

# SUBSTITUTION REACTIONS

Substituted benzene molecules have tremendous importance in industrial chemical applications. They are commonly used as solvent and they are often important intermediates in many syntheses, including those of powerful pharmaceutical agents:



MASTERJEE CLASSES

# **In Aliphatic Compounds**

## **Nucleophilic Substitution Reactions**

This substitution is carried out by nucleophile.

#### Free Radical Substitution Reactions

Due to homolysis of bond.

# Mechanism:

- Initiation step :
  - $Cl_2 \xrightarrow{\text{heat}} 2Cl^*$
- Propagation step:

 $CH_4+Cl^{\bullet} \rightarrow CH_3^{\bullet} + HCl$  $Cl_2+CH_3^{\bullet} \rightarrow CH_3Cl + Cl^{\bullet}$ 

· Termination step:

 $Cl^* + Cl^* \rightarrow Cl_2$ 

CH<sub>3</sub> + Cl<sup>\*</sup> → CH<sub>3</sub>Cl

 $CH_3^* + CH_3^* \rightarrow CH_3 - CH_3$ 

## **Electrophilic Substitution Reactions**

This substitution is carried out by electrophile.

Electrophilic substitution is very rare in aliphatic compounds.

Some examples are:

 Replacement of metal atom in an organometallic compound by hydrogen.

 $R = M + H_2 \rightarrow R = H + MH$ 

 Decarboxylation of silver salt of carboxylic acid.

$$R_3C$$
— $C$ — $OAg + Br_2$ 
 $O$ 
 $R_3C$ — $Br + CO_2 + AgBr$ 
 $\leftarrow$ 

### **Important Points**

- Nucleophile approaches the substrate from rear side, opposite to the departing group. Thus, configuration gets inverted.
- Reactivity order:
   Methyl>1">2">3">Allyl>

# S<sub>H</sub>1 Reaction

S<sub>N</sub>1 stands for Substitution Nucleophilic Unimolecular.

R—LG + Nu<sup>-</sup> $\rightarrow R$ —Nu+LG<sup>-</sup>

Rate = k[R] LG]

**Mechanism**: The  $S_N$ 1 mechanism is a two steps process, first one being the slow is the rate determining step.

## Step 1:

$$C-LG \Longrightarrow \frac{m_{G}}{C} + LG$$

Interm

## Step 2:



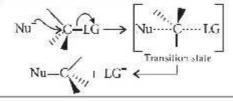
# Important Points

- Planar carbocation is formed in the first step, it is attacked from the front as well as the back side. Thus, product formed is racemic mixture.
- Reactivity depends on the stability of the carbocation formed.

 $Benzyl > Substituted \, allyl > 3^{\circ} > Allyl > 2^{\circ} > 1^{\circ} > \\ Methyl$ 

### Sai Reaction

 $S_N i$  stands for Substitution Nucleophilic Internal. The difference between  $S_N 1$  and  $S_N i$  is actually that the ion pair is not completely dissociated and therefore, unlike  $S_N 1$ , no real carbocation participates in  $S_N i$ .


### S<sub>x</sub>2 Reaction

S<sub>N</sub>2 stands for Substitution Nucleophilic Bimolecular.

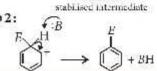
 $Nu^- + R - LG \rightarrow R - Nu + LG^-$ 

Rate =  $k[R \rightarrow LG][Nu^-]$ 

**Mechanism**: The  $S_N 2$  mechanism is a single step process without intermediate.



# **In Aromatic Compounds**


# Electrophilic Substitution Reactions

Arene system is electron rich hence, prefer to undergo substitution by electrophiles.

Mechanism: It is a two steps reaction:

Step 1: Rate determining step,

Step 2:



## **Nucleophilic Substitution Reactions**

Benzene ring is unreactive towards nucleophilic substitution, the presence of electron withdrawing group can activate the ring.

## Substitution via Benzyne Mechanism

It is basically an elimination addition process.

(Cine substitution)

The aromatic substrate loses a molecule of HBr in presence of very strong base to give a benzyne intermediate.

$$\begin{array}{c} \text{OCH}_3 \\ \text{NII}_2 \end{array} \longrightarrow \begin{array}{c} \text{OCH}_3 \\ \text{Benzyne} \\ \text{intermediate} \end{array}$$

Cine substitution: In this, entering group occupies the position adjacent to the leaving group.

