lonic Equilibrium

Solved Examples

JEE Main/Boards

Example 1: Calculate simultaneous solubility of AgCNS and AgBr in a solution of water K_{sp} of $\mathrm{AgCNS}=1 \times 10^{-12}$, $\mathrm{K}_{\text {sp }}$ of $\mathrm{AgBr}=5 \times 10^{-13}$.

Sol: For solution containing common ion, solubility and solubility product are related by following expression.
$\mathrm{K} p \mathrm{p}=\mathrm{S}(\mathrm{S}+\mathrm{c})$
By taking the ratios of solubility product of two solutions, solubility can de determined.
Let the solubility of AgCNS and AgBr in water be a and b respectively.

$$
\begin{array}{r}
\mathrm{AgCNS} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{CNS} \\
\mathrm{a} \quad \mathrm{a} \\
\mathrm{AgBr} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Br}^{-} \\
\mathrm{b} \quad \mathrm{~b}
\end{array}
$$

$\left[\mathrm{Br}^{-}\right]=\mathrm{b}$
$\mathrm{K}_{\text {sp }} \mathrm{AgCNS}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CNS}^{-}\right]=\mathrm{a}(\mathrm{a}+\mathrm{b})$
$1 \times 10^{-12}=a(a+b)$
$\mathrm{K}_{\mathrm{sp}} \mathrm{AgBr}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right]=\mathrm{b}(\mathrm{a}+\mathrm{b})$
$5 \times 10^{-13}=b(a+b)$
Dividing eq. (i) by (ii),
$\frac{1 \times 10^{-12}}{5 \times 10^{-13}}=\frac{a}{b}$
$2=\frac{a}{b}$ or $a=2 b$
Putting the value of a in eq. (i).
$6 b^{2}=1 \times 10^{-12}$
$b^{2}=\frac{1}{6} \times 10^{-12}$
$b=4.08 \times 10^{-7} \mathrm{~mol}^{\mathrm{L}-2}$
$\mathrm{a}=2 \times 4.08 \times 10^{-7}=8.16 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}$
$\left[\mathrm{Ag}^{+}\right]=\mathrm{a}+\mathrm{b},\left[\mathrm{CNS}^{-}\right]=\mathrm{a}$ and

Example 2: MgSO_{4} gives a precipitate with $\mathrm{NH}_{4} \mathrm{OH}$ but not with $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$. Why?

Sol: No doubt $\mathrm{NH}_{4} \mathrm{OH}$ is weak base but it provides appreciable OH^{-}ion to exceed the product of ionic concentration of Mg^{2+} and OH^{-}than their $\mathrm{K}_{\text {sp }}$ and thus MgSO_{4} is precipitated out as $\mathrm{Mg}(\mathrm{OH})_{2}$. On the other hand the dissociation of $\mathrm{NH}_{4} \mathrm{OH}$ is suppressed in presence of $\mathrm{NH}_{4} \mathrm{Cl}$ and thus $\left[\mathrm{OH}^{-}\right.$] diminishes to the extent that $\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}<\mathrm{K}_{\text {sp }}$. Thus, MgSO_{4} is not precipitated.

Example 3: An aqueous solution contains 0.1 M of Ba^{2+} and $0.1 \mathrm{M} \mathrm{Ca}^{2+}$. Calculate the maximum concentration of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ at which one of them is completely precipitated almost completely. What \% of that ion is precipitated?
$\mathrm{K}_{\text {sp }}$ of $\mathrm{BaSO}_{4}=1.5 \times 10^{-9}$;
$\mathrm{K}_{\text {sp }}$ of $\mathrm{CaSO}_{4}=2 \times 10^{-4}$.
Sol: $\left[\mathrm{SO}_{4}^{-}\right]$needed for precipitation of $\left[\mathrm{Ba}^{2+}\right]$ as BaSO_{4} $=\frac{\mathrm{K}_{\mathrm{sp}}}{\mathrm{Bs}^{2+}}=\frac{1.5 \times 10^{-9}}{0.1}=1.5 \times 10^{-8}$
$\left[\mathrm{SO}_{4}^{2-}\right]$ needed for precipitation of $\left[\mathrm{Ca}^{2+}\right]$ as CaSO_{4}
$=\frac{2 \times 10^{-4}}{0.1}=2 \times 10^{-3}$.
Thus, $\left[\mathrm{SO}_{4}^{2-}\right]$ required for precipitation of BaSO_{4} is less and thus BaSO_{4} will precipitate first. The precipitation of BaSO_{4} will start when $\left[\mathrm{Na}_{2} \mathrm{SO}_{4}\right]$ is 1.5×10^{-8} and will be maximum when $\left[\mathrm{Na}_{2} \mathrm{SO}_{4}\right]$ is 2×10^{-3}.

Thus, maximum $\left[\mathrm{Na}_{2} \mathrm{SO}_{4}\right]$ required for precipitation of $\mathrm{Ba}^{2+}=2 \times 10^{-3} \mathrm{M}$. At this conc, of $\mathrm{SO}_{4}^{2-},\left[\mathrm{Ba}^{2+}\right]$ left in solution is

$$
\begin{aligned}
& {\left[\mathrm{Ba}^{2+}\right]_{\text {eft }}=\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{SO}_{4}^{2-}\right]}=\frac{1.5 \times 10^{-9}}{2 \times 10^{-3}}=7.5 \times 10^{-7}} \\
& \therefore \% \text { of } \mathrm{Ba}^{2+} \mathrm{left}=\frac{7.5 \times 10^{-7} \times 100}{0.1}=7.5 \times 10^{-4} \%
\end{aligned}
$$

$\therefore \%$ of Ba^{2+} precipitated
$=100-7.5 \times 10^{-4}=99.9992 \%$

Example 4: Will a precipitate of $\mathrm{Mg}(\mathrm{OH})_{2}$ be formed in a 0.001 M solution of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2^{\prime}}$, if the pH of solution is adjusted to 9 ?
K_{sp} of $\mathrm{Mg}(\mathrm{OH})_{2}=8.9 \times 10^{-12}$.

Sol: If $\mathrm{K}_{\text {sp }}$ of $\mathrm{Mg}(\mathrm{OH})_{2}>\mathrm{K}_{\text {sp }}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ in solution, precipitation will not occur.
If K_{sp} of $\mathrm{Mg}(\mathrm{OH})_{2}<\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ in solution, precipitation will occur.
Given. $\mathrm{pH}=9 ; \therefore\left[\mathrm{H}^{+}\right]=10^{-9}$
or $\left[\mathrm{OH}^{-}\right]=10^{-5}$
0. $001 \mathrm{MMg}\left(\mathrm{NO}_{3}\right)_{2}$ is present in a solution of $\left[\mathrm{OH}^{-}\right]=$ 10^{-5}

Then product of ionic concentration for $\mathrm{Mg}(\mathrm{OH})_{2}$
$=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
$=[0.001]\left[10^{-5}\right]^{2}$
$=10^{-3}<K_{\text {sp }}$, i. e., 8.9×10^{-12}
Therefore, $\mathrm{Mg}(\mathrm{OH})_{2}$, will not precipitate out.

Example 5: Calculate the solubility of AgCN in a buffer solution of $\mathrm{pH}=3$. Given $\mathrm{K}_{\text {sp }}$ of $\mathrm{AgCN}=1.2 \times 10^{-16}$ and K_{a} for $\mathrm{HCN}=4.8 \times 10^{-10}$.

Sol: Solution Let solubility of AgCN be a mol litre ${ }^{-1}$
$\mathrm{AgCN} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{CN}^{-}$
a a (After reaction)
However, the CN^{-}formed will react with H^{*} to form HCN $\mathrm{CN}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{HCN}$
a $10^{-3} \quad$ (Before reaction)
$0 \quad 10^{-3}$ a (After reaction)
(buffer)
$\therefore\left[\mathrm{Ag}^{+}\right]=\mathrm{a}$ and $[\mathrm{HCN}]=\mathrm{a}$
Since HCN is weak acid and has low degree of dissociation. Also its dissociation is suppressed in presence of $\left[\mathrm{H}^{+}\right]$. Thus
Now $\mathrm{HCNH}^{+}+\mathrm{CN}^{-}$
$\therefore \frac{\left[\mathrm{CN}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HCN}]}=\mathrm{K}_{\mathrm{a}}$
or $\left[\mathrm{CN}^{-}\right]=\frac{\mathrm{K}_{\mathrm{a}}[\mathrm{HCN}]}{\left[\mathrm{H}^{+}\right]}=\frac{\mathrm{a} \times\left(4.8 \times 10^{-10}\right)}{10^{-3}}$
Now for $\mathrm{AgCN}(\mathrm{s})=\mathrm{aq} . \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{CN}^{-}$
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CN}^{-}\right]$
$1.2 \times 10^{-16}=\frac{\mathrm{a} \times \mathrm{a} \times 4.8 \times 10^{-10}}{10^{-3}}$
$\because \mathrm{a}^{2}=\frac{1.2 \times 10^{-16} \times 10^{-3}}{4.8 \times 10^{-10}}$
$\therefore \mathrm{a}=1.58 \times 10^{-5} \mathrm{~mol}_{\mathrm{l}} \mathrm{litr}^{-1}$

Example 6: The dissociation constant for aniline, acetic acid and water at 25 C are $3.83 \times 10^{-10}, 1.75 \times 10^{-5}$ and 1 . 008×10^{-14} respectively. calculate degree of hydrolysis of aniline acetate in a deci normal solution. Also report its Ph.

Sol:

Aniline $^{+}+$Acetate $^{-}+\mathrm{H}_{2} \mathrm{O}$								Aniline + Acetic Acid
Before hydrolysis	1	1	0	0				
After hydrolysis $(1-\mathrm{h})$	$(1-\mathrm{h})$	h	h					

Let concentration of salt be c mol litre ${ }^{-1}$

$$
\begin{aligned}
& \therefore K_{H}=\frac{[\text { Aniline }][\text { Acetic acid }]}{\left[\text { Aniline }^{+}\right]\left[\text {Acetate }^{-1}\right]}=\frac{\mathrm{ch} \cdot \mathrm{ch}}{\mathrm{c}(1-\mathrm{h}) \mathrm{c}(1-\mathrm{h})} \\
& \mathrm{K}_{\mathrm{H}}=\frac{\mathrm{h}^{2}}{(1-\mathrm{h})^{2}} \text { or } \frac{\mathrm{h}}{1-\mathrm{h}}=\sqrt{\mathrm{K}_{\mathrm{H}}}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}}} \\
& =\sqrt{\frac{1.008 \times 10^{-14}}{1.75 \times 10^{-5} \times 3.83 \times 10^{-10}}} \\
& \therefore \mathrm{~h}=54.95 \%
\end{aligned}
$$

$$
\text { Also, } \mathrm{pH}=\frac{1}{2}\left[\log \mathrm{~K}_{\mathrm{b}}-\log \mathrm{K}_{\mathrm{w}}-\log \mathrm{K}_{\mathrm{a}}\right]
$$

$$
=\frac{1}{2} \log \left[3.83 \times 10^{-10}\right]-\log \left[1.008 \times 10^{-14}\right]
$$

$$
\mid-\log \left[1.75 \times 10^{-5}\right]=4.6683
$$

If $K_{H}=h^{2}$ is assumed (assuming $1-h \approx 1$), the value of h comes greater than 1 which is not possible and thus 1 - h should not be neglected.

Example 7: A solution has $0.05 \mathrm{M} \mathrm{Mg}{ }^{2+}$ and 0.05 M NH_{3}. Calculate the concentration of $\mathrm{NH}_{4} \mathrm{Cl}$ required to prevent the formation of $\mathrm{Mg}(\mathrm{OH})_{2}$ in solution.
$\mathrm{K}_{\text {sp }}$ of $\mathrm{Mg}(\mathrm{OH})_{2}=9.0 \times 10^{-12}$ and
K_{b} of $\mathrm{NH}_{3}=1.8 \times 10^{-5}$
Sol: Suppose VmL of solution containing $0.1 \mathrm{M} \mathrm{Mg}{ }^{2+}$ and $0.8 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$. Now V mL of NH_{3} of a M is added to it in order to have just precipitation of $\mathrm{Mg}(\mathrm{OH})_{2}$, then
$\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\mathrm{K}_{\mathrm{spMg}(\mathrm{OH})_{2}}$
or $\left[\frac{0.1 \times \mathrm{V}}{2 \mathrm{~V}}\right]\left[\mathrm{OH}^{-}\right]^{2}=1.4 \times 10^{-5}$
$\left[\therefore\left[\mathrm{Mg}^{2+}\right]=\frac{\text { Milli moles }}{\text { Total Volume }}\right]$
$\therefore\left[\mathrm{OH}^{-}\right]=1.67 \times 10^{-5} \mathrm{M}$

The solution must therefore, contain $\left[\mathrm{OH}^{-}\right]$equal to $=$ 1. $67 \times 10^{-5} \mathrm{M}$. Which are obtained by buffer solution of NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$
$\therefore-\operatorname{logOH}=-\log \mathrm{K}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { Base }]}$
or $-\log \left[1.67 \times 10^{-5}\right]$
$=-\log \left[1.8 \times 10^{-5}\right]+\log \frac{(0.8 \times \mathrm{V}) / 2 \mathrm{~V}}{(\mathrm{a} \times \mathrm{V}) / 2 \mathrm{~V}}$
$\therefore \mathrm{a}=0.7421 \mathrm{M}$
$\therefore\left[\mathrm{NH}_{3}\right]$ in solution $=\frac{0.7421 \times \mathrm{V}}{2 \mathrm{~V}}=0.3710 \mathrm{M}$.

Example 8: Calculate the molarity of an acetic acid solution if 34.57 mL of this solution are needed to neutralize 25.19 mL of 0.1025 M sodium hydroxide
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COOHa}$ $(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Sol: Strategy:

1. Figure out how many moles of the titrant (in this case, the base) were needed.
$25.19 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.02519 \mathrm{~L}$
$0.02519 \mathrm{~L} \times \frac{0.1025 \mathrm{~mol}}{1 \mathrm{~L}}=0.002582 \mathrm{~mol} \mathrm{NaOH}$
2. Use the balanced chemical equation to calculate the moles of analyte (in this case, the acid) present. 0. 002582 mol
$\mathrm{NaOH} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}}{1 \mathrm{~mol} \mathrm{NaOH}}=0.002582 \mathrm{~mol} \mathrm{CH} 33 \mathrm{COOH}$
3. Use the volume of analyte to find the concentration of the analyte.
$34.57 \mathrm{ml} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.03457 \mathrm{~L}$
$\frac{0.002582 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}}{0.03457 \mathrm{~L}}=0.07469 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$

Example 9: Calculate the dissociation constant of $\mathrm{NH}_{4} \mathrm{OH}$ at $25^{\circ} \mathrm{C}$, if $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ for the given changes are as follows:

$$
\left.\begin{array}{ll}
\mathrm{NH}_{3}+\mathrm{H}^{+} \rightleftharpoons \mathrm{NH}_{4}^{+} ; \quad & \Delta \mathrm{H}^{\circ}=-52.2 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \\
& \Delta \mathrm{S}^{\circ}=+1.67 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
\end{array}\right]=\begin{aligned}
& \Delta \mathrm{H}^{\circ}=56.6 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \\
& \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} ; \\
& \Delta \mathrm{S}^{\circ}=-78.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} ;
\end{aligned}
$$

Sol: First calculate free energy from the given value of enthalpy and entropy by using the following expression,
$\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{TDS}^{\circ}$
Value of free energy change can be used to estimate the value of equilibrium constant can be calculated as $\Delta G^{\circ}=-2.303 R T \log K_{b}$
$\mathrm{NH}_{3}+\mathrm{H}^{+} \rightleftharpoons \mathrm{NH}_{4}^{+} ; \Delta \mathrm{H}^{\circ}=-52.2 \mathrm{~kJ}$
Adding,
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} ; \Delta \mathrm{H}^{\circ}=+56.6 \mathrm{~kJ}$
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} ;$
$\Delta \mathrm{H}^{\circ}=+4.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Similarly, $\Delta \mathrm{S}^{\circ}$ for the change $=-76.53 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}$ or for the change
$\mathrm{NH}_{4} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$;
$\Delta \mathrm{H}^{\circ}=4.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{S}^{\circ}=-76.53 \mathrm{jk}^{-1} \mathrm{~mol}^{-1}$
Now, we have $\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
$\therefore \Delta G^{\circ}=4.4-\left(-76.53 \times 10^{-3}\right) \times 298=27.21 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Also, $\Delta G^{\circ}=-2.303 R T \log K_{b}$
$27.21=-2.303 \times 8.314 \times 10^{-3} \times 298 \times \log K_{b}$ $\therefore \mathrm{K}_{\mathrm{b}}=1.7 \times 10^{-5}$

JEE Advanced/Boards

Example 1: Prove that the degree of dissociation of a weak monoprotic acid is given by $\alpha=\frac{1}{1+10^{\left(\mathrm{pK}_{\mathrm{a}}-\mathrm{pH}\right)}}$ where K_{a} is the dissociation constant of the acid.

