

REACTION KINETICS

Apart from playing an important role in industries and study of biological processes, kinetics also plays a role in environmental and atmospheric chemistry as part of an effort to understand a variety of issues ranging from the fate of prescription pharmaceutical in waste water to cascade of reactions involved in the ozone cycle.

Rate of Reaction

Change in concentration of reactants or products as function of time (Unit: $mol L^{-1} s^{-1} or M s^{-1}$)

Differential Rate Equation

$$aA + bB \longrightarrow cC + dD$$

Rate =
$$-\frac{1}{a}\frac{d[A]}{dt} = -\frac{1}{b}\frac{d[B]}{dt} = \frac{1}{c}\frac{d[C]}{dt} = \frac{1}{d}\frac{d[D]}{dt}$$

Instantaneous Rate

Average Rate

$$r_{\text{ins}} = -\frac{d[R]}{dt} = \frac{d[P]}{dt}$$

$$r_{av} = -\frac{\Delta R}{\Delta t} = \frac{\Delta P}{\Delta t}$$

Rate Law/Rate Equation

 The expression of rate in terms of molar concentration of reactants.

For reaction, $aA + bB \longrightarrow cC + dD$ Rate = $k[A]^x[B]^y$

Where, k = rate constant or specific reaction rate.

- Depends only upon temperature.
- Unit of $k = \left(\frac{\text{mol}}{L}\right)^{1/n} s^{-1}$

Order of Reaction

- Sum of powers of concentration terms in the rate law expression.
 e.g., Rate = k[A][B]²
- \therefore Order=1+2=3
- For nth order, t_{1/2} ≈ 1/aⁿ⁻¹
- Experimental concept and can be zero or fractional.
- Depends upon pressure and temperature.

Molecularity of Reaction

- The number of molecules of reactants taking part in elementary step of a reaction.
- Theoretical concept and can never be zero or fractional.
- Independent of pressure and temperature.

Integrated Rate Equation

Zero Order Reaction

- Rate $= k \text{ or } kt [R]_0 [R]$
- Unit of k = mol I.⁻¹s⁻¹
- $t_{1/2}$ (half-life) = $\frac{[R]_0}{2k}$

First Order Reaction

- Rate -k[R] or $k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$
- Unit of k = s⁻¹
- $t_{1/2} = 0.693/k$
- In terms of pressure,

$$k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$$

Useful Relations for First Order Reaction

 $t_{75\%} = 2t_{1/2}, t_{87,5\%} = 3t_{1/2}, t_{93,75\%} = 4t_{1/2}, t_{96,87\%} = 5t_{1/2}, t_{99,9\%} = 10t_{1/2}.$

Second Order Reaction

- Rate = $k[R]^2$ or $1/[R]_t = kt + 1/[R]_0$
- Unit of $k = L \mod^{-1} s^{-1}$
- $t_{1/2} = 1/k[R]_0$

nth Order Reaction

- Rate = $k[R]^n$ or $(n-1)kt = \frac{1}{[R]^{n-1}} - \frac{1}{[R]_{30}^{n-1}}$
- Unit of $k = (\text{mol } L^{-1})^{1-n} s^{-1}$
- $t_{1/2} = 2^{n-1} 1/k(n-1)[R]_0^{n-1}$

Dependency of Rate on Temperature

Arrhenius Equation

- k = Ae F_w/RT
 Here, A = pre-exponential factor
 - R = Gas constant $E_a = \text{Activation energy}$
- $\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{T_2 T_1}{T_1 T_2} \right)$

Activation Energy (Eq)

- Energy required by the reactant molecules for effective collisions to form products.
- The slope of ln k vs 1/T has the value -E_a/R and is used to calculate value of E_a.

Effect of Catalyst on Activation Energy

 A catalyst increases the rate of reaction by providing a path of lower activation energy.

Temperature Coefficient

- It is the ratio of k₂₉₈ to k₃₀₈.
- For every 10" rise in temperature the rate becomes double.

Collision Theory

Rate $= P \cdot Z_{AB} e^{-L_0/RT}$

