

SOME COMMERCIAL CELLS (BATTERIES)

Batteries are cleverly engineered devices that are based on the same fundamental laws as galvanic cells. A storage cell is a galvanic cell that contains all the reactants needed to produce electricity whereas fuel cell is a galvanic cell that requires a constant external supply of one or more reactants to generate electricity.

DRY CELL

Anode: $Zn_{(s)} \rightarrow Zn_{(aa)}^{2+} + 2e^{-}$

Cathode: $2NH_{4(aq)}^+ + 2MnO_{2(s)} + 2e^- \rightarrow 2MnO(OH)$

Net reaction: $Zn_{(s)} + 2NH_{4(aq)}^+ + 2MnO_{2(s)} \rightarrow Zn_{(aq)}^{2+} + 2MnO(OH) + 2NH_3$

Uses: In transistors and clocks, etc.

LEAD STORAGE CELL

Cell reactions during use of battery:

Anode: $Pb_{(s)} + SO_{4(aq)}^{2-} \rightarrow PbSO_{4(s)} + 2e^{-}$ Cathode: $PbO_{2(s)} + SO_{4(aq)}^{2-} + 4H_{(aq)}^{+} + 2e^{-}$ $\rightarrow PbSO_{4(s)} + 2H_{2}O_{(f)}$

Net reaction:

 $Pb_{(s)} + PbO_{2(s)} + 2H_2SO_{4(aq)} \rightarrow 2PbSO_{4(s)} + 2H_2O_{(l)}$

The reverse reaction takes place during recharging : $2\text{PbSO}_{4(s)} + 2\text{H}_2\text{O}_{(l)} \rightarrow \text{Pb}_{(s)} + \text{PbO}_{2(s)} + 2\text{H}_2\text{SO}_{4(aq)}$

Uses: In automobiles and inverters.

H2 - O2 FUEL CELL

Anode: $2H_{2(g)} + 4OH_{(aq)} \rightarrow 4H_2O_{(l)} + 4\varepsilon^-$ Cathode: $O_{2(g)} + 2H_2O_{(l)} + 4\varepsilon^- \rightarrow 4OH_{(aq)}$

Net reaction : $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(l)}$

Uses: In automobiles on experimental basis, for producing electricity in Apollo Space program, etc.

Fuel cell using H2 and O2 produces electricity.

PRIMARY CELLS

Cells once exhausted cannot be used again therefore, they are not chargeable.

MERCURY CELL (Ruben-Mallory Cell)

Anode: $Zn(Hg) + 2OH_{(aq)}^- \rightarrow ZnO_{(s)} + H_2O_{(l)} + 2\varepsilon^-$

Cathode: $HgO_{(s)} + H_2O_{(l)} + 2e^- \rightarrow Hg_{(l)} + 2OH_{(aq)}^-$ Net reaction: $Zn(Hg) + HgO_{(s)} \rightarrow ZnO_{(s)} + Hg_{(l)}^-$

The cell potential is approximately 1.35 V and

remains constant during its life.

Uses: In watches, hearing aids, etc.

Anode Anode cap

Gasket Cell can Separator Cathode Mercury cell

(The reducing agent is zinc and the oxidising agent is mercury (II) oxide.)

SECONDARY CELLS

Cells which can be used again and again therefore, they are chargeable.

FUEL CELLS

Cells which can convert the energy of combustion of fuels such as H₂, CO, CH₄ etc. into electrical energy.

NICKEL - CADMIUM CELL (or NICAD cell)

Cell reactions during use of battery:

Cathode: $2\text{Ni(OH)}_{3(s)} + 2e^- \rightarrow 2\text{Ni(OH)}_{2(s)} + 2\text{OH}_{(aq)}^-$

Anode: $Cd_{(s)} + 2OH_{(aq)}^- \rightarrow CdO_{(s)} + H_2O_{(l)} + 2e^-$ Net reaction: $Cd_{(s)} + 2Ni(OH)_{3(s)} \rightarrow CdO_{(s)}$

 $+2Ni(OH)_{2(s)} + H_2O_{(l)}$

The reverse reaction takes place during recharging: $CdO_{(s)} + 2Ni(OH)_{2(s)} + H_2O_{(l)} \rightarrow Cd_{(s)} + 2Ni(OH)_{3(s)}$

Uses: In portable electronic devices, emergency lighting, photography equipments, etc.

IT JEE Medical Foundation

A rechargeable nickel-cadmium cell in a jelly roll arrangement and separated by a layer soaked in moist sodium or potassium hydroxide.

CLASSIFICATION OF FUEL CELLS

(i) Alkali fuel cells [electrolyte is $KOH_{(aq)}$] (ii) Phosphoric acid fuel cells [electrolyte is $H_3PO_{4(aq)}$]. (iii) Molten carbonate fuel cells [electrolyte is $K_2CO_{3(f)}/Li_2CO_{3(f)}$] here, methane is used as a fuel. Recently, a zinc-air fuel cell (ZAFC) is developed in USA as a source of power in automobiles in which zinc metal is used in place of hydrogen gas.

÷