Sol: Suppose we start with $\mathrm{C} \mathrm{mol} \mathrm{L}^{-1}$ of the monoprotic acid HA. Then

$$
\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}
$$

Initial molar conc. C
Molar conc. $\quad \mathrm{C}-\mathrm{C} \alpha \quad \mathrm{C} \alpha \quad \mathrm{Ca}$
After dissociation $=C(1-\alpha)$
Thus , $K_{a}=\frac{C \alpha \cdot C \alpha}{C(1-\alpha)}=\frac{C \alpha^{2}}{1-\alpha}$
$\operatorname{OrC}=\frac{\mathrm{K}_{\mathrm{a}}(1-\alpha)}{\alpha^{2}}$
Also, $\left[\mathrm{H}^{+}\right]=\mathrm{C} \alpha$
Substituting the value of C from eqs. (i), we get
$\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a}}(1-\alpha)}{\alpha^{2}} \times \alpha=\frac{\mathrm{K}_{\mathrm{a}}(1-\alpha)}{\alpha}$
$\therefore-\log \left[\mathrm{H}^{+}\right]=\left[\log \mathrm{K}_{\mathrm{a}}+\log (1-\alpha)-\log \mathrm{a}\right]$
OrpH $=\mathrm{pK}_{\mathrm{a}}-\log (1-\alpha)-\log a$
Or $\log \frac{1-\alpha}{\alpha}=\mathrm{pK}_{\mathrm{a}}-\mathrm{pH}$
Or $\frac{1-\alpha}{\alpha}=10^{\mathrm{pk}_{\mathrm{a}}-\mathrm{pH}}$
$\operatorname{Or} \frac{1}{\alpha}-1=10^{p k_{a}-\mathrm{pH}}$
$\operatorname{Or} \frac{1}{\alpha}=1+10^{p k_{a}-p H}$
Or $\alpha=\frac{1}{1+10^{\mathrm{pK}_{a}-\mathrm{pH}}}$

Example 2: The solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ is increases by the addition of NH_{4}^{+}ion. Calculate K_{c} for,
$\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4}^{+} \rightleftharpoons 2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Mg}^{2+}$
$\mathrm{K}_{\mathrm{spMg}(\mathrm{OH})_{2}}=6 \times 10^{-12}, \mathrm{~K}_{\mathrm{bNH}_{3}}=1.8 \times 10^{-5}$.
Sol: The given reaction is:
$\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4}^{+} 2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Mg}^{2+}$
$\therefore \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{Mg}^{2+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]^{2}}$
$=\frac{\left[\mathrm{NH}_{4} \mathrm{OH}\right]^{2}\left[\mathrm{Mg}^{2+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]^{2}}$
For $\mathrm{NH}_{4} \mathrm{OH}$, a weak base
$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{4} \mathrm{OH}\right]}$
By Eqs. (i) and (ii)
$\mathrm{K}_{\mathrm{c}} \times\left(\mathrm{k}_{\mathrm{b}}\right)^{2}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
$=\mathrm{K}_{\mathrm{spMg}(\mathrm{OH})_{2}}$
$\therefore \mathrm{K}_{\mathrm{c}}=\frac{\mathrm{K}_{\text {sp }}}{\left(\mathrm{K}_{\mathrm{b}}\right)^{2}}=\frac{6 \times 10^{-12}}{\left(1.8 \times 10^{-5}\right)^{2}}=1.85 \times 10^{-2}$

Example 3: $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution is titrated against 0.05 M NaOH solution. Calculate pH at $1 / 4$ th and th stages of neutralization of acid. The pH for 0.1 M $\mathrm{CH}_{3} \mathrm{COOH}$ is 3 .

Sol: Given pH for $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}=3$
$\therefore\left[\mathrm{H}^{+}\right]=10^{-3}$
Or c $\alpha=10^{-3}$

Or $\alpha=\frac{10^{-3}}{0.1}=10^{-2}$
$k a=c \alpha^{2}=(0.1) \times\left(10^{-2}\right)^{2}=10^{-5}$
Case I: At 1/4th neutralization of acid

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}
$$

Before addition
0.1
of NaOH
After addition $0.1 \times(3 / 4) \quad 0.1 \times(1 / 4)$
of NaOH
$\because \mathrm{pH}=-\log \mathrm{K}_{\mathrm{a}}+\log \frac{\begin{array}{c}\text { [conjugate } \\ \text { base] }\end{array}}{[\text { Acid }]}$
Or $\mathrm{pH}=-\log 10^{-5}+\log \frac{(0.1 / 4)}{(0.3 / 4)} \Rightarrow \mathrm{pH}=4.5228$

Case II:

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}
$$

After $3 / 4 \quad 0.1 \times(1 / 4) \quad 0.1 \times(3 / 4)$
neutralization

$$
\therefore \mathrm{pH}=-\log \left[10^{-5}\right]+\log \frac{0.3 / 4}{0.1 / 4} \Rightarrow \mathrm{pH}=5.4771
$$

Example 4: 500 mL of 0.2 M aqueous solution of acetic acid is mixed with 500 mL of 0.2 M HCl at $25^{\circ} \mathrm{C}$.
(i) Calculate the degree of dissociation of acetic acid in the resulting solution and pH of the solution.
(ii) If 6 g of NaOH is added to the above solution, determine the final pH .
[Assume there is no change in volume in mixing; K_{a} of acetic acid is $\left.1.75 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right]$

Sol: (i) Meq. of $\mathrm{CH}_{3} \mathrm{COOH}=500 \times 0.2=100$
Meq. of $\mathrm{HCl}=500 \times 0.2=100$
$\therefore[\mathrm{HCl}]=\frac{100}{1000}=0.1$;
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{100}{1000}=0.1$

For $\mathrm{CH}_{3} \mathrm{COOH}$:

$$
\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}
$$

Before 0.1
 0
 0.1

dissociation (from HCl)

$$
\text { After }(0.1-X) \quad X \quad(0.1+X)
$$

dissociation
$\therefore \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\frac{\mathrm{X}(0.1+\mathrm{X})}{(0.1-\mathrm{X})}$
Due to common ion effect dissociation of $\mathrm{CH}_{3} \mathrm{COOH}$ is very small in presence of HCl .
Therefore, $(0.1+X)=0.1$ and $(0.1-X)=0.1$
$\therefore \mathrm{K}_{\mathrm{a}}=\frac{\mathrm{X} \cdot 0.1}{0.1}$
$\therefore \mathrm{X}=\mathrm{K}_{\mathrm{a}}=1.75 \times 10^{-5}$
Thus, degree of dissociation
$\alpha=\frac{X}{0.1}=\frac{1.75 \times 10^{-5}}{0.1}=1.75 \times 10^{-4}$
$=0.000175=0.0175 \%$
Also, $\left[\mathrm{H}^{+}\right]=0.1+\mathrm{X}=0.1(\mathrm{X} \ll 0.1)$
$\therefore \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log [0.1]=1$
(ii) Eq. of NaOH or mole of NaOH added $=6 / 40=0.15$

Therefor, new equilibrium will have,

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$					
0.1	0.1	0.15	0	0	0
0.05	0	0	0.05	0	0

Thus, the solution will act as acidic buffer having
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{0.05}{1000}$
and $\left[\mathrm{CH}_{3} \mathrm{COONa}\right]=\frac{0.05}{1000}$
Thus, $\mathrm{pH}=-\log \mathrm{K}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]}$
$=-\log \left[1.75 \times 10^{-5}\right]+\log \frac{[0.05 / 1000]}{[0.05 / 1000]}=4.757$
Example 5: The average concentration of SO_{2} in the atmosphere over a city on a certain day is 10 ppm , when the average temperature is 298 K . Given that the solubility of SO_{2} in water at 298 K is $1.3653 \mathrm{~mol}^{\text {litre }}{ }^{-1}$ and the pK_{a} of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 1.92. Estimate the pH of rain on that day.

Sol: Use henry's law to find out $\left[\mathrm{SO}_{2}\right]$ dissolved in water. Concentration of SO_{2} in air is 10 ppm or 10 mole in 10^{6} mole air or 10^{-5} mole SO_{2} per mol of air. The concentration of SO_{2} in air being substantial and since, rain water is falling from enormously great height so, each drop of rain water will get saturated with SO_{2} before it reaches earth.

Now the given concentration or solubility of SO_{2} at 298 K is 1.3653 M .

This value of solubility corresponds when $\mathrm{P}_{\mathrm{SO}_{2}}=1 \mathrm{~atm}$ Thus, according to Henry's law
$\left[\mathrm{SO}_{2}\right]$ dissolved in water $\propto \mathrm{P}_{\mathrm{SO}_{2}}$ in gas phase
$\left[\mathrm{SO}_{2}\right]$ dissolved in water $\propto \mathrm{P}_{\mathrm{SO}_{2}}$ in air
$\therefore\left[\mathrm{SO}_{2}\right]$ dissolved in water $=1.3653 \times 10^{-5} \mathrm{M}$
$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}+\mathrm{HSO}_{3}^{-}$
100
$(1-\alpha) \quad$ a a
$\therefore K_{a}=10^{-1.92}=\frac{c \alpha \cdot c \alpha}{c(1-\alpha)}=\frac{c \alpha^{2}}{1-\alpha}(\alpha$ is small $)$
or $0.012=\frac{1.3653 \times 10^{-5} \times \alpha^{2}}{1-\alpha}$
$\left(\because \mathrm{pK}_{\mathrm{b}}=1.92, \therefore \mathrm{~K}_{\mathrm{b}}=0.012\right)$
$\therefore 1.3653 \times 10^{-5} \alpha^{2}+0.012 \alpha-0.012=0$
$\therefore \alpha=1$
(Solving quadratic equation)
$\therefore\left[\mathrm{H}^{+}\right]=\mathrm{c} \alpha=1.3653 \times 1=1.3653$
$\therefore \mathrm{pH}=4.8648$

Example 6: Why is it acceptable to use an indicator whose pK_{a} is not exactly the pH at the equivalence point?

Sol: As we can see in the following titration curve, even if the pK_{a} of the indicator is several units away from the pH at the equivalence point, there is only a negligible change in volume of titrant added due to the steep slope of the titration curve near the equivalence point.

Example 7: What is the pH of the following solutions?
(a) $10^{-3} \mathrm{M} \mathrm{HCl}$
(b) 0.0001 M NaOH
(c) $0.0001 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

Sol: (a) HCl is a strong electrolyte and is completely ionised.
$\mathrm{HCl} \mathrm{H}+\mathrm{Cl}^{-}$
So, $\left[\mathrm{H}^{+}\right]=10^{-3} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(10^{-3}\right)=3$
(b) NaOH is a strong electrolyte and is completely ionized.
$\mathrm{NaOH} \mathrm{Na}+\mathrm{OH}^{-}$
So, $\left[\mathrm{H}^{+}\right]=0.0001 \mathrm{M}=10^{-4} \mathrm{M}$
$\mathrm{pOH}=-\log \left(10^{-4}\right)=4$
As $\mathrm{pH}+\mathrm{pOH}=14$
So, $\mathrm{pH}+4=14 \mathrm{~s}$
or $\mathrm{pH}=10$

Alternative method:

$\left[\mathrm{OH}^{-}\right]=10^{-4} \mathrm{M}$
We know that, $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
So, $\left[\mathrm{H}^{+}\right]=\frac{1.0 \times 10^{-14}}{10^{-4}}=10^{-10} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(10^{-10}\right)=10$
(c) $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a strong electrolyte and is ionized completely.
$\mathrm{H}_{2} \mathrm{SO}_{4} 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}$
One molecule of $\mathrm{H}_{2} \mathrm{SO}_{4}$ furnishes $2 \mathrm{H}^{+}$ions.
So, $\left[\mathrm{H}^{+}\right]=2 \times 10^{-4} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(2 \times 10^{-4}\right)=3.70$

Example 8: If very small amount of phenolphthalein is added to 0.15 mol litre ${ }^{-1}$ solution of sodium benzoate what fraction of the indicator will exist in the coloured from? State any assumption that you make.
$K_{a}($ Benzoic acid $)=6.2 \times 10^{-5}$,
$\mathrm{K}_{\mathrm{w}}\left(\mathrm{H}_{2} \mathrm{O}\right)=1 \times 10^{-14}$,
$\mathrm{K}_{\mathrm{ln}}($ Phenolphthalein $)=3.16 \times 10^{-10}$
Sol: Use the following expression to find out pH of salt hydrolysis and pH of indicator.

Formula for pH of salt hydrolysis:
$\mathrm{pH}=\frac{1}{2}\left[\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a}}+\log \mathrm{C}\right]$
Formula for pH of indicator:
$\mathrm{pH}=\mathrm{pK}_{\mathrm{In}}+\log _{10} \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}$
Substitute the values in the above equation,
For pH of salt hydrolysis:
$=\frac{1}{2}\left[14-\log _{10} 6.2 \times 10^{-5}+\log 0.15\right]=8.6918$
For pH of indicator:
$8.6918=-\log _{10}\left(3.16 \times 10^{-10}\right)+\log _{10} \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}$
$0.16=\left[\mathrm{In}^{-}\right] /[\mathrm{HIn}]=$ Fraction of indicator in coloured form

JEE Main/Boards

Exercise 1

Q. 1 The degree of dissociation of acetic acid in a 0.1 N solution is 1.32×10^{-2}. At what concentration of nitrous acid, its degree of dissociation will be same as that of acetic acid?
$\mathrm{K}_{\mathrm{a}}\left(\mathrm{HNO}_{2}\right)=4 \times 10^{-4}$
Q. 2 How many times is the H^{+}concentration in the blood ($\mathrm{pH}=7.36$) greater than in the spinal fluid ($\mathrm{pH}=7.53$)?
Q. 3 A 0.400 M formic acid solution freezes at -0. $758^{\circ} \mathrm{C}$. Calculate the K_{a} of the acid at that temperature. (Assume molarity equal to molality). $\mathrm{K}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}\right)$ is $1.86^{\circ} \mathrm{mol}^{-1} \mathrm{~kg}$.
Q. 4 A sample of AgCl was treated with 5 mL of 1.5 M $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to give $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ the remaining solution contained $0.0026 \mathrm{~g} /$ /litre Cl^{-}ion. Calculate the solubility of AgCl .
Q. 5100 mL of solution S_{1} contains 0.17 mg of AgNO_{3}. Another 200 mL solution S_{2} contains 0.117 mg of NaCl . On mixing these two solutions predict whether the precipitate of AgCl will appear or not $\mathrm{K}_{\mathrm{sp}} \mathrm{AgCl}=10^{-10} \mathrm{M}^{2}$
Q. 6 An indicator is a weak acid and the pH range of its colour is 3.1 to 4 . 5. If the neutral point of the indicator lies in the centre of the hydrogen ion concentrations corresponding to given pH range, calculate the ionization constant of the indicator.
Q. 7 Calculate the hydrolysis constant of $\mathrm{NH}_{4} \mathrm{Cl}$; determine the degree of hydrolysis of this salt in 0.01 M solution and the pH of the solution. $\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=1.8 \times 10^{-5}$
Q. 8 Calculate the pH of 0.1 M acetic acid solution if its dissociation constant is 1.8×10^{-5}. If 1 litre of this solution is mixed with 0.05 mole of HCl , what will be the pH of the mixture
Q. 9 It is found that 0.1 M solution of three sodium salts $\mathrm{NaX}, \mathrm{NaY}$ and NaZ have pHs 7. $0,9.0$ and 11. 0 , respectively. Arrange the acids HX, HY and HZ in order of increasing strength. Where possible, calculate the ionisation constants of the acids.
Q. 10 Given a solution that is $0.5 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$. To what volume at $25^{\circ} \mathrm{C}$ must one dm^{3} of this solution be diluted in order to (a) double the pH ; (b) double the hydroxideion concentration. Given that $K_{a}=1.8 \times 10^{-5} \mathrm{M}$.
Q. 11 The solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ is increased by addition of NH_{4}^{+}ion.
$\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4}^{+} \rightleftharpoons 2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Mg}^{2+}$
If $\mathrm{K}_{\text {sp }}$ of $\mathrm{Mg}(\mathrm{OH})_{2}=1 \times 10^{-11}, \mathrm{~K}_{\mathrm{b}}$ for $\mathrm{NH}_{4} \mathrm{OH}=1.8 \times 10^{-5}$ then calculate K_{c} for the reaction.
Q. 12 An unknown volume and unknown concentration of weak acid HX is titrated with NaOH of unknown concentration. After addition of $10.0 \mathrm{~cm}^{3}$ of NaOH solution, pH of solution is 5.8 and after the addition of $20.0 \mathrm{~cm}^{3}$ of NaOH solution, the pH is 6.4 . Calculate the pH of aqueous solution of 0.1 M NaX .
Q. 13 A solution containing zinc and manganese ions each at a concentration of $0.01 \mathrm{~mol} \mathrm{dm}^{3}$ is saturated with $\mathrm{H}_{2} \mathrm{~S}$. Calculate
(i) pH at which the MnS will form a precipitate
(ii) Conc, of Zn^{+2} ions remaining.

