PROBLEM-SOLVING TACTICS

To verify SHM see whether force is directly proportional to y or see if $\frac{d^2x}{dt^2} + \omega^2 x = 0$ in cases when the equation is directly given compare with general equation to find the time period and other required answers

FORMULAE SHEET

1. Simple Harmonic Motion (SHM):

- $F = -kx^n$
- n is even Motion of particle is not oscillatory
- n is odd Motion of particle is oscillatory.
- If n = 1, F = -kx or F ∞ -x. The motion is simple harmonic.
- x = 0 is called the mean position or the equilibrium position.

Condition for SHM $\frac{d^2x}{dt^2} \propto -x$

Acceleration,
$$a = \frac{F}{m} = -\frac{k}{m}x = -\omega^2 x$$

Displacement $x = A\cos\left(\omega t + \phi\right)$ (A is Amplitude)
Time period of SHM $T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$
Frequency v of SHM $v = \frac{1}{T} = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$
Velocity of particle $v = \frac{dx}{dt} = -\omega A \sin(\omega t + \phi)$
Acceleration of particle $a = \frac{d^2x}{dt^2} = -\omega^2 A \cos(\omega t + \phi) = -\omega^2 x$
Energy in SHM:
Kinetic energy of particle $= \frac{1}{2}m\omega^2 (A^2 - x^2) = \frac{1}{2}k(A^2 - x^2)$
Potential energy $U = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2 x^2$
Total energy $E = PE + K, E = \frac{1}{2}m\omega^2 A^2 = \frac{1}{2}kA^2$
E is constant throughout the SHM.

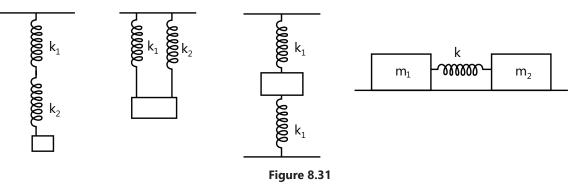
3. Simple pendulum: Time period $T=2\pi \sqrt{\frac{\ell}{g_{eff}}}$

Here, ℓ is length of simple pendulum and $\vec{g}_{eff} = \vec{g} - \vec{a}$ where \vec{g} is acceleration due to gravity and \vec{a} is acceleration of the box or cabin etc. containing the simple pendulum.

4. Spring-block system: Time period $T = 2\pi \sqrt{\frac{m}{k}}$

5. Physical pendulum: Time period
$$T = 2\pi \sqrt{\frac{I}{mg\ell}}$$

Here I is the moment of inertia about axis of rotation and ℓ is the distance of center of gravity from the point of suspension.


6. Torsional Pendulum:

$$T = 2\pi \sqrt{\frac{I}{k}}$$

2.

I is the moment of Inertia about axis passing through wire, k is torsional constant of wire.

7. Springs in series and parallel

Series combination $\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2}$ Parallel combination $k = k_1 + k_2$

8. For two blocks of masses m_1 and m_2 connected by a spring of constant k:

Time period
$$T = 2\pi \sqrt{\frac{\mu}{k}}$$

where $\mu = \frac{m_1 m_2}{m_1 + m_2}$ is reduced mass of the two-block system.