the shortest distance between the line $\mathrm{y}=\mathrm{x}-2$ and the parabola $\mathrm{y}=\mathrm{x}^{2}+3 \mathrm{x}+2$.
(JEE MAIN)
Sol: The distance would be minimum at the point on the parabola where the slope of the tangent is equal to the slope of the given line.

Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is the point closest to the line $\mathrm{y}=\mathrm{x}-2$
Then, $\left.\frac{d y}{d x}\right|_{\left(x_{1}, y_{1}\right)}=$ slope of the line
$\Rightarrow \quad 2 x_{1}+3=1 \Rightarrow x_{1}=-1$ and $y_{1}=0$
Therefore, point $(-1,0)$ is the closest and its perpendicular distance from the line $y=x-2$ gives the shortest distance.

Figure 21.8
\Rightarrow Shortest distance $=\frac{3}{\sqrt{2}}$ units

Illustration 47: Which of the following points of the curve $y=x^{2}$ is closest to $(4,-1 / 2)$?
(JEE MAIN)
(A) $(1,1)$
(B) $(2,4)$
(C) $(2 / 3,4 / 9)$
(D) $(4 / 3,16 / 9)$

Sol:(A) Using distance formula find the distance of the given point from the curve and find the minima.
Let the required point be (x, y) on the curve.
Hence, $d=\sqrt{(x-4)^{2}+(y+1 / 2)^{2}}$ should be minimum, which is enough to consider.
$D=(x-4)^{2}+(y+1 / 2)^{2}=(x-4)^{2}+\left(x^{2}+1 / 2\right)^{2}$
$D^{\prime}=4 x^{3}+4 x-8$
Now for critical points
$D^{\prime}=0$ so $x^{3}+x-2=0 \Rightarrow x=1$
Clearly $\mathrm{D}^{\prime \prime}$ at $\mathrm{x}=1$ is $16>0$.
Thus, D is minimum when $x=1$. Hence the required point is $(1,1)$.

PROBLEM-SOLVING TACTICS

- Reduce any fractions to be as basic as possible.
- Recognise when we can use the chain rule. it enables us to differentiate functions that often seem impossible to differentiate. Whenever you see a nested function, try to assess if the chain rule is needed (it usually is).
- We always want to start a long chain of differentiation by differentiating the last part of the function to touch the input - in short, the outermost part of the function.

FORMULAE SHEET

$\frac{d c}{d x}=0$	$\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{cu})=\mathrm{c} \frac{\mathrm{du}}{\mathrm{dx}}$
$\frac{d}{d x}(u \pm v)=\frac{d u}{d x} \pm \frac{d v}{d x}$	$\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$	$\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
$\frac{d}{d x} x^{n}=n x^{n-1}$	$\frac{d}{d x} u^{n}=n u^{n-1} \frac{d u}{d x}$
$\frac{d}{d x} a^{x}=(\ln a) a^{x}$	$\frac{d}{d x} a^{u}=(\ln a) a^{u} \frac{d u}{d x}$
$\frac{d}{d x} e^{x}=e^{x}$	$\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}$
$\frac{d}{d x} \log _{\mathrm{a}} \mathrm{x}=\frac{1}{(\ln \mathrm{a}) \mathrm{x}}$	$\frac{d}{d x} \log _{\mathrm{a}} u=\frac{1}{(\ln a) u} \frac{d u}{d x}$
$\frac{d}{d x} \ln x=\frac{1}{x}$	$\frac{d}{d x} \ln u=\frac{1}{u} \frac{d u}{d x}$
$\frac{d}{d x} \sin x=\cos x$	$\frac{d}{d x} \sin u=\cos u \frac{d u}{d x}$
$\frac{d}{d x} \cos x=-\sin x$	$\frac{d}{d x} \cos u=-\sin u \frac{d u}{d x}$
$\frac{d}{d x} \tan x=\sec ^{2} x$	$\frac{d}{d x} \tan u=\sec ^{2} u \frac{d u}{d x}$
$\frac{d}{d x} \cot x=-\operatorname{cosec}^{2} x$	$\frac{d}{d x} \cot u=-\operatorname{cosec}^{2} u \frac{d u}{d x}$
$\frac{d}{d x} \sec x=\sec x \tan x$	$\frac{d}{d x} \sec u=\sec u \tan u \frac{d u}{d x}$
$\frac{d}{d x} \operatorname{cosec} x=-\operatorname{cosec} x \cot x$	$\frac{d}{d x} \operatorname{cosec} u=-\operatorname{cosec} u \cot u \frac{d u}{d x}$
$\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}$	$\frac{d}{d x} \sin ^{-1} u=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}$
$\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}$	$\frac{d}{d x} \tan ^{-1} u=\frac{1}{1+u^{2}} \frac{d u}{d x}$

* Equation of tangent to the curve $y=f(x)$ at $A\left(x_{1}, y_{1}\right)$ is $y-y_{1}=\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}\left(x-x_{1}\right)$
* Equation of normal at $\left(x_{1}, y_{1}\right)$ to the curve $y=f(x)$ is $\left(y-y_{1}\right)=\frac{-1}{\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}}\left(x-x_{1}\right)$
* Length of Tangent, Normal, Subtangent and Subnormal

Tangent: PT $=$ MP $\operatorname{cosec} \Psi=y \sqrt{1+\cot ^{2} \psi}=\left|\frac{y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}}{\frac{d y}{d x}}\right|$
Subtangent: TM $=$ MP $\cot \Psi=\left|\frac{\mathrm{y}}{(\mathrm{dy} / \mathrm{dx})}\right|$
Normal: GP $=$ MP $\sec \Psi=y \sqrt{1+\tan ^{2} \psi}=\left|y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}\right|$

Figure 21.9

Subnormal: $M G=M P \tan \Psi=\left|y\left(\frac{d y}{d x}\right)\right|$

* Angle of Intersection of Two Curves

$\tan \Psi=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$,
where m_{1} and m_{2} are the slopes of the tangents T_{1} and T_{2} at the intersection point ($\mathrm{x}_{1}, \mathrm{y}_{1}$).

Figure 21.10

Solved Examples

JEE Main/Boards

Example 1: Show that the function $f(x)=|x|$ is continuous at $x=0$, but not differentiable at $x=0$.

Sol: Evaluate $\mathrm{f}^{\prime}\left(0^{+}\right)$and $\mathrm{f}^{\prime}\left(0^{-}\right)$.
We have $f(x)= \begin{cases}x, & x \geq 0 \\ -x, & x<0\end{cases}$
Since $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=0=f(0)$
The function is continuous at $\mathrm{x}=0$
We also have
$f^{\prime}\left(0^{+}\right)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0} \frac{x-0}{x}=1$
$f^{\prime}\left(0^{-}\right)=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0} \frac{-(-x)-0}{-x}=-1$
Since, $\mathrm{f}^{\prime}\left(0^{+}\right) \neq \mathrm{f}^{\prime}\left(0^{-}\right)$, the function is not differentiable at $x=0$

Example 2: Find the derivative of the function $f(x)$, defined by $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ by $1^{1 \text { ttprinciple. }}$

Sol: Use the first principle to find the derivative of the given function.
Let dy be the increment in y corresponding to an increment dx in x . We have
$y=\sin x$
$y+d y=\sin (x+d x)$