Given: $\left[\mathrm{H}_{2} \mathrm{~S}\right]=0.1 \mathrm{~mol} / \mathrm{lit}$,
$\mathrm{K}_{\mathrm{sp}}(\mathrm{ZnS})=1 \times 10^{-22} \mathrm{~mol}^{2} \mathrm{lit}^{-2}$,
$\mathrm{K}_{\mathrm{sp}}(\mathrm{MnS})=5.6 \times 10^{-16} \mathrm{~mol}^{1 \mathrm{lit}^{-2}}$.
K_{1} and K_{2} for $\mathrm{H}_{2} \mathrm{~S}$ are 1×10^{-7} and 1.1×10^{-14}
Q. 14 For the indicator thymol blue, the value of pH is 2.0, when half of the indicator is present in an unionized form. Calculate the percentage of the indicator in the unionized form in a solution of $4.0 \times 10^{-3} \mathrm{~mol} / \mathrm{dm}^{3}$ hydrogen ion concentration.
Q. 15 The first ionization constant of $\mathrm{H}_{2} \mathrm{~S}$ is 9.1×10^{-8}. Calculate the concentration of HS^{-}ion in its 0.1 M solution. How will this concentration be affected if the solution is 0.1 M in HCl also? If the second dissociation constant of $\mathrm{H}_{2} \mathrm{~S}$ is 1.2×10^{-13}. Calculate the concentration of S^{2-} under both conditions.
Q. 16 The ionization constant of acetic acid is 1.74×10^{-5}. Calculate the degree of dissociation of acetic acid in its 0.05 M solution. Calculate the concentration of acetate ion in the solution and its pH .
Q. 17 It has been found that the pH of a 0.01 M solution of an organic acid is 4. 15. Calculate the concentration of the anion, the ionization constant of the acid and its pK^{a}
Q. 18 Assuming complete dissociation, calculate the pH of the following solutions:
(i) 0.003 M HCl
(ii) 0.005 M NaOH
(iii) 0.002 M HBr
(iv) 0.002 M KOH
Q. 19 Calculate the pH of the following solutions:
(i) 2 g of TlOH dissolved in water to give 500 ml of solution.
(ii) 0.3 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to give 2 litre of solution
(iii) 0.3 g of NaOH dissolved in water to give 200 mL of solution.
(iv) 1 mL of 13.6 M HCl is diluted with water to give 1 litre of solution
Q. 20 If the solubility product of silver oxalate is $1 \times$ 10^{-11}, what will be the weight of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in 2.5 litres of a saturated solution?
Q. 21 Determine hydrolysis constant, degree of hydrolysis and the pH of 0.01 M solution of ammonium cyanide. $\mathrm{K}_{\mathrm{a}}(\mathrm{HCN})=7.2 \times 10^{-10} . \mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$
Q. 22 Assuming that the buffer in blood is $\mathrm{CO}_{3}^{-}-\mathrm{HCO}_{3}^{-}$, calculate the ratio of conjugate base to acid necessary to maintain blood at its proper $\mathrm{pH}, 7.4 \mathrm{~K}_{1}\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)=4$. 5×10^{-7}.
Q. 23 How many moles of sodium hydroxide can be added to 1.0 L of a solution 0.10 M in NH_{3} and 0.10 M in $\mathrm{NH}_{4} \mathrm{Cl}$ without changing the pOH by more than 1 unit. Assume no change in volume. $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$

Exercise 2

Single Correct Choice Type

Q. 1 The conjugate acid of NH_{2}^{-}is
(A) NH_{3}
(B) $\mathrm{NH}_{2} \mathrm{OH}$
(C) NH_{4}^{+}
(D) $\mathrm{N}_{2} \mathrm{H}_{4}$
Q. 2 Out of the following, amphiprotic species are
I. $\mathrm{HP} \mathrm{O}_{3}^{2-}$
II. OH^{-}
III. $\mathrm{H}_{2} \mathrm{P} \mathrm{O}_{4}^{-}$
IV. HCO_{3}^{-}
(A) I, III, IV
(B) I and III
(C) III and IV
(D) All
Q. 3 pH of an aqueous solution of NaCl at $85^{\circ} \mathrm{C}$ should be
(A) 7
(B) >7
(C) <7
(D) 0
Q. 41 cc of 0.1 N HCl is added to 99 cc solution of NaCl . The pH of the resulting solution will be
(A) 7
(B) 3
(C) 4
(D) 1
Q. 510 ml of $\frac{\mathrm{M}}{200} \mathrm{H}_{2} \mathrm{SO}_{4}$ is mixed with 40 ml of $\frac{\mathrm{M}}{200}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$. The pH of the resulting solution is
(A) 1
(B) 2
(C) 2.3
(D) None of these
Q. 6 If pK_{b} for fluoride ion at $25^{\circ} \mathrm{C}$ is 10.83 , the ionisation constant of hydrofluoric acid in water at this temperature is:
(A) 1.74×10^{-5}
(B) 3.52×10^{-3}
(C) 6.75×10^{-4}
(D) 5.38×10^{-2}
Q. 7 The pH of an aqueous solution of 1.0 M solution of a weak monoprotic acid which is 1% ionised is
(A) 1
(B) 2
(C) 3
(D) 11
Q. 8 If K_{1} and K_{2} be first and second ionization constant of $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{K}_{1} \gg \mathrm{~K}_{2}$ which is incorrect.
(A) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]$
(B) $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{1}\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]$
(C) $\mathrm{K}_{2}=\left[\mathrm{HPO}_{4}^{-}\right]$
(D) $\left[\mathrm{H}^{+}\right]=3\left[\mathrm{PO}_{4}^{3-}\right]$
Q. 9 Which of the following solution will have pH close to 1.0 ?
(A) 100 ml of $\mathrm{M} / 100 \mathrm{HCl}+100 \mathrm{ml}$ of $\mathrm{M} / 10$
(B) 55 ml of $\mathrm{M} / 10 \mathrm{HCl}+45 \mathrm{ml}$ of $\mathrm{M} / 10 \mathrm{NaOH}$
(C) 10 ml of $\mathrm{M} / 10 \mathrm{HCl}+90 \mathrm{ml}$ of $\mathrm{m} / 10 \mathrm{NaOH}$
(D) 75 ml of $\mathrm{M} / 5 \mathrm{HCl}+25 \mathrm{ml}$ of $\mathrm{M} / 5 \mathrm{NaOH}$
Q. 10 What is the percentage hydrolysis of NaCN in $\mathrm{N} / 80$ solution when the dissociation constant for HCN is 1.3×10^{-9} and $K_{w}=1.0 \times 10^{-14}$
(A) 2.48
(B) 5.26
(C) 8.2
(D) 9.6
Q. 11 The compound whose 0.1 M solution is basic is
(A) Ammonium acetate
(B) Ammonium chloride
(C) Ammonium sulphate
(D) Sodium acetate
Q. 12 The $\approx \mathrm{pH}$ of the neutralisation point of 0.1 N ammonium hydroxide with 0.1 N HCl is
(A) 1
(B) 6
(C) 7
(D) 9
Q. 13 If equilibrium constant of
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ Is 1.8×10^{-5}, equilibrium constant for

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \text { is }
$$

(A) 1.8×10^{-9}
(B) 1.8×10^{-9}
(C) 5.55×-10^{-9}
(D) 5.55×10^{10}
Q. 14 The pK_{a} of a weak acid, HA , is 4. 80. The pK_{b} of a weak base, BOH , is 4.78 . The pH of an aqueous solution of the corresponding salt, BA, will be:
(A) 8.58
(B) 4.79
(C) 7.01
(D) 9.22
Q. 15 The range of most suitable indicator which should be used for titration of $\mathrm{X}^{-} \mathrm{Na}^{+}(0.1 \mathrm{M}, 10 \mathrm{ml})$ with 0.1 M HCl should be (Given: $\mathrm{K}_{\mathrm{b}\left(\mathrm{X}^{-}\right)}=10^{-6}$)
(A) 2-3
(B) 3-5
(C) 6-8
(D) 8-10
Q. 16 The solubility of $A_{2} X_{3}$ is $y ~ m o l ~ d m-3 . ~ I t s ~ s o l u b i l i t y ~$ product is
(A) $6 y^{2}$
(B) $64 y^{4}$
(C) $36 y^{5}$
(D) $108 y^{5}$
Q. 17 If $\mathrm{K}_{\text {sp }}$ for HgSO_{4} is 6.4×10^{-5}, then solubility of this substance in mole per m^{3} is
(A) 8×10^{-3}
(B) 6.4×10^{-5}
(C) 8×10^{-6}
(D) None of these
Q. 18 The solubility of a sparingly soluble salt $A B_{2}$ in water is $1.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$. Its solubility product is:
(A) 10-15
(B) 10^{-10}
(C) 4×10^{-15}
(D) 4×10^{-10}
Q. 19 Which of the following is most soluble in water?
(A) $\mathrm{MnS}\left(\mathrm{K}_{\text {sp }}=8 \times 10^{-37}\right)$
(B) $\mathrm{ZnS}\left(\mathrm{K}_{\mathrm{sp}}=7 \times 10^{-16}\right)$
(C) $\mathrm{Bi}_{2} \mathrm{~S}_{3}\left(\mathrm{~K}_{\mathrm{sp}}=1 \times 10^{-72}\right)$
(D) $\mathrm{Ag}_{3}\left(\mathrm{PO}_{4}\right)\left(\mathrm{K}_{\text {sp }}=1.8 \times 10^{-18}\right)$
Q. 20 When equal volumes of the following solutions are mixed, precipitation of $\mathrm{AgCl}\left(\mathrm{K}_{\mathrm{sp}}=1.8 \times 10^{-10}\right)$ will occur only with:
(A) $10^{-4} \mathrm{M}\left(\mathrm{Ag}^{+}\right)$and $10^{-4} \mathrm{M}\left(\mathrm{Cl}^{-}\right)$
(B) $10^{-5} \mathrm{M}\left(\mathrm{Ag}^{+}\right)$and $10^{-5} \mathrm{M}\left(\mathrm{Cl}^{-}\right)$
(C) $10^{-6} \mathrm{M}\left(\mathrm{Ag}^{+}\right)$and $10^{-6} \mathrm{M}\left(\mathrm{Cl}^{-}\right)$
(D) $10^{-10} \mathrm{M}\left(\mathrm{Ag}^{+}\right)$and $10^{-10} \mathrm{M}\left(\mathrm{Cl}^{-}\right)$
Q. 21 The precipitate of $\mathrm{CaF}_{2}\left(\mathrm{~K}_{\text {sp }}=1.7 \times 10^{-10}\right)$ is obtained when equal volumes of the following are mixed
(A) $10^{-4} \mathrm{M} \mathrm{Ca}^{3+}+10^{-4} \mathrm{M} \mathrm{F}^{-}$
(B) $10^{-2} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{M} \mathrm{F}^{-}$
(C) $10^{-5} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{M} \mathrm{F}^{-}$
(D) $10^{-3} \mathrm{M} \mathrm{Ca}^{2+}+10^{-5} \mathrm{M} \mathrm{F}^{-}$
Q. 2250 litre of a solution containing 10^{-5} mole of Ag^{+}is mixed with 50 litre of a $2 \times 10^{-7} \mathrm{M} \mathrm{HBr}$ solution. [$\left.\mathrm{Ag}^{+}\right]$in resultant solution is: [Given: $\mathrm{K}_{\text {sp }}(\mathrm{AgBr})=5 \times 10^{-13}$]
(A) $10^{-5} \mathrm{M}$
(B) $10^{-6} \mathrm{M}$
(C) $10^{-7} \mathrm{M}$
(D) None of these
Q. 23 pH of a saturated solution of silver salt of monobasic acid HA is found to be 9.

