PROBLEM SOLVING TACTICS

Nuclear radius (r)= $R_0 A^{1/3}$, where A= Mass no. , = 1.4×10^{-15} m For calculation of geological dating :

(i) Calculation λ from $t_{1/2},\lambda=\frac{0.693}{t_{1/2}}$

(ii) Calculate uranium converted into lead

(iii) Calculate total initial amount of uranium initially present

(iv) Apply,
$$t = \frac{2.3030}{\lambda} log \frac{N_0}{N}$$

For calculation in carbon dating method

(i) Calculated from
$$t_{1/2}$$

(ii) m% activity of C-14 now present means
$$\frac{N_0}{N} = \frac{m}{100}$$

(iii) Apply,
$$\lambda = \frac{2.3030}{t} log \frac{N_0}{N}$$

POINTS TO REMEMBER

Kinetics of Radioactive Disintegration: All radioactive isotopes decays spontaneously following first order kinetics, i.e, rate of decay (-dN/dt) is directly proportional to the amount of radioactive isotope (N).	$\begin{array}{ll} -\frac{dN}{dt} \propto N & \Rightarrow & -\frac{dN}{dt} \lambdaN \ \ \mbox{Where, '}\lambda'\ \mbox{is decay} \\ \mbox{constant. Integrating the above rate law gives } \lambda t = In \left(\frac{N_0}{N} \right); \\ N_0 = \mbox{Initial number of nuclides} \\ N = \mbox{Number of nuclides remaining after time t. Also } N = N_0 e^{-\lambda t}. \end{array}$
Half-life $(t_{1/2})$: Time in which half of the nuclides are decayed	$t_{1/2} = \frac{1}{\lambda} \ln\left(\frac{N_0}{N_0/2}\right) = \frac{\ln 2}{\lambda}$
Activity (A) It is the instantaneous rate of decay.	$\begin{split} A &= -\frac{dN}{dt} = \lambda N \implies \text{Initial activity} \left(A_0\right) = \lambda N_0 \\ Also \qquad A &= A_0 e^{-\lambda t} \end{split}$
Units of Radioactivity: Curie (Ci) and Rutherford (Rd)	$1Ci=3.7 \times 10^{10} \text{ dps}$ $1Rd = 10^6 \text{ dps}$
Gray (Gy): 1 Gy = 1 kg tissue receiving 1 J energy. If w0 gram of a radioisotope decay for 'n' half-lives, the amount of radio-iso- tope remaining undecayed (w) is given by the expression.	$w = w_0 \left(\frac{1}{2}\right)$
It is a derived unit of ionizing radiation.	

Total Binding Energy (BE) : It is the total energy released when a nucleus is formed from nucleons. BE is determined from mass defect (Δm) as BE = (Δm)C²

 $\Delta m = \sum$ (Mass of nucleons – Mass of nucleus) ($\Delta m = 1u$ correspond to BE=931 MeV)

Unstable nuclei decay by spontaneous emission of radioactive rays. Stability of a nucleus is accounted qualitatively by its N/P ratio (N=Number of neutrons and P=number of protons).

Up to Z=20, for stable nuclei, N/P=1 is required.

Above Z=20, more neutrons are required to shield the strong electrostatic repulsion between large number of like charged protons in a small nuclear volume, hence N/P> 1 is required for stability in case unstable nuclei, if N/P ratio is greater than that required for stability, β -emission takes place, eg,

$$_7 N^{16} \rightarrow_8 O^{16} + \beta \left(_{-1} e^0\right)$$

If N/P ratio is less than that required for stability, radio nuclide may decay by one of the following modes:

(i) Positron emission

(ii) Electron capture

 ${}_{5}B^{8} \xrightarrow{}_{4} Be^{8} + {}_{+1}\beta^{0} \left(\text{Positron} + {}_{+1} e^{0} \right)$ ${}_{20}Ca^{38} + {}_{-1}e^{0} \xrightarrow{}_{19} K^{38}$

Alpha (α) emission occurs when Z>82.