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Illustration 46: Find out the shortest distance between the line y = x – 2 and the parabola y = x2 + 3x + 2.�
� (JEE MAIN)

Sol: The distance would be minimum at the point on the parabola where y = x + 3x + 3y
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Figure 21.8

the slope of the tangent is equal to the slope of the given line.  �

Let P(x1, y1) is the point closest to the line y = x – 2

Then,
(x ,y )1 1

dy
dx

 = slope of the line 

⇒	 2x1+ 3 = 1  ⇒	 x1 = –1 and y1 = 0

Therefore, point (–1, 0) is the closest and its perpendicular distance from the 
line y = x – 2 gives the shortest distance.

⇒	 Shortest distance = 
3

2
 units

Illustration 47: Which of the following points of the curve y = x2 is closest to (4, – ½)?� (JEE MAIN)

(A) (1, 1)			   (B) (2, 4)			   (C) (2/3, 4/9)			   (D) (4/3, 16/9)

Sol:(A) Using distance formula find the distance of the given point from the curve and find the minima.

Let the required point be (x, y) on the curve.

Hence, d = 2 2(x 4) (y 1 / 2)− + +  should be minimum, which is enough to consider.

D = (x – 4)2 + (y + 1/2)2 = (x – 4)2 + (x2 + 1/2)2

D’ = 4x3 + 4x – 8

Now for critical points 

D’ = 0 so x3 + x – 2 = 0  ⇒ x = 1

Clearly D” at x = 1 is 16 > 0. 

Thus, D is minimum when x = 1. Hence the required point is (1, 1).

PROBLEM-SOLVING TACTICS

•• Reduce any fractions to be as basic as possible. 

•• Recognise when we can use the chain rule. it enables us to differentiate functions that often seem impossible 
to differentiate. Whenever you see a nested function, try to assess if the chain rule is needed (it usually is).

•• We always want to start a long chain of differentiation by differentiating the last part of the function to touch 
the input - in short, the outermost part of the function.



21.26  |   Methods of Differentiation and Applications of Derivatives

FORMULAE SHEET

dc
dx

 = 0 d
dx

(cu) = c du
dx

d
dx

(u ± v) = du
dx

±
dv
dx

d
dx

(uv) = u dv
dx

 + v du
dx

d
dx

u
v

 
 
 

 = 
2

du dvv u
dx dx

v

− dy
dx

 = dy
du

du
dx

d
dx

xn = nxn–1 d
dx

un = nun–1
du
dx

d
dx

ax = (ln a) ax d
dx

au = (ln a) au
du
dx

d
dx

ex = ex d
dx

eu = eu
du
dx

d
dx

logax = 
1

(lna)x
d
dx

logau = 
1

(lna)u
du
dx

d
dx

ln x = 1
x

d
dx

ln u = 1
u

du
dx

d
dx

sin x = cos x d
dx

sin u = cos u du
dx

d
dx

cos x = – sin x d
dx

cos u = – sin u du
dx

d
dx

tan x = sec2 x d
dx

tan u = sec2 u du
dx

d
dx

cot x = – cosec2 x d
dx

cot u = – cosec 2 u du
dx

d
dx

sec x = sec x tan x d
dx

sec u = sec u tan u du
dx

d
dx

 cosec x = – cosec x cot x d
dx

 cosec u = – cosec u cot u du
dx

d
dx

sin–1 x = 
2

1

1 x−

d
dx

sin–1 u = 
2

1

1 u−

du
dx

d
dx

tan–1 x = 
2

1
1 x+

d
dx

tan–1 u = 
2

1
1 u+

du
dx



Mathematics  |   21.27

* Equation of tangent to the curve y = f(x) at A(x1, y1) is y – y1 = 
(x ,y )1 1

dy
dx

 
 
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(x – x1)

* Equation of normal at (x1, y1) to the curve y = f(x) is (y – y1) = 

(x ,y )1 1

1
dy
dx

−
 
 
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(x – x1)

* Length of Tangent, Normal, Subtangent and Subnormal

Tangent: PT = MP cosec Ψ = y 21 cot+ ψ  = 

2
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Subtangent: TM = MP cot Ψ = 
y

(dy / dx)

Normal: GP = MP sec Ψ = y 21 tan+ ψ  = 
2

dyy 1
dx
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Subnormal: MG = MP tan Ψ = 
dyy
dx
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* Angle of Intersection of Two Curves 
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where m1 and m2 are the slopes of the tangents T1 and T2 at the intersection 
point (x1, y1).

Solved Examples

JEE Main/Boards

Example 1: Show that the function f(x) = | x | is 
continuous at x = 0, but not differentiable at x = 0.

Sol: Evaluate f’(0+) and f’(0-).

We have f(x) = 
x, x 0

–x, x 0
 ≥


<

Since
x 0
lim

+→
f(x) = 

–x 0
lim
→

f(x) = 0 = f(0)

The function is continuous at x = 0

We also have

f’(0+) = 
x 0
lim

+→

f(x) f(0)
x
−  = 

x 0
lim
→

x 0
x
−  = 1

f’(0–) = –x 0
lim
→

f(x) f(0)
x
−

= x 0
lim
→

( x) 0
x

− − −
−

 = –1

Since, f’(0+)≠f’(0–), the function is not differentiable at 
x = 0

Example 2: Find the derivative of the function f(x), 
defined by f(x) = sin x by 1stprinciple.

Sol: Use the first principle to find the derivative of the 
given function.

Let dy be the increment in y corresponding to an 
increment dx in x. We have

y = sin x

y +dy = sin (x + dx)