Find the $K_{\text {sp }}$ of sparingly soluble salt $A g A(s)$. Given: $K_{a}(H A)=10^{-10}$
(A) 1.1×10^{-11}
(B) 1.1×10^{-10}
(C) 10^{-12}
(D) None of these
Q. 24 The solubility of metal sulphides in saturated solution of $\mathrm{H}_{2} \mathrm{~S}\left\{\left[\mathrm{H}_{2} \mathrm{~S}\right]=0.1 \mathrm{M}\right\}$ can be represented by
$\mathrm{MS}+2 \mathrm{H}^{+} \rightarrow \mathrm{M}^{2+}+\mathrm{H}_{2} \mathrm{~S}$;
$K_{\text {eq }}=\frac{\left[\mathrm{M}^{2+}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]}{\left[\mathrm{H}^{+}\right]^{2}}$
The value of $k_{\text {eq }}$ is given for few metal sulphide. If conc, of each metal ion in solution is 0.01 M , which metal sulphides are selectively ppt at total $\left[\mathrm{H}^{+}\right]=1 \mathrm{M}$ in saturated $\mathrm{H}_{2} \mathrm{~S}$ solution.
$\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{M}^{2+}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]}{\left[\mathrm{H}^{+}\right]^{2}}$

Mns	ZnS	CoS	PbS
3×10^{10}	3×10^{-2}	3	3×10^{-7}

(A) $\mathrm{MnS}, \mathrm{ZnS}, \mathrm{CoS}$
(B) $\mathrm{PbS}, \mathrm{ZnS}, \mathrm{CoS}$
(C) $\mathrm{PbS}, \mathrm{ZnS}$
(D) PbS
Q. 25 Solid $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is gradually dissolved in a $1.0 \times 10^{-}$ ${ }^{4} \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. At what concentration of Ba^{2+} will a precipitate begin to form? $\left(\mathrm{K}_{\text {sp }}\right.$ for $\left.\mathrm{BaCO}_{3^{\prime}}=5.1 \times 10^{-9}\right)$
(A) $4.1 \times 10^{-5} \mathrm{M}$
(B) $5.1 \times 10^{-5} \mathrm{M}$
(C) $8.1 \times 10^{-8} \mathrm{M}$
(D) $8.1 \times 10^{-7} \mathrm{M}$
Q. $26 \mathrm{~K}_{\text {sp }}$ of MX_{4} and solubility of MX_{4} is $\mathrm{S} \mathrm{mol} /$ litre is related by:
(A) $\mathrm{S}=\left[\mathrm{K}_{\mathrm{sp}} / 256\right]^{1 / 5}$
(B) $S=\left[128 / K_{\text {SP }}\right]^{1 / 4}$
(C) $S=\left[256 \mathrm{~K}_{\mathrm{SP}}\right]^{1 / 5}$
(D) $\mathrm{S}=\left[\mathrm{K}_{\mathrm{SP}} / 128\right]^{1 / 4}$

Previous Years' Questions

Q. 1 A 0.004 M solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is isotonic with a 0 . 010 M solution of glucose at same temperature. The apparent degree of association of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is
(2004)
(A) 25%
(B) 50%
(C) 75%
(D) 85%
Q. $2 \mathrm{~K}_{\text {sp }}$ for $\mathrm{Cr}(\mathrm{OH})_{3}$ is 2.7×10^{-31}. What is its solubility in moles/litre.
(2004)
(A) 1×10^{-8}
(B) 8×10^{-8}
(C) 1.1×10^{-8}
(D) 0.18×10^{-8}
Q. $3 \mathrm{pK}_{\mathrm{a}}$ of acetic acid is 4.74. The concentration of $\mathrm{CH}_{3} \mathrm{COONa}$ is 0.01 M . The pH of $\mathrm{CH}_{3} \mathrm{COONa}$ is (2004)
(A) 8.37
(B) 4.37
(C) 4.74
(D) 0.474
Q. 4 A weak acid HX has the dissociation constant 1 $\times 10^{-5} \mathrm{M}$. It forms a salt NaX on reaction with alkali. The degree of hydrolysis of 0.1 M solution of NaX is
(2004)
(A) 0.0001%
(B) 0.01%
(C) 0.1%
(D) 0.15%
Q. 5 In the given reaction, the oxide of sodium is
$\left[\begin{array}{l}4 \mathrm{Na}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O} \\ \mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}\end{array}\right]$
(2002)
(A) Acidic
(B) Basic
(C) Amphoteric
(D) Neutral
Q. 6 The dissociation of water at $25^{\circ} \mathrm{C}$ is $1.9 \times 10^{-7} \%$ and the density of water is $1.0 \mathrm{~g} / \mathrm{cm}^{3}$. The ionisation constant of water is
(1995)
(A) 3.42×10^{-6}
(B) 3.42×10^{-8}
(C) 1.00×10^{-14}
(D) 2.00×10^{-16}
Q. 7 Which of the following statement (s) is (are) correct
(1998)
(A) The pH of $1.0 \times 10^{-8} \mathrm{M}$ solution of HCl is 8
(B) The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is HPO_{4}^{2-}
(C) Autoprotolysis constant of water increases with temperature
(D) When a solution of a weak monoprotic acid is treated against a strong base, at half-neutralization point $\mathrm{pH}=\left(\frac{1}{2}\right) \mathrm{pK}_{\mathrm{a}}$
Q. 8 A buffer solution can be prepared from a mixture of
(1999)
(A) Sodium acetate and acetic acid in water
(B) Sodium acetate and hydrochloric acid in water
(C) Ammonia and ammonium chloride in water
(D) Ammonia and sodium hydroxide in water

Each of the questions given below consists of two statements, an assertion (Assertion) and reason (Reason). Select the number corresponding to the appropriate alternative as follows
(A) If both assertion and reason are true and reason is the correct explanation of assertion.
(B) If both assertion and reason are true and reason is not the correct explanation of assertion.
(C) If assertion is true but reason is false.
(D) If assertion is false but reason is true.
Q. 9 Assertion: BaCO_{3} is more soluble in HNO_{3} than in plain water.
(2006)

Reason: Carbonate is a weak base and reacts with the H^{+}from the strong acid, causing the barium salt to dissociate.
Q. 10 Assertion: CHCl_{3} is more acidic than CHF_{3} (2003) Reason: The conjugate base of CHCl_{3} is more stable than CHF_{3}.
Q. 11 The PK_{a} of a weak acid HA is 4.80. The pK_{a} of a weak base, BOH , is 4.78 . The pH of an aqueous solution of the corresponding salt, BA will be
(2008)
(A) 9.58
(B) 4.79
(C) 7.01
(D) 9.22
Q. 12 The equilibrium constants $K_{p_{1}}$ and $K_{p_{2}}$ for the reaction $x \rightleftarrows 2 Y$ and $Z \rightleftarrows P+Q$, respectively are in the ratio of $1: 9$ the degree of dissociation of X and Z be equal then ration of total pressure at these equilibria is (2008)
(A) $3: 36$
(B) $1: 1$
(C) $1: 3$
(D) $1: 9$
Q. 13 Solubility product of silver bromide is 5.0×10^{-13}. The quantity of potassium bromide (molar mass taken as $120 \mathrm{~g} \mathrm{of}_{\mathrm{mol}}{ }^{-1}$) to be added to 1 litre of 0.05 M solution of silver nitrate to start the precipitation of AgBr is (2010)
(A) $1.2 \times 10^{-10} \mathrm{~g}$
(B) $1.2 \times 10^{-9} \mathrm{~g}$
(C) $6.2 \times 10^{-5} \mathrm{~g}$
(D) $5.0 \times 10^{-8} \mathrm{~g}$
Q. 14 In aqueous solution the ionization constants for carbonic acid are $\mathrm{K}_{1}=4.2 \times 10^{-7}$ and $\mathrm{K}_{2}=4.8 \times 10^{-11}$ Select the correct statement for a saturated 0.034 M solution of the carbonic acid.
(2010)
(A) The concentration of CO_{3}^{2-} is 0.034 M .
(B) The concentration of $\mathrm{CO}_{3}{ }^{2-}$ is greater than that of $\mathrm{HCO}_{3}{ }^{-}$
(C) The concentration of H^{+}and $\mathrm{HCO}_{3}{ }^{-}$are approximately equal.
(D) The concentration of H^{+}is double that of HCO_{3}^{-}
Q. 15 At $25^{\circ} \mathrm{C}$, the solubility product of $\mathrm{Mg}(\mathrm{OH})^{2}$ is 1.0×10^{-11}. At which precipitating in the from of $\mathrm{Mg}(\mathrm{OH})_{2}$ from a solution $0.001 \mathrm{M} \mathrm{Mg}^{2+}$
(2010)
(A) 9
(B) 10
(C) 11
(D) 8
Q. 16 The strongest acid amongst the following compounds is:
(2011)
(A) HCOOH
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{CI}) \mathrm{CO}_{2} \mathrm{H}$
(C) $\mathrm{CICH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
(D) $\mathrm{CH}_{3} \mathrm{COOH}$
Q. 17 A vessel at 1000 K contains CO_{2} with a Pressure of 0.5 atm. Some of the CO_{2} is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm the value of K is
(2011)
(A) 3 atm
(B) 0.3 atm
(C) 0.18 atm
(D) 1.8 atm
Q. 18 The pH of a 0.1 molar solution of the acid HQ is 3 . The value of the ionization constant, Ka of this acid is:
(2012)
(A) 3×10^{-1}
(B) 1×10^{-3}
(C) 1×10^{-5}
(D) 1×10^{-7}
Q. 19 How many litres of water must be added to 1 litre an aqueous solution of HCl with a pH of 1 to create an aqueous solution with pH of 2 ?
(2013)
(A) 0.1 L
(B) 0.9 L
(C) 2.0 L
(D) 9.0 L
Q. 20 The equilibrium constant at 298 K for the reaction $A+B \rightleftharpoons C+D$ is 100 . If the initial concentration of all the four species were 1 M each, then equilibrium concentration of D (in $\mathrm{mol} \mathrm{L}^{-1}$) will be:
(2016)
(A) 0.818
(B) 1.818
(C) 1.182
(D) 0.182

JEE Advanced/Boards

Exercise 1

Q. 1 Calculate the number of H^{+}present in one ml of solution whose pH is 13 .
Q. 2 Calculate change in concentration of H^{+}ion in one litre of water, when temperature changes from 298 K to 310 K .

Given $K_{w}(298)=11^{-14}(310)=2.56 \times 10^{-14}$.
Q. 3 (i) K_{w} for $\mathrm{H}_{2} \mathrm{O}$ is 9.62×10^{-14} at $60^{\circ} \mathrm{C}$.

What is pH of water at $60^{\circ} \mathrm{C}$.
(ii) What is the nature of solution at $60^{\circ} \mathrm{C}$ whose
(a) $\mathrm{pH}=6.7$ (b) $\mathrm{pH}=6.35$
Q. 4 The value of K_{w} at the physiological temperature $\left(37^{\circ} \mathrm{C}\right)$ is 2.56×10^{-14}. What is the pH at the neutral point of water at this temperature?
Q. 5 Calculate pH of following solutions:
(a) $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(50 \mathrm{ml})+0.4 \mathrm{M} \mathrm{HCl} 50(\mathrm{ml})$
(b) $0.1 \mathrm{M} \mathrm{HA}+0.1 \mathrm{M} \mathrm{HB}$
$\left[K_{a}(H A)=2 \times 10^{-5} ; \mathrm{K}_{a}(\mathrm{HB})=4 \times 10^{-5}\right]$
Q. 6 What are the concentration of $\mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4^{\prime}} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}^{-}$ and $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ in a 0.1 M solution of oxalic acid?
$\left[K_{1}=10^{-2} \mathrm{M}\right.$ and $\left.\mathrm{K}_{1}=10^{-5} \mathrm{M}\right]$
Q. 7 What are the concentrations of $\mathrm{H}^{+}, \mathrm{HSO}_{4}^{-} \mathrm{SO}_{4}^{2-}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ in a 0.20 M solution of sulphuric acid?
Given: $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-}$; strong $\mathrm{HSO}_{4}^{-} \rightarrow 1 \mathrm{H}^{+}+$ $\mathrm{SO}_{4}^{2-} ; \mathrm{K}_{2}=1.3 \times 10^{-2} \mathrm{M}$
Q. 8 Calculate the pH of a solution which results from the mixing of 50.0 ml of 0.3 M HCl with 50.0 ml of 0 . $4 \mathrm{MNH}_{3}$.
$\left[\mathrm{pk}_{\mathrm{a}}\left[\mathrm{NH}_{4}{ }^{+}\right]=9.26\right]$
Q. 9 Calculate the pH of a solution made by mixing 50.0 ml of $0.2 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl} \& 75.0 \mathrm{ml}$ of 0.1 M NaOH .
$\left[\mathrm{pk}_{\mathrm{a}}[\mathrm{NaOH}]=0.2\right]$
Q. 10 What indicator should be used for the titration of 0 . $10 \mathrm{M} \mathrm{KH}_{2} \mathrm{BO}_{3}$ with 0.10 M HCl ? $\mathrm{K}_{\mathrm{a}}\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)=7.2 \times 10^{-10}$
Q. 11 An acid indicator has a K_{a} of 3×10^{-5}. The acid form of the indicator is red and the basic form is blue. By how much must the pH change in order to change the indicator form 75% red to 75% blue?
Q. 12 What is the OH^{-}concentration of a 0.08 M solution of $\mathrm{CH}_{3} \mathrm{COONa}$. $\left[\mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.8 \times 10^{-5}\right]$
Q. 13 Calculate the pH of a 2.0 M solution of $\mathrm{NH}_{4} \mathrm{Cl}$.
$\left[K_{b}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}\right]$
Q. 14 Calculate OH^{-}concentration at the equivalent point when a solution of 0.1 M acetic acid is titrated with a solution of 0.1 M NaOH . $\left[\mathrm{K}_{\mathrm{a}}\right.$ for the acid $\left.=1.9 \times 10^{-5}\right]$
Q. 15 Calculate the hydronium ion concentration and pH at the equivalence point in the reaction of 22.0 mL of 0.10 M acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, with 22.0 mL of 0.10 $\mathrm{M} \mathrm{NaOH} .\left[\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right]$
Q. 16 The values of K_{sp} for the slightly soluble salts MX and QX_{2} are each equal to 4.0×10^{-18}. Which salt is more soluble? Explain your answer.
Q. 17 Calculate the Simultaneous solubility of AgSCN and AgBr. $\mathrm{K}_{\text {sp }}(\mathrm{AgSCN})=1.1 \times 10^{-12} \mathrm{~K}_{\text {sp }}(\mathrm{AgBr})=5 \times 10^{-13}$.
Q. 18 A solution contains $\mathrm{HCl}, \mathrm{Cl}_{2} \mathrm{HCCOOH} \& \mathrm{CH}_{3} \mathrm{COOH}$ at concentrations 0.09 M in $\mathrm{HCl}, 0.09 \mathrm{M}$ in $\mathrm{Cl}_{2} \mathrm{HCCOOH}$ $\& 0.1 \mathrm{M} \mathrm{in} \mathrm{CH}_{3} \mathrm{COOH} . \mathrm{pH}$ for the solution is 1. Ionization constant of $\mathrm{CH}_{3} \mathrm{COOH}=10^{-5}$. What is the magnitude of K for dichloroacetic acid?
Q. 19 Determine the $\left[S^{2-}\right]$ in a saturated (0.1 M) $\mathrm{H}_{2} \mathrm{~S}$ solution to which enough HCl has been added to produce a $\left[\mathrm{H}^{+}\right]$of $2 \times 10^{-4} . \mathrm{K}_{1}=10^{-7}, \mathrm{~K}_{2}=10^{-14}$.
Q. 20 What is the pH of a 1.0 M solution of acetic acid? To what volume must 1 litre of the solution be diluted so that the pH of the resulting solution will be twice the original value. Given $K_{a}=1.8 \times 10^{-5}$.
Q. 21 It is desired to prepare 100 ml of a buffer of pH 5. 00. Acetic, benzoic and formic acids and their salts are available for use. Which acid should be used for maximum effectiveness against increase in pH ? What acid-salt ratio should be used? pK_{a} values of these acids are: acetic 4. 74; benzoic 4.18 and formic 3.68 .
Q. 22 When a 40 mL of a 0.1 M weak base is titrated with 0.16 M HCl , the pH of the solution at the end point is 5.23 . What will be the pH if 15 mL of 0.12 M NaOH is added to the resulting solution.
Q. 23 A buffer solution was prepared by dissolving 0.05 mol formic acid $\& 0.06 \mathrm{~mol}$ sodium formate in enough water to make 1.0 L of solution. K_{a} for formic acid is 1.80×10^{-4}.
(a) Calculate the pH of the solution.
(b) If this solution were diluted to 10 times its volume, what would be the pH ?
(c) If the solution in (b) were diluted to 10 times its volume, what would be the pH ?

Exercise 2

Single Correct Choice Type

Q. 1 A solution with pH 2.0 is more acidic than the one with pH 6.0 by a factor of:
(A) 3
(B) 4
(C) 3000
(D) 10000
Q. 2 The first and second dissociation constants of an acid $H_{2} A$ are 1.0×10^{-5} and 5.0×10^{-10} respectively The overall dissociation constant of the acid will be:
(A) 5.0×10^{-5}
(B) 5.0×10^{15}
(C) 5.0×10^{-15}
(D) 0.2×10^{5}
Q. 3 An aqueous solution contains $0.01 \mathrm{M} \mathrm{RNH}_{2}$
$\left(\mathrm{K}_{\mathrm{b}}=2 \times 10^{-6}\right) \& 10^{-4} \mathrm{M} \mathrm{NaOH}$.
The concentration of OH is nearly:
(A) 2.414×10^{-4}
(B) $10^{-4} \mathrm{M}$
(C) 1.414×10^{-4}
(D) 2×10^{-4}
Q. 4 The degree of hydrolysis of a salt of weak acid and weak base in it's 0.1 M solution is found to be 50%. If the molarity of the solution is 0.2 M , the percentage hydrolysis of the salt should be
(A) 100\%
(B) 50%
(C) 25%
(D) None of these
Q. 5 The pH of the neutralisation point of 0.1 N ammonium hydroxide with 0.1 N HCl is
(A) 1
(B) 6
(C) 7
(D) 9
Q. 6 If equilibrium constant of

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Is 1.8×10^{-5}, equilibrium constant for
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-1} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$ is
(A) 1.8×10^{-9}
(B) 1.8×10^{9}
(C) 5.55×10^{-9}
(D) 5.55×10^{10}
Q. 7 The $\mathrm{pK}_{\mathrm{a}^{\prime}}$ of a weak acid, HA , is 4. 80. The pK_{b} of a weak base, BOH , is 4.78 . The pH of an aqueous solution of the corresponding salt, BA , will be:
(A) 8.58
(B) 4.79
(C) 7.01
(D) 9.22
Q. 8 How many gm of solid NaOH must be added to 100 ml of a buffer solution which is 0.1 M each w . r. t. Acid HA and salt $\mathrm{Na}^{+} \mathrm{A}^{-}$to make the pH of solution 5.5. Given $\mathrm{pk}_{\mathrm{a}}(\mathrm{HA})=5$. (Use antilog $(0.5)=3.16$)
(A) 2.08×10^{-1}
(B) 3.05×10^{-3}
(C) 2.01×10^{-2}
(D) None of these
Q. 9 If 40 ml of 0.2 M KOH is added to 160 ml of 0.1 $\mathrm{M} \mathrm{HCOOH}\left[\mathrm{K}_{\mathrm{a}}=2 \times 10^{-4}\right]$, the pOH of the resulting solution is
(A) 3.4
(B) 3.7
(C) 7
(D) 10.3
Q. 101 M NaCl and 1 M HCl are present in an aqueous solution. The solution is
(A) Not a buffer solution and with $\mathrm{pH}<7$
(B) Not a buffer solution with $\mathrm{pH}>7$
(C) A buffer solution with $\mathrm{pH}<7$
(D) A buffer solution with $\mathrm{pH}>7$
Q. 11 The pK_{a} of a weak acid (HA) is 4. 5. The pOH of an aqueous buffered solution of HA in which 50% of the acid is ionized is:
(A) 4.5
(B) 2.5
(C) 9.5
(D) 7.0
Q. 12 In the following reaction:

$$
\begin{aligned}
& {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})\right]^{+}+\left[\underset{\mathrm{A}}{\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}}\right]^{3+}} \\
& \left.\rightleftharpoons \underset{\mathrm{C}}{\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right.}\right]^{2+}+\underset{\mathrm{D}}{\left.2 \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}}
\end{aligned}
$$

(A) C is the conjugate base of A, and D is the conjugate acid of B
(B) A is a base and B the acid
(C) C is the conjugate acid of A, and D is the conjugate base of B
(D) None of the above
Q. 13 Which does not react with NaOH or which is not acid salt?
(A) $\mathrm{NaH}_{2} \mathrm{PO}_{2}$
(B) $\mathrm{Na}_{2} \mathrm{HPO}_{3}$
(C) $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
(D) NaHCO_{3}
Q. 14 pH of the following solution is affected by dilution:
(A) $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$
(B) $0.01 \mathrm{M} \mathrm{NaHCO}_{3}$
(C) Buffer of $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$ and $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
(D) $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONH}_{4}$
Q. 15 Which of the following mixtures does not constitute a buffer?
(A) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
(B) $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{NaHCO}_{3}$
(C) $\mathrm{NaCl}+\mathrm{HCl}$
(D) $\mathrm{NH}_{4} \mathrm{Cl}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
Q. 16 Which of the following mixtures constitute a buffer?
(A) $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl}$
(B) $\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH}$
(C) $\mathrm{NH}_{3}+\mathrm{CH}_{3} \mathrm{COONH}_{4}$
(D) $\mathrm{NaOH}+\mathrm{BaCl}_{2}$

Multiple Correct Choice Type

Q. 17 In which of the following pairs of solutions is there no effect on the pH upon dilution?
(A) $0.1 \mathrm{M} \mathrm{NH}_{3}$ and $0.1 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
(B) $0.1 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$ and $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$
(C) 0.1 M HCl and 0.01 M NaOH
(D) 0.1 M KCl and 0.1 M HCl
Q. 18 Which of the following statement(s) is/are correct?
(A) The pH of $1.0 \times 10^{-8} \mathrm{M}$ solution of HCl is 8
(B) The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is HPO_{4}^{2-}
(C) Autoprotolysis constant of water increases with temperature
(D) When a solution of a weak monoprotic acid is titrated again a strong base, at half neutralization point $\mathrm{pH}=(1 / 2) \mathrm{pKa}$.
Q. 19 A 2. 5 gm impure sample containing weak monoacidic base (Mol. wt. $=45$) is dissolved in 100 ml water and titrated with 0.5 M HCl when $\left(\frac{1}{5}\right)^{\text {th }}$ of the base was neutralised the pH was found to be 9 and at equivalent point pH of solution is 4.5. Given: All data at $25^{\circ} \mathrm{C} \& \log 2=0.3$.

Select correct statement(s).
(A) K_{b} of base is less than 10^{-6}
(B) Concentration of salt (C) at equivalent point is 0.25 M
(C) Volume of HCl is used at equivalent point is 100 ml
(D) Weight percentage of base in given sample is 80%.
Q. 20 Select incorrect statement(s).
(A) Phenolphthalein is suitable indicator for the titration of $\mathrm{HCl}(\mathrm{aq})$ with $\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})$.
(B) An acid-base indicator in a buffer solution of $\mathrm{pH}=$ $\mathrm{pK}_{\mathrm{In}}+1$ is ionized to the extent of 90%.
(C) In the titration of a monoacidic weak base with a strong acid, the pH at the equivalent point is always calculated by
$\mathrm{pH}=\frac{1}{2}\left[\mathrm{pK}_{\mathrm{w}}-\mathrm{pK}_{\mathrm{b}}-\log \mathrm{C}\right]$
(D) When $\mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ is titrated with $\mathrm{HCl}(\mathrm{aq})$, the pH of solution at second equivalent point is calculated by $\frac{1}{2}\left[\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}\right]$
Q. 21 Which of the following is true for alkaline aqueous solution?
(A) $\mathrm{pH}>\frac{\mathrm{pK}_{\mathrm{w}}}{2}$
(B) $\mathrm{pH}>\mathrm{pOH}$
(C) $\mathrm{pOH}<\frac{\mathrm{pK}_{\mathrm{w}}}{2}$
(D) $\mathrm{pH}<\mathrm{pOH}$
Q. 22 An acid-base indicator has a Ka of 3.0×10^{-5}. The acid form of the indicator is red and the basic form is blue, then:
(A) pH is 4.05 when indicator is 75% red
(B) pH is 5.00 when indicator is 75% blue.
(C) pH is 5.00 when indicator is 75% red
(D) pH is 4.05 when indicator is 75% blue.
Q. 23 The equilibrium constant for the reaction
$\mathrm{HONO}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{HCN}(\mathrm{aq})+\mathrm{ONO}^{-}(\mathrm{aq})$ is $1.1 \times 10^{+6}$.

From the magnitude of this Keq one can conclude that
(A) CN^{-}is stronger base than ONO^{-}
(B) HCN is a stronger acid than HONO
(C) The conjugate base of HONO^{-}is ONO^{-}
(D) The conjugate acid of CN^{-}is HCN
Q. 24 Which of the following are acid-base conjugate pairs:
(A) $\mathrm{HF}_{\mathrm{F}} \mathrm{F}^{-}$
(B) $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OH}^{-}$
(C) $\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}, \mathrm{CH}_{3} \mathrm{NH}_{2}$
(D) $\mathrm{HS}^{-}, \mathrm{S}_{2}^{-}$
Q. 25 Which of the following will suppress the ionization of phthalic acid in an aqueous solution.
(A) KCl
(B) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(C) HNO_{3}
(D) NaOH

Match the Columns

Q. 26 Match the following

List I	List II weak
(A) $\mathrm{CH}_{3} \mathrm{COOH}$	(p) Base
(B) $\mathrm{H}_{2} \mathrm{SO}_{4}$	(q) Weak acid
(C) NaOH	(r) Strong acid
(D) NH_{3}	(s) Strong base

Q. 27

Column I (pH of resultant solution)	Column II (Exist between Colour transition range of an indicator)
(A) 200 ml of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution (specific gravity 1.225 containing $25 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight) +800 ml of 0.525 M strong triacidic base $\mathrm{X}(\mathrm{OH})_{3}$	(p) Phenol Red (6.8 to 8.4)
$\begin{aligned} & \text { (B) } 50 \mathrm{ml} \text { of } 0.1 \mathrm{M} \mathrm{HCO}_{3}^{-} \\ & +50 \mathrm{ml} \text { of } 0.8 \mathrm{M} \mathrm{CO}_{3}^{2-} \\ & \left(\mathrm{H}_{2} \mathrm{CO}_{3}: \mathrm{K}_{\mathrm{a} 1}=4 \times 10^{-7},\right. \\ & \left.\mathrm{K}_{\mathrm{a} 2}=2 \times 10^{-11}\right) \end{aligned}$	(q) Propyl red (4.6 to 6.4)
(C) 50 ml of $0.2 \mathrm{M} \mathrm{HA}(\mathrm{aq})$ $\left(K_{a}=10^{-5}\right)+50 \mathrm{ml}$ of 0.1 M $\mathrm{HCl}(\mathrm{aq})+100 \mathrm{ml}$ of 0.13 M $\mathrm{NaOH}(\mathrm{aq})$	(r) Phenolphtalein (8.3 to 10.1)
	(s) Malachite green (11.4 to 13)

Previous Years' Questions

Q. 1 Pure ammonia is placed in a vessel at a temperature where its dissociation constant (α) is appreciable. At equilibrium $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons \mathrm{NH}_{3}$
(1984)
(A) K_{p} does not change significantly with pressure
(B) α does not change with pressure
(C) Concentration of NH_{3} does not change with pressure
(D) Concentration of hydrogen is less than that of nitrogen
Q. 2 A certain buffer solution contains equal concentration of X^{-}and $H X$. The K_{b} for X^{-}is 10^{-10}. The pH of the buffer is
(1984)
(A) 4
(B) 7
(C) 10
(D) 14
Q. 3 A certain weak acid has a dissociation constant of 1. 0×10^{-4}. The equilibrium constant for its reaction with a strong base is
(1984)
(A) 1.0×10^{-4}
(B) 1.0×10^{-10}
(C) 1.0×10^{10}
(D) 1.0×10^{14}
Q. 4 Solubility product constant $\left(\mathrm{K}_{\text {sp }}\right)$ of salts of types $M X, M X_{2}$ and $M_{3} X$ at temperature ' T^{\prime} are 4.0×10^{-8}, 3.2×10^{-14} and 2.7×10^{-15}, respectively. Solubilities (mol. dm^{-3}) of the salts at temperature ' T ' are in the order
(2008)
(A) $M X>M X_{2}>M_{3} X$
(B) $M_{3} X>M X_{2}>M X$
(C) $M X_{2}>M_{3} X>M X$
(D) $M X>M_{3} X>M X_{2}$
Q. 5 2. 5 mL of $\frac{2}{5} \mathrm{M}$ weak monoacidic base $\left(\mathrm{K}_{\mathrm{b}}=1 \times 10^{-12}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ is titrated with $\frac{2}{15} \mathrm{M}$ HCl in water at $25^{\circ} \mathrm{C}$. The concentration of H^{+} at equivalence point is $\left(\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$
(2008)
(A) $3.7 \times 10^{-13} \mathrm{M}$
(B) $3.2 \times 10^{-7} \mathrm{M}$
(C) $3.2 \times 10^{-2} \mathrm{M}$
(D) $2.7 \times 10^{-2} \mathrm{M}$
Q. 6 Aqueous solutions of $\mathrm{HNO}_{3} \mathrm{KOH}, \mathrm{CH}_{3} \mathrm{COOH}$, and $\mathrm{CH}_{3} \mathrm{COONa}$ of identical concentrations are provided. The pair(s) of solutions which form a buffer upon mixing is(are)
(2010)
(A) HNO_{3} and $\mathrm{CH}_{3} \mathrm{COOH}$
(B) KOH and $\mathrm{CH}_{3} \mathrm{COONa}$
(C) HNO_{3} and $\mathrm{CH}_{3} \mathrm{COONa}$
(D) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$
Q. 7 The equilibrium $2 \mathrm{Cu}^{\mathrm{I}} \mathrm{Cu}^{0}+\mathrm{Cu}^{\text {II }}$ in aqueous medium at $25^{\circ} \mathrm{C}$ shifts towards the left in the presence of.
(2011)
(A) NO_{3}^{-}
(B) Cl^{-}
(C) SCN^{-}
(D) CN^{-}
Q. 8 The solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ in pure water is 9.57 $\times 10^{-3} \mathrm{~g} / \mathrm{L}$. Calculate its solubility (in g / L) in 0.02 M $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ solution.
(1986)
Q. 9 What is the pH of the solution when 0.20 moles of HCl is added to one litre of a solution containing:
(i) 1 M each of acetic acid and acetate ion
(ii) 0.1 M each of acetic acid and acetate ion

Assume the total volume is one litre. K_{a} for acetic acid $=1.8 \times 10^{-5}$
(1987)
Q. 10 At a certain temperature, equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)$ is 16 for the reaction;
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
If we take one mole of each of all the four gases in a one litre container, what would be the equilibrium concentrations of NO and NO_{2} ?
(1987)
Q. 11 Statement-I: In water, orthoboric acid behaves as a weak monobasic acid.

Statement-II: In water, orthoboric acid acts as a proton donor.
(2007)
(A) Statement-I is True, statement-II is True; statement-II is a correct explanation for statement-I.
(B) Statement-I is True, statement-II is True; statement-II is NOT a correct explanation for statement-I.
(C) Statement-I is True, statement-II is False.
(D) Statement-I is False, statement-II is True.
Q. 12 The INCORRECT statement among the following, for this reaction, is
(2016)
(A) Decrease in the total pressure will result in formation of more moles of gaseous X.
(B) At the start of the reaction, dissociation of gaseous X_{2}, takes place spontaneously.
(C) $\beta_{\text {equilibrium }}=0.7$
(D) $\mathrm{K}_{\mathrm{C}}<1$
Q. 13 In 1 L saturated solution of $\mathrm{AgCl}\left[\mathrm{K}_{\text {sp }}(\mathrm{AgCl})=1.6\right.$ $\left.x 10^{-10}\right], 0.1 \mathrm{~mol}$ of $\mathrm{CuCl}\left[\mathrm{K}_{\text {sp }}(\mathrm{CuCl})=1.0 \times 10^{-6}\right]$ is added. The resultant concentration of Ag^{+}in the solution is 1.6 $x 10^{-x}$. The value of " x " is
(2011)
Q. 14 The solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right.$ mol $\left.\mathrm{m}^{3} \mathrm{dm}^{-9}\right)$ of MX_{2} at 298 based on the information available the given concentration cell is (take $2.303 \times \times 298 / \mathrm{F}=0.059 \mathrm{~V}$)
(2012)
(A) 1×10^{-15}
(B) 4×10^{-15}
(C) 1×10^{-12}
(D) 4×10^{-12}
Q. 15 The compound that does NOT liberate $\mathrm{CO}_{2^{\prime}}$ on treatment with aqueous sodium bicarbonate solution, is
(2013)
(A) Benzoic acid
(B) Benzenesulphonic acid
(C) Salicylic acid
(D) Carbolic acid (phenol)
Q. 16 The initial rate of hydrolysis of methyl acetate (1 M) by a weak acid $(\mathrm{HA}, 1 \mathrm{M})$ is $1 / 100$ th of that of a strong acid ($\mathrm{HX}, 1 \mathrm{M}$), at $25^{\circ} \mathrm{C}$. The Ka of HA is
(2013)
(A) 1×10^{-4}
(B) 1×10^{-5}
(C) 1×10^{-6}
(D) 1×10^{-3}
Q. 17 The $\mathrm{K}_{\text {sp }}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is 1.1×10^{-12} at 298 K . The solubility (in mol/L) of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in a $0.1 \mathrm{MAgNO}_{3}$ solution is
(2013)
(A) 1.1×10^{-11}
(B) 1.1×10^{-10}
(C) 1.1×10^{-12}
(D) 1.1×10^{-9}

Paragraph 1: Thermal decomposition of gaseous X_{2} to gaseous X at 298 K takes place according to the following equation: $X_{2}(g) \rightleftharpoons 2 X(g)$

The standard reaction Gibbs energy, $\Delta_{e} G^{\circ}$ of this reaction is positive. At the start of the reaction, there is one mole of X_{2} and no X. As the reaction proceeds, the number of moles of X formed is given by b. Thus, $b_{\text {equilibrium }}$ is the number of moles of X formed at equilibrium. The reaction is carried out at a constant total pressure of 2 bar. Consider the gases to behave ideally. (Given: $R=0.083$ L bar K $_{-1}$ mol $_{-1}$)
Q. 18 The equilibrium constant K_{p} for this reaction at 298 K , in terms of $\mathrm{b}_{\text {equilibrium }}$ is
(2016)
(A) $\frac{8 \beta_{\text {equilibrium }}^{2}}{2-\beta_{\text {equilibrium }}}$
(B) $\frac{8 \beta_{\text {equilibrium }}^{2}}{4-\beta_{\text {equilibrium }}^{2}}$
(C) $\frac{4 \beta_{\text {equilibrium }}^{2}}{2-\beta_{\text {equilibrium }}^{2}}$
(D) $\frac{4 \beta_{\text {equilibrium }}^{2}}{4-\beta_{\text {equilibrium }}^{2}}$

MASTERJEE Essential Questions

JEE Main/Boards

Exercise 1

Q. 1	Q. 4	Q. 6	Q. 8
Q. 13	Q. 17	Q. 19	Q. 28

Q. 29
xercise 2

Q. 5	Q .8	Q .9	Q .13
Q .17	Q .22	Q .24	

Previous Years' Questions
Q. 4
Q. 7
Q. 11

Answer Key

JEE Main/Boards

Exercise 1

Q. $12.3 \mathrm{~mol} / \mathrm{lit}$
Q.2. 1.5 times
Q. 31.44×10^{-4}
Q. 42×10^{-8}
Q. 5 No
Q. $64.11 \times 10^{-4} \mathrm{M}$
Q. $75.6 \times 10^{-10}, 2.4 \times 10^{-4}, 5.63$
Q. 81.3
$\mathbf{Q} .9 \mathrm{HZ}<\mathrm{HY}<\mathrm{HX}, \mathrm{K}_{\mathrm{a}}(\mathrm{HY})=10^{-5} \mathrm{M}, \mathrm{K}_{\mathrm{a}}(\mathrm{HZ})=10^{-9} \mathrm{M}$
Q. 10 (a) $3.72 \times 10^{4} \mathrm{dm}^{3}$ (b) $4 \mathrm{dm}^{3}$
Q. $11 \mathrm{~K}_{\mathrm{c}}=3.02 \times 10^{-2}, \mathrm{~S}=0.123 \mathrm{M}$
Q. $11 \mathrm{~K}_{\epsilon}=3.02 \times 10^{-2} \mathrm{~S}=0.123 \mathrm{M}$

JEE Advanced/Boards

Exercise 1

Q. 2	Q. 6	Q. 9	Q. 11
Q. 16	Q. 21	Q. 24	Q. 25
Q. 29	Q. 30		

Exercise 2

Q. 1	Q. 4	Q. 7	Q. 8
Q. 9	Q. 13	Q. 16	Q. 19
Q. 21	Q. 22		

Previous Years' Questions
Q. 3
Q. 5
Q. 8
Q. 10
Q. 126.1
Q. 13 (i) $\mathrm{pH}=4.35$ (ii) $1.79 \times 10^{-9} \mathrm{~mol} / \mathrm{lit}$
Q. 14 (i) 28.6\%
Q. 15 [HS-] 9.54×10^{-5}, in $\left.0.1 \mathrm{M} \mathrm{HCl}^{[H S}{ }^{-}\right]=9.1 \times 10^{-8} \mathrm{M}$,
$\left[S^{2-}\right]=1.2 \times 10^{-13} \mathrm{M}$, in $0.1 \mathrm{M} \mathrm{HCl}\left[\mathrm{S}^{2}\right]=1.09 \times 10^{-19} \mathrm{M}$
Q. $16\left[\mathrm{Ac}^{-}\right]=0.00093, \mathrm{pH}=3.03$
Q. $17\left[\mathrm{~A}^{-}\right]=7.08 \times 10^{-5} \mathrm{M}, \mathrm{K}_{\mathrm{a}}=5.08 \times 10^{-7}, \mathrm{pK}_{\mathrm{a}}=6.29$
Q. 18 (i) 2.52 (ii) 2.30 (ii) 2.7 (iv) 2.70
Q. 19 (i) 11.65 (ii) 12.21 (iii) 12.57 (iv) 1.87
Q. 20 0.103g
Q. $21 \mathrm{pH}=9.20, \mathrm{k}_{\mathrm{H}}=0.772, \mathrm{~h}=0.467$
Q. 2211
Q. 230.082 mol of NaOH can be added

Exercise 2

Single Correct Choice Type

Q. 1 A
Q. 2 C
Q. 3 C
Q. 4 C
Q. 5 B
Q. 6 C
Q. 7 C
Q. 8 D
Q. 9 D
Q. 10 A
Q. 11 D
Q. 12 B
Q. 13 B
Q. 14 C
Q. 15 B
Q. 16 D
Q. 17 A
Q. 18 C
Q. 19 A
Q. 20 B
Q. 21 B
Q. 22 C
Q. 23 A
Q. 24 D
Q. 25 B
Q. 26 A

Previous Years Questions

Q. 1 C	Q. 2 A	Q. 3 A	Q. 4 B	Q. 5 B	Q. 6 D
Q. 7 B, C	Q. 8 A, C	Q. 9 A	Q. 10 A	Q. 11 C	Q. 12 A
Q. 13 B	Q. 14 C	Q. 15 B	Q. 16 B	Q. 17 D	Q. 18 C
Q. 19 D	Q. 20 B				

JEE Advanced/Boards

Exercise 1

Q. 16.022×10^{7}
Q. 21.6×10^{-7}
Q. 3 (i) 6.50 ; (ii) (a) Basic, (b)Acidic
Q. 46.79
Q. 5 (a) 0.522, (b) 2.61
Q. $60.027 \mathrm{M}, 0.073 \mathrm{M}, 0.027 \mathrm{M}, 10^{-5} \mathrm{M}$
Q. $70.2116 \mathrm{M}, 0.1884 \mathrm{M}, 0.0116 \mathrm{M}, 0$
Q. 88.7782
Q. 912.8
Q. 10 (Methyl red), one with $\mathrm{pH}=5.22$ as midpoint of colour range
Q. $11 \Delta \mathrm{pH}=0.95$
Q. $12\left[\mathrm{OH}^{-}\right]=6.664 \times 10^{-6}$
Q. $13 \mathrm{pH}=4.477$
Q. $145.12 \times 10^{-6} \mathrm{M}$
Q. 158.86
Q. $16 \mathrm{QX}_{2}$ is more soluble
Q. $174 \times 10^{-7} \mathrm{~mol} / \mathrm{LAgBr}, 9 \times 10^{-7} \mathrm{~mol} / \mathrm{LAgSCN}$
Q. $19\left[\mathrm{~S}^{2-}\right]=2.5 \times 10^{-15}$
Q. 21 Acetic acid, salt-acid molar ratio 1.8: 1
Q. $18 \mathrm{~K}_{\mathrm{a}}=1.25 \times 10^{-2}$
Q. $20 \mathrm{~V}=2.77 \times 10^{4}$ litre
Q. 22 9.168
Q. 23 (a) $\mathrm{pH}=3.83$ (b) $\mathrm{pH}=3.85$, (c) $=3.99$

Exercise 2

Single Correct Choice Type

Q. 1 A
Q. 2 C
Q. 3 D
Q. 4 B
Q. 5 B
Q. 6 D
Q. 7 C
Q. 8 B
Q. 9 A
Q. 10 D
Q. 11 A
Q. 12 A
Q. 13 A
Q. 14 B
Q. 15 C
Q. 16 C

Multiple Correct Choice Type

Q. 17 A, B
Q. 18 B, C
Q. 19 B, C
Q. 20 A, B, C
Q. 21 A, B, C
Q. 22 A, B
Q. 23 A, C, D
Q. 24 A, D
Q. 25 B, C, D

Match the Columns

Q. $26 \mathrm{~A} \rightarrow \mathrm{q} ; \mathrm{B} \rightarrow \mathrm{r} ; \mathrm{C} \rightarrow \mathrm{s} ; \mathrm{D} \rightarrow \mathrm{p}$

Previous Years Questions

Q. 1 A
Q. 2 A
Q. 3 C
Q. 4 D
Q. 5 D
Q. 6 C, D
Q. 7 B, C, D
Q. $88.7 \times 10^{-4} \mathrm{gL}^{-1}$
Q. 9 (i) 4.56 (ii) 1
Q. $10[\mathrm{NO}]=0.80 \mathrm{M} ;\left[\mathrm{NO}_{2}\right]=0.20 \mathrm{M}$
Q. 11 C
Q. 12 C
Q. 137
Q. 14 B
Q. 15 D
Q. 16 A
Q. 17 B
Q. 18 B

Solutions

JEE Main/Boards

Exercise 1

Sol 1: $\alpha=\sqrt{\frac{K_{\mathrm{a}}}{\mathrm{C}}}$
$\because \alpha$ will be equal, equate the terms on R.H.S. for both the acids.

$\mathrm{CH}_{3} \mathrm{COOH}$	HNO_{2}
$\frac{\mathrm{~K}_{\mathrm{a}}}{\mathrm{C}}$	$\frac{\mathrm{K}_{\mathrm{a}}}{\mathrm{C}}$

Sol 2:

Blood	Spinal fluid
$\left[\mathrm{H}^{+}\right]=10^{-7.36}$	$\left[\begin{array}{l}\left.\mathrm{H}^{+}\right]=10^{-7.53} \\ =4.36 \times 10^{-8}\end{array}\right.$
$=2.95 \times 10^{-8}$	

Sol 3: The freezing point depression is given by $\Delta T=K_{f} \times m$
$1.86 \mathrm{~K} \mathrm{~mol}^{-1} \mathrm{~kg} \mathrm{x} \mathrm{m}^{2}=0.758 \mathrm{~K} \mathrm{so,}^{\mathrm{m}}=0.40752 \mathrm{~mol} \mathrm{~kg}^{-1}$. If this can be taken to be $0.40752 \mathrm{~mol} \mathrm{~L}^{-1}$ for this question.
The van't Hoff factor $i=\frac{0.40752}{0.400}=1.0188$
Ans: van't Hoff factor $\mathrm{i}=1.02$
(ii) Formic acid ionizes in water according to: $\mathrm{HCOOH} \rightleftharpoons \mathrm{HCOO}^{-}+\mathrm{H}^{+}$
If the initial concentration before ionization is $0.400 \mathrm{~mol} \mathrm{~L}^{-1}$ and $\mathrm{x} \mathrm{mol} \mathrm{L-} \mathrm{~L}^{-1}$ ionizes then the final number of particles in the solution is
$\left(0.400 \mathrm{~mol} \mathrm{~L}^{-1}-x \mathrm{~mol} \mathrm{~L}^{-1}\right)+2 x \mathrm{~mol} \mathrm{~L}^{-1}=0.400 \mathrm{~mol} \mathrm{~L}^{-1}+$ $\mathrm{x} \mathrm{mol} \mathrm{L}{ }^{-1}$.
Now, $0.400 \mathrm{~mol} \mathrm{~L}^{-1}+\mathrm{x} \mathrm{mol} \mathrm{L}^{-1}=0.40752 \mathrm{~mol} \mathrm{~L}^{-1}$
$\times \mathrm{mol} \mathrm{L}^{-1}=7.52 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}=\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCOO}^{-}\right]$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}=\frac{\left[7.52 \times 10^{-3} \mathrm{molL}^{-1}\right]}{\left[0.400-7.52 \times 10^{-3}\right] \mathrm{molL}^{-1}}$
$=1.44 \times 10^{-4}$

Sol 4: $2 \mathrm{AgCl}(\mathrm{s})+\mathrm{CO}_{2}^{2-} \rightleftarrows \mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~S})+2 \mathrm{Cl}^{-}$

$$
\begin{aligned}
& \mathrm{K}=\frac{\left[\mathrm{Cl}^{-}\right]}{\left[\mathrm{CO}_{3}^{2-}\right]}=\frac{\left[\mathrm{Cl}^{-}\right]^{2}}{\left[\mathrm{CO}_{3}^{2-}\right]} \times \frac{\left[\mathrm{Ag}^{+}\right]^{2}}{\left[\mathrm{Ag}^{+}\right]^{2}}=\frac{\left[\mathrm{K}_{\text {sp }}(\mathrm{AgCl})\right]^{2}}{\mathrm{~K}_{\text {sp }}\left(\mathrm{Ag}_{2} \mathrm{CO}_{3}\right)} \\
& {\left[\mathrm{Cl}^{-}\right]=\frac{0.0026}{35.5} \mathrm{M}=7.5 \times 10^{-5} \mathrm{M}}
\end{aligned}
$$

The above concentration of Cl^{-}indicates that $\left[\mathrm{CO}_{3}^{2-}\right]$ remains almost unchanged.
$\Rightarrow \frac{7.3 \times 10^{-5}}{1.5}=\frac{\left[\mathrm{K}_{\text {sp }}(\mathrm{AgCl})\right]^{2}}{8.2 \times 10^{-12}} \Rightarrow \mathrm{~K}_{\text {sp }}(\mathrm{AgCl})=2 \times 10^{-8}$

Sol 5: Intial $\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]=\left[\mathrm{CO}_{3}^{2-}\right]=1.5 \mathrm{M}$
Equilibrium $\left[\mathrm{Cl}^{-}\right]=[\mathrm{NaCl}]=\frac{0.0026}{35.5}=0.0000732 \mathrm{M}$

$\left[\mathrm{Ag}^{+}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{sp}}\left(\mathrm{Ag}_{2} \mathrm{CO}_{3}\right)}{\left[\mathrm{CO}_{3}^{2-}\right]}}=\sqrt{\frac{8.2 \times 10^{-12}}{1.5}}$
$=2.338 \times 10^{-6} \mathrm{M}$
$\therefore \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=\left(2.338 \times 10^{-6}\right)(0.0000732)$
$=1.71 \times 10^{-10}$
Precipitate of AgCl will not be formed.

Sol 6: The hydrogen ion concentrations of the given pH range are
$\mathrm{pH}=3.1=-\log \left\{\left[\mathrm{H}^{+}\right] / \mathrm{M}\right\}$
i.e. $\log \left\{\left[\mathrm{H}^{+}\right] / \mathrm{M}\right\}=-3.1=\overline{4} .9$

Hence, $\left[\mathrm{H}^{+}\right]=7.9 \times 10^{-4} \mathrm{M}$
$\mathrm{pH}=4.5$ i.e $\log \left\{\left[\mathrm{H}^{+}\right] / \mathrm{M}\right\}=-4.5=\overline{5} .5$
Hence, $\left[\mathrm{H}^{+}\right]=3.2 \times 10^{-5} \mathrm{M}$
The average of these two hydrogen ion concentration is
$\frac{7.9 \times 10^{-4} \mathrm{M}+3.2 \times 10^{-5} \mathrm{M}}{2}=4.11 \times 10^{-4} \mathrm{M}$
At this H^{+}concentration,

$$
\left[\mathrm{In}^{-}\right]=[\mathrm{HIn}]
$$

Therefore, $\mathrm{pH}=\mathrm{pK}_{\mathrm{HIn}}$
$\operatorname{Or}\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{HIn}}=4.11 \times 10^{-4} \mathrm{M}$

Sol 7: $\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=1.8 \times 10^{-5} ; \mathrm{C}=0.01 \mathrm{M}$
$\frac{K_{w}}{K_{b}}=c x^{2} \quad(x=$ degree of hydrolysis)
$\mathrm{K}_{\mathrm{h}}=\mathrm{cx} \mathrm{Z}^{2} \quad\left(\mathrm{~K}_{\mathrm{h}}=\right.$ hydrolysis constant $)$
$\mathrm{pH}=\frac{1}{2}\left(\mathrm{pK}_{\mathrm{w}}-\mathrm{pK}_{\mathrm{b}}-\log \mathrm{C}\right)$

Sol 8: $C=0.1 \mathrm{M}$
$K_{a}=1.8 \times 10^{-5}$
$\underset{0.1}{\mathrm{CH}_{3} \mathrm{COOH}} \rightleftharpoons \underset{x}{\mathrm{CH}_{3} \mathrm{COO}^{-}}+\underset{x}{\mathrm{H}^{+}}$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} ; 1.8 \times 10^{-5}=\frac{\mathrm{x}^{2}}{0.1}$
(i) $\left[\mathrm{H}^{+}\right]=\mathrm{x} \therefore \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
(ii) Vol. of $\mathrm{CH}_{3} \mathrm{COOH}=1 \mathrm{~L}$

Addition of 0.05 mole of HCl increases the concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ by 0.05 and reduces the conc. of $\mathrm{CH}_{3} \mathrm{COO}^{\Theta}$ by $0.05 \mathrm{~mol} / \mathrm{L}$.
$\therefore\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.1+0.05=0.15 \mathrm{M}$
$\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=1.34 \times 10^{-3}-0.05=0.05134 \mathrm{M}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { salt }]}{[\text { acid }]}=-\log 1.8 \times 10^{-5}+\log \frac{0.05134}{0.15}$
$\mathrm{pH}=1.3$

Sol 9: The pH of NaX is 7, thus the acid HX must be a strong acid. The ions Y^{-}and Z^{-}undergo hydrolysis $\mathrm{Y}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HY}+\mathrm{OH}^{-}$and $\mathrm{Z}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HY}+\mathrm{OH}^{-}$.
The stronger the base, larger the OH^{-}concentration and thus larger the pH of the solution. Thus Z^{-}is stronger base then Y^{-}and thus conjugate acid HZ will be weaker than HY. Hence, the correct order is $\mathrm{HX}>\mathrm{HY}>\mathrm{HZ}$

Sol 10 : We have

$$
\begin{aligned}
& \mathrm{HA} \rightleftarrows \mathrm{H}^{+}+\mathrm{A}^{-} \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HA}]_{0}-\left[\mathrm{H}^{+}\right]} \simeq \frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HA}]_{0}} \\
& \text { Or }\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{2}[\mathrm{HA}]_{0}}=\left[\left(1.8 \times 10^{-5} \mathrm{M}\right)(0.5 \mathrm{M})\right]^{1 / 2} \\
& \\
& =3.0 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

(a) Now to double the pH , we will have

$$
\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-2 \times 2.523)=9.0 \times 10^{-6} \mathrm{M}
$$

Now from the expression
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HA}]_{0}-\left[\mathrm{H}^{+}\right]}$we get
$1.8 \times 10^{-5} \mathrm{M}=\frac{\left(9.0 \times 10^{-6} \mathrm{M}\right)^{2}}{[\mathrm{HA}]_{0}-\left(9.0 \times 10^{-6} \mathrm{M}\right)}$

$$
[\mathrm{HA}]_{0}=\frac{\left(9.0 \times 10^{-6} \mathrm{M}\right)^{2}\left(1.8 \times 10^{-5} \mathrm{M}\right)}{\left(1.8 \times 10^{-5} \mathrm{M}\right)}
$$

This given $=\frac{8.0 \times 10^{-11} \mathrm{M}^{2}+1.62 \times 10^{-10} \mathrm{M}^{2}}{1.8 \times 10^{-5} \mathrm{M}}$

$$
=\frac{2.42 \times 10^{-10} \mathrm{M}^{2}}{1.8 \times 10^{-5} \mathrm{M}}=1.344 \times 10^{-5} \mathrm{M}
$$

Dilution factor $=\frac{0.5 \mathrm{M}}{1.344 \times 10^{-5} \mathrm{M}}=3.72 \times 10^{4}$
(b) To double the[OH], we have

$$
\left[\mathrm{H}^{+}\right]=\frac{1}{2} \times 3.0 \times 10^{-3} \mathrm{M}
$$

Hence, $[\mathrm{HA}]_{0}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\mathrm{~K}_{\mathrm{a}}}=\frac{\left(1.5 \times 10^{-3} \mathrm{M}\right)^{2}}{\left(1.8 \times 10^{-5} \mathrm{M}\right)}=0.125 \mathrm{M}$

$$
\text { Dilution factor }=\frac{0.5 \mathrm{M}}{0.125 \mathrm{M}}=4
$$

Sol 11: $\mathrm{K}_{\mathrm{c}}=\frac{\mathrm{K}_{\text {sp }}}{\mathrm{K}_{\mathrm{b}}{ }^{2}}=\frac{10^{-11}}{\left(1.8 \times 10^{-5}\right)^{2}}=3.02 \times 10^{-2}$

Sol 12: $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}^{0}+\log \frac{[\text { salt }]}{[\text { acid }]}$
We get $5.8=\mathrm{pK}_{\mathrm{a}}^{0}+\log \left[\frac{(10 \mathrm{~mL}) \mathrm{M}_{2}}{\mathrm{VM}_{1}-(10 \mathrm{~mL}) \mathrm{M}_{2}}\right]$

$$
6.402=\mathrm{pK}_{\mathrm{a}}^{0}+\log \left[\frac{(20 \mathrm{~mL}) \mathrm{M}_{2}}{\mathrm{VM}_{1}-(20 \mathrm{~mL}) \mathrm{M}_{2}}\right]
$$

Subtracting Eq. (i) from Eq. (ii), we get

$$
\begin{aligned}
& 6.402=\left[\frac{(20 \mathrm{~mL}) \mathrm{M}_{2}}{\mathrm{VM}_{1}-(20 \mathrm{~mL}) \mathrm{M}_{2}} \frac{\mathrm{VM}_{1}-(10 \mathrm{~mL}) \mathrm{M}_{2}}{(10 \mathrm{~mL}) \mathrm{M}_{2}}\right] \\
& \text { Or } \quad \frac{2\left[\mathrm{VM}_{1}-(10 \mathrm{~mL}) \mathrm{M}_{2}\right]}{\mathrm{VM}_{1}-(20 \mathrm{~mL}) \mathrm{M}_{2}}=4
\end{aligned}
$$

$$
\text { or } \frac{\mathrm{VM}_{1}}{\mathrm{M}_{2}}=\frac{60 \mathrm{~mL}}{2}=30 \mathrm{~mL}
$$

$$
3
$$

Substituting this in either Eq. (i) or Eq. (ii) we get $\mathrm{pK}_{\mathrm{a}}^{0}=5.8-\log \left(\frac{10}{30-10}\right)=5.8+0.30=6.1$

Sol 13: The minimum of concentration S^{2-} ion to start of the precipitation is obtained from the K_{tp} with $\left[\mathrm{Mn}^{2+}\right]=0.01 \mathrm{M}$. Therefore, we have
$\left[\mathrm{S}^{2-}\right]=\frac{\mathrm{K}_{\text {sp }}(\mathrm{MnS})}{\left[\mathrm{Mn}^{2+}\right]}=\frac{5.6 \times 10^{-16} \mathrm{M}^{2}}{(0.01 \mathrm{M})}=5.6 \times 10^{-14} \mathrm{M}$
The H^{+}concentration of the solution having the above $\left[\mathrm{S}^{2-}\right]$ can be computed from the expression of $\mathrm{H}_{2} \mathrm{~S}$ equilibrium:

$$
\frac{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}=\frac{\left[\mathrm{H}^{+}\right]^{2}\left(5.6 \times 10^{-14} \mathrm{M}\right)}{(0.10 \mathrm{M})}=1.1 \times 10^{-21} \mathrm{M}^{2}
$$

This gives

$$
\left[\mathrm{H}^{+}\right]=4.43 \times 10^{-5} \mathrm{M} \text { or } \mathrm{pH}=4.35
$$

If the $\left[\mathrm{H}^{+}\right]>4.43 \times 10^{-5} \mathrm{M}$, then the $\left[\mathrm{S}^{2-}\right]$ will be less than $5.6 \times 10^{-14} \mathrm{M}$ and MnS will no longer precipitate from the solution.
The concentration of Zn^{2+} ion remaining in the solution can be calculated from the solubility product of ZnS :
$\left[\mathrm{Zn}^{2+}\right]=\frac{\mathrm{K}_{\text {sp }}(\mathrm{ZnS})}{\left[\mathrm{S}^{2-}\right]}=\frac{1.0 \times 10^{-22} \mathrm{M}^{2}}{\left(5.6 \times 10^{-14} \mathrm{M}\right)}=1.79 \times 10^{-9} \mathrm{M}$
Thus, by properly adjusting the $\left[\mathrm{H}^{+}\right]$in the solution, it is possible to precipitate effectively all of zinc ions from the solution without precipitating any Mn^{2+} ion.

Sol 14: Since at $\mathrm{pH}=2.0$, half of the indicator is present in the unionized from, therefore

$$
[\mathrm{HIn}]=\left[\mathrm{In}^{-}\right]
$$

Using $\mathrm{pH}=\mathrm{pK}_{\mathrm{In}}+\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}$

$$
\mathrm{pK}_{\mathrm{In}}=\mathrm{pH}=2.0
$$

pH of the solution containing $4.0 \times 10^{-3} \mathrm{M}$ of H^{+}is

$$
\mathrm{pH}=-\log \left(4.0 \times 10^{-3}\right)=2.4
$$

Thus, $\log \left(\frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}\right)=\mathrm{pH}-\mathrm{pK}_{\text {In }}=2.4-2.0=0.4$
Or $\frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}=2.5$

Adding 1 on both sides, we get

$$
\frac{\left[\mathrm{In}^{-}\right]+[\mathrm{HIn}]}{[\mathrm{HIn}]}=3.5
$$

or $\frac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]+[\mathrm{HIn}]}=\frac{1}{3.5}=0.286$
Thus, the percentage of indicator in the unionized from $=28.6$

Sol 15: dissociation constant of $\mathrm{H}_{2} \mathrm{~S}$ is 1.2×10^{-13}, calculate the concentration of S^{2} under both conditions.

Ans. To calculate $\left[\mathrm{HS}^{-}\right]$

$$
\mathrm{H}_{2} \mathrm{~S} \rightleftarrows \mathrm{H}^{+}+\mathrm{HS}^{-}
$$

Initial $0.1 \mathrm{M} \quad \mathrm{x} \quad \mathrm{x}$
After disso.
0.1-x

$$
\simeq 0.1
$$

$K_{a}=\frac{x \times x}{0.1}=9.1 \times 10^{-8}$ or $x^{2}=9.1 \times 10^{-9}$
or' $x=9.54 \times 10^{-5}$
In presence of 0.1 M HCl , suppose $\mathrm{H}_{2} \mathrm{~S}$ dissociated is y .
Then at equilibrium,

$$
\begin{aligned}
& {\left[\mathrm{H}_{2} \mathrm{~S}\right]=0.1-\mathrm{y} \simeq 0.1,\left[\mathrm{H}^{+}\right]} \\
& =0.1+\mathrm{y} \simeq 0.1,\left[\mathrm{HS}^{-}\right]=\mathrm{yM}
\end{aligned}
$$

$K_{a}=\frac{0.1 \times y}{0.1}=9.1 \times 10^{-8}$ (Given) or $y=9.1 \times 10^{-8} \mathrm{M}$
To calculate $\left[\mathrm{S}^{2-}\right]$

$$
\mathrm{H}_{2} \mathrm{~S} \stackrel{\mathrm{~K}_{\mathrm{a}_{1}}}{\rightleftharpoons} \mathrm{H}^{+}+\mathrm{HS}^{-} ; \mathrm{HS}^{-} \stackrel{\mathrm{K}_{\mathrm{a}_{2}}}{\rightleftharpoons} \mathrm{H}^{+}+\mathrm{S}^{2-}
$$

For the overall reaction,

$$
\mathrm{H}_{2} \mathrm{~S} \rightleftarrows 2 \mathrm{H}^{+}+\mathrm{S}^{2-}
$$

$$
\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{a}_{1}} \times \mathrm{K}_{\mathrm{a}_{2}}=9.1 \times 10^{-8} \times 1.2 \times 10^{-13}
$$

$$
=1.092 \times 10^{-20}
$$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}
$$

In the absence of $0.1 \mathrm{MHCl},\left[\mathrm{H}^{+}\right]=2\left[\mathrm{~S}^{2-}\right]$
Hence, if $\left[\mathrm{S}^{2-}\right]=x,\left[\mathrm{H}^{+}\right]=2 x$
$\therefore \frac{(2 x)^{2} x}{0.1}=1.092 \times 10^{-20}$ or $4 x^{3}$
$=1.092 \times 10^{-21}=273 \times 10^{-24}$
$3 \log x=\log 273-24=2.4362-24$
$\log x=0.8127-8=\overline{8} .8127$,

$$
\begin{aligned}
\text { Or } & x=\text { Antilog } \overline{8} .8127=273 \times 10^{-24} \\
& =6.497 \times 10=6.5 \times 10^{-8} \mathrm{M}
\end{aligned}
$$

In presence of 0.1 M HCl , suppose $\left[\mathrm{S}^{2-}\right]=\mathrm{y}$, then
$\left[\mathrm{H}_{2} \mathrm{~S}\right]=0.1-\mathrm{y} \simeq 0.1 \mathrm{M},\left[\mathrm{H}^{+}\right]=0.1+\mathrm{y} \simeq 0.1 \mathrm{M}$
$K_{a}=\frac{(0.1)^{2} \times y}{0.1}=1.09 \times 10^{-20}$ or $y=1.09 \times 10^{-19} \mathrm{M}$.
Sol 16: $\mathrm{K}_{\mathrm{a}}=1.74 \times 10^{-5} \sqrt{\frac{\mathrm{~K}_{\mathrm{a}}}{\mathrm{C}}}=\alpha$

Sol 17: $\underset{0.01}{\mathrm{RCOOH}} \rightleftharpoons \underset{(0.01-\alpha)}{\mathrm{RCOO}^{\Theta}}+\underset{(0.01-\alpha)}{\mathrm{H}^{\oplus}}$
$\mathrm{pH}=4.15$
conc. $=0.01 \mathrm{M}$
Get conc. of H^{\oplus} from pH . Calculate α and K_{a}.

Sol 18: (i) pH of 0.003 M HCl
$\left[\mathrm{H}^{+}\right]=0.003 \mathrm{M} ; \mathrm{pH}=-\log (0.003)=2.52$
(ii) pH of 0.005 M NaOH
$\left[\mathrm{OH}^{+}\right]=0.005 \mathrm{M} ; \mathrm{pOH}=-\log (0.005)=2.30$
(iii) pH of 0.002 M HBr

$$
\left[\mathrm{H}^{+}\right]=0.002 \mathrm{M} ; \mathrm{pH}=-\log (0.002)=2.70
$$

(iv) pH of 0.002 M KOH
$\left[\mathrm{OH}^{-}\right]=0.002 \mathrm{M} ; \mathrm{pOH}=-\log (0.002)=2.70$

Sol 19: Calculate $\mathrm{H}^{\oplus} / \mathrm{OH}^{\Theta}$ conc. using the volume and weight. Thus, calculate pH .

Sol 20: Calculate solubility and then calculate it using volume of 2.5 L .

Sol 21:

$\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}}=\frac{10^{-14}}{7.2 \times 10^{-10} \times 1.8 \times 10^{-5}}=0.772$
$h=\frac{\sqrt{K_{h}}}{1+\sqrt{K_{h}}}=\frac{\sqrt{0.772}}{1+\sqrt{0.772}}=\frac{0.878}{1.878}=0.467$
$\mathrm{pH}=\frac{1}{2} \mathrm{pK}_{\mathrm{w}}+\frac{1}{2} \mathrm{pK}_{\mathrm{a}}-\frac{1}{2} \mathrm{pK}_{\mathrm{b}}=7.0+\frac{9.14}{2}-\frac{4.74}{2}=9.20$

Sol 22: CO_{2} with $\mathrm{H}_{2} \mathrm{O}$ forms $\mathrm{H}_{2} \mathrm{CO}_{3}$.
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$
$\mathrm{K}_{1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2}\right]}=4.5 \times 10^{-7}$
Now, $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=7.4 ;\left[\mathrm{H}^{+}\right]=4 \times 10^{-8}$

Thus, $\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2}\right]}=\frac{4.5 \times 10^{-7}}{4 \times 10^{-8}}=11$

Sol 23: The original $\mathrm{pOH}=4.75$. The pOH after addition of NaOH cannot be less than 3.75.
$\mathrm{pOH}=3.75=4.75+\log \frac{\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{3}\right]}$
$\log \frac{\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{3}\right]}=-1.00 \quad$ so $\frac{\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{3}\right]}=0.10$
Hence NaOH can be added until the ration of $\left[\mathrm{NH}_{4}^{+}\right]$to $\left[\mathrm{NH}_{3}\right]$ is 0.10. Initially $\left[\mathrm{NH}_{4}^{+}\right]+\left[\mathrm{NH}_{3}\right]=0.200$
Although the reaction with OH^{-}converts NH_{4}^{+}into NH_{3}, the sum of these two concentrations remains 0.200.

$$
\begin{gathered}
{\left[\mathrm{NH}_{4}^{+}\right]+\left[\mathrm{NH}_{3}\right]=0.200} \\
{\left[\mathrm{NH}_{4}^{+}\right]=0.10\left[\mathrm{NH}_{3}\right] \text { (From above) }} \\
0.10\left[\mathrm{NH}_{3}\right]+\left[\mathrm{NH}_{3}\right]=0.200 \\
\text { so } 1.10\left[\mathrm{NH}_{3}\right]=0.200 \text { and }\left[\mathrm{NH}_{3}\right]=0.182 \mathrm{M}
\end{gathered}
$$

Hence $\left[\mathrm{NH}_{4}^{+}\right]=0.018 \mathrm{M}$ Assuming no change in volume, $0.100-0.018=0.082 \mathrm{~mol}$ of NaOH can be added without changing the pOH by more than 1.00 pOH unit.

Exercise 2

Single Correct Choice Type

Sol 1: (A) The conjugate acid has one proton $\left(\mathrm{H}^{+}\right)$ more. Hence, for NH_{2}^{-}the conjugate acid would be NH_{3} (the positive charge of H^{+}and the negative charge of $\mathrm{NH}_{2}{ }^{-}$cancel each other out).

Sol 2: (C) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$And HCO_{3}^{-}are amphoteric in nature.
$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Cl}^{-1}$
$\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightarrow \mathrm{HPO}_{4}^{-2}+\mathrm{H}_{2} \mathrm{O}$
Sol 3: (C) Halides and alkaline metals dissociate and do not affect the H^{+}as the cation does not alter the H^{+}and the anion does not attract the H^{+}from water. This is why NaCl is a neutral salt. But pH of water decreases as the temperature increases. So option C is correct

Sol 4: (C) No' moles $\mathrm{HCl}=\frac{(1 \times 0.1)}{1000}=10^{-4}$
Volume $=1 \mathrm{dm}^{3}$ Concentration $=$ moles/volume $=\frac{10^{-4}}{1}=10^{-4}$ This gives a pH of 4 so option (C) is correct.

Sol 5: (B)
We have 50 mL of $\frac{M}{200} \mathrm{H}_{2} \mathrm{SO}_{4}$
$\frac{\mathrm{M}}{200}=0.005 \mathrm{M}$ solution
$\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}$
Then $\left[\mathrm{H}^{+}\right]=2 \times 0.005 \mathrm{M}=0.01 \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=-\log 0.01 \mathrm{M}$
$\mathrm{pH}=2.00$
Sol 6: (C) The equation for the dissociation of HF is as follow:
$\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$
Here $\mathrm{pK}_{\mathrm{b}}=10.83$
$\Rightarrow-\log \mathrm{K}_{\mathrm{b}}=10.83$
Hence, $\mathrm{K}_{\mathrm{b}}=1.48 \times 10^{-11}$

Thus Ionization constant of acid $\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b}}$
$\mathrm{K}_{\mathrm{w}}=10^{-14}$
$\mathrm{K}_{\mathrm{a}}=10^{-14} / 1.48 \times 10^{-11}$
$K_{a}=6.76 \times 10^{-4}$
Thus lonization constant of HF is 6.76×10^{-4}
Sol 7: (C) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{C} \alpha=0.1 \times \frac{1}{100}=1 \times 10^{-3}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log 10^{-3}=3$
Sol 8: (D)

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}=\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \cdots \cdots \cdots . \mathrm{K}_{1} \\
& \mathrm{H}_{2} \mathrm{PO}_{4}^{-}=\mathrm{H}^{+}+\mathrm{HPO}_{4}^{2-} \cdots \cdots \cdots . . \mathrm{K}_{2} \\
& \mathrm{HPO}_{4}^{2-}=\mathrm{H}^{+}+\mathrm{PO}_{4}^{3-} \cdots \cdots \ldots . . . \mathrm{K}_{3} \\
& \mathrm{~K}_{3}=\left[\mathrm{HPO}_{4}^{2-}\right] \\
& \mathrm{H}^{+}=\left[\mathrm{PO}_{4}^{3-}\right]
\end{aligned}
$$

Sol 9: (D) Molarity of both acid and base is same. Amount of acid used is thrice the amount of base. Thus the pH of the solution will be highly acidic,

Sol 10: (A) Since NaCN is the salt of a weak acid (HCN) and strong base (NaOH), the degree of hydrolysis,

$$
\begin{aligned}
\alpha & =\sqrt{\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}} \times C}} \\
& =\frac{1.0 \times 10^{-14} \times 80}{1.3 \times 10^{-9}} \\
& =\sqrt{6.16 \times 10^{-4}} \\
& =2.48 \times 10^{-2}
\end{aligned}
$$

\therefore Percentage hydrolysis of NaCN in $\mathrm{N} / 80$ Solution is 2.48
Sol 11: (D) Sodium acetate undergoes anionic hydrolysis

$$
\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}
$$

Sol 12: (B) $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl} \rightleftarrows \mathrm{NH}_{4} \mathrm{Cl}$
$\mathrm{NH}_{4} \mathrm{Cl}$ Is a salt of weak base and strong acid .so it give s acidic solution with $\mathrm{pH}>7$

Sol 13: (B) The pH of the solution at the equivalence point will be greater than 7 due to salt hydrolysis. So an indicator giving colour on the basic side will be suitable.

Sol 14: (C) It is a salt of weak acid and weak base.
$\left[H^{+}\right]=\sqrt{\frac{K_{w} \times K_{a}}{\mathrm{~K}_{\mathrm{b}}}}$
On solving we get
$\mathrm{pH}=7.01$
Sol 15: $(\mathbf{B}) \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{HCl} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaCl}$
It is an example of titration of weak base with strong acid.
Observed pH range for the end point is 3.00 to 6.00 .

Sol 16: (D)
$\mathrm{A}_{2} \mathrm{X}_{3} \rightleftarrows 2 \mathrm{~A}^{+3}+3 \mathrm{X}^{-2}$
$2 y \quad 3 y$
Ksp $=\left[A^{+3}\right]^{2}\left[B^{-2}\right]^{3}=(2 y)^{2}(3 y)^{3}=108 y^{5}$

Sol 17: (A) Solubility $=\sqrt{K_{\text {sp }}}=\sqrt{6.4 \times 10^{-5}}=8 \times 10^{-3}$
Sol 18: (C)
$A B_{2} \rightleftarrows A^{+2}+2 B^{-}$
S 2 S
$K s p=\left[A^{+2}\right]^{2}\left[B^{-}\right]^{2}=(S)(2 S)^{2}=4\left(1 \times 10^{-5}\right)^{3}=4 \times 10^{-15}$

Sol 19: (A) $\left(A B, A B_{2}, A_{x} B_{y}\right) K s p=\left(S^{x+y}\right) X^{x} Y^{y}$
Sol 20: (B) Precipitation takes place when the ionic product of a salt is greater than the solubility product. Solubility product of AgCl is 1.8×10^{-10}. So, the ionic product of AgCl should be greater than this value. On using the values given in option (B), the ionic product comes out to be 1×10^{-10}. Hence the correct answer is option (B)

Sol 21: (B) Precipitation takes place when the ionic product of a salt is greater than the solubility product. We are given that the solubility product of CaF_{2} is 1.7×10^{10}. So, the ionic product of CaF_{2} should be greater than this value. The ionic product of CaF_{2} can be calculated as follows:
$=\left[\mathrm{Ca}^{2+}\right] \times[\mathrm{F}]^{2}$
On using the values given option (A), the ionic product of CaF_{2} comes out to be 1×10^{12}, while using the values given in option (C), we get 1×10^{11} as the answer. However, on using the values given in option (B), the ionic product comes out to be
$=\left[10^{2}\right] \times\left[10^{3}\right]^{2}$
$=10^{2} \times 10^{6}$
$=10^{8}$
Thus, in this case, the ionic product of CaF_{2} is greater than solubility product. Hence the correct answer is option (b) $10^{2} \mathrm{M} \mathrm{Ca}^{2+}$ and $10^{3} \mathrm{MF}$.

Sol 22: (C)

$\mathrm{K}_{\text {sp }}(\mathrm{AgBr})=5 \times 10^{-13}$
$\mathrm{AgBr} \rightleftharpoons \underset{[\mathrm{S}]}{\mathrm{Ag}^{+}}+\underset{[\mathrm{S}]}{\mathrm{Br}^{-}}$
$K_{\text {sp }}=S^{2} ; S=\sqrt{K_{\text {sp }}} \ldots \ldots$ (1)

$$
\underset{\substack{ \\10^{-5} \mathrm{~mol} \\ 50 \mathrm{~L}}}{\mathrm{Ag}^{+}}+\underset{\substack{2 \times 10^{-7} \mathrm{~mol} \\ 50 \mathrm{~L}}}{\mathrm{HBr}} \longrightarrow \mathrm{AgBr}+\mathrm{H}^{\oplus}\left[\mathrm{Ag}^{+}\right]
$$

$M=$ mole $/ V$
The obtained $\left[\mathrm{Ag}^{+}\right]$should be subtracted from the available $50 \mathrm{~L} \mathrm{Ag}^{+}$solution.

Sol 23: (A) $\mathrm{pH}(\mathrm{HA})=9 \Rightarrow\left[\mathrm{H}^{+}\right]=10^{-9}$
$K_{\text {sp }}(\mathrm{AgA})=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{A}^{-}\right]$
$K_{a}(H A)=10^{-10}$
$\mathrm{HA} \rightleftharpoons \mathrm{H}^{\oplus}+\mathrm{A}^{\Theta}$
$K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$. Get conc. of $\left[\mathrm{A}^{-}\right]$
Thus, calculate $\mathrm{K}_{\text {sp. }}$.

Sol 24: (D) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is salt of weak acid $\mathrm{H}_{2} \mathrm{CO}_{3}$ and strong base NaOH therefore, it has a pH more than 7 . Also, it dissociates to give two moles of NaOH .

Sol 25: (B)

Concentration of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\left[\mathrm{CO}_{3}^{2-}\right]=1.0 \times 10^{-4} \mathrm{M}$
ksp of $\mathrm{BaCO}_{3}=5.1 \times 10^{-9}$
Reaction: $\mathrm{Ba}^{2+}+\mathrm{CO}_{3}^{2-} \rightarrow \mathrm{BaCO}_{3}$
$\mathrm{Ksp}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{CO}_{3}^{2-}\right]$
$\left[\mathrm{Ba}^{2+}\right]=\frac{\mathrm{Ksp}}{\left[\mathrm{CO}_{3}^{2-}\right]}=\frac{5.1 \times 10^{-9}}{1.0 \times 10^{-4}}$
$=5.1 \times 10^{-5}$

Sol 26: $\mathbf{(A)} \mathrm{MX}_{4} \rightleftharpoons \mathrm{M}^{4+}+4 \mathrm{X}^{-}$
$\therefore \mathrm{K}_{\mathrm{sp}}=[\mathrm{S}][4 \mathrm{~S}]^{4}=256$
$S=\left(\frac{K_{\mathrm{sp}}}{256}\right)^{1 / 4}$

Previous Years' Questions

Sol 1: (C)

$$
\begin{gathered}
\mathrm{Na}_{2} \mathrm{SO}_{4} \rightleftharpoons 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-} \\
\quad(0.004-\mathrm{x}) \quad 2 \mathrm{x}
\end{gathered}
$$

Since both the solution are isotonic $0.004+2 x=0.01$

$$
x=3 \times 10^{-3}
$$

Percent dissociation $=\frac{3 \times 10^{-3}}{0.004} \times 100=75 \%$

Sol 2: (A)

(a) $\mathrm{Cr}(\mathrm{OH})_{3} \rightarrow \mathrm{Cr}^{+3}+3 \mathrm{OH}^{-}$

$$
\begin{aligned}
& x \quad 3 x \\
& \mathrm{~K}_{\mathrm{sp}}=\mathrm{x} .(3 \mathrm{x})^{3}=27 \mathrm{x}^{4} \\
& \mathrm{x}=\sqrt[4]{\frac{\mathrm{K}_{\mathrm{sp}}}{27}} ; \mathrm{x}=\sqrt[4]{\frac{2.7 \times 10^{-31}}{27}} \\
& \mathrm{x}=1 \times 10^{-8} \text { mole/litre. }
\end{aligned}
$$

Sol 3: (A)
(a) $\mathrm{pH}=7+\frac{1}{2}\left[\mathrm{pK}_{\mathrm{a}}+\log \mathrm{C}\right]$
$=7+\frac{1}{2}\left[4.74+\log 10^{-2}\right]$
$=7+\frac{1}{2}[4.74-2]$
$=7+\frac{2.74}{2}=8.37$

Sol 4: (B)

$\mathrm{X}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HX}+\mathrm{OH}^{-}$
$K_{h}=\frac{10^{-14}}{10^{-5}}$ so $h=\sqrt{\frac{10^{-9}}{10^{-1}}}=10^{-4}$
$100 \times 10^{-4}=10^{-2}$
So\% of hydrolysis $=0.01 \%$.

Sol 5: (B) $\mathrm{Na}_{2} \mathrm{O}$ from NaOH . So that it is basic oxide.

Sol 6: (D) $\alpha=1.9 \times 10^{-9} ; C=\frac{1000}{18}$
$\mathrm{K}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left(\mathrm{H}_{2} \mathrm{O}\right)}=\mathrm{Ca}^{2}$
$=1.9 \times 10^{-9} \times 1.9 \times 10^{-9} \times \frac{1000}{18}=2.0 \times 10^{-16}$

Sol 7: $(\mathbf{B}, \mathbf{C}) \mathrm{pH}$ of $1 \times 10^{-8} \mathrm{M}$ is below to7
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
Conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$acid
$\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
K (Auto protolysis constant of water i.e., with ionic product of water) increases with temperature. For half neutralization of a weak acid by a weak base
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{\text { [Acid] }}$
[Salt] $=$ [Acid] $\therefore \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$.

Sol 8: (A, C) A buffer solution can be prepared by mixing weak acid/base with salt of its Conjugate base/acid.

Sol 9: (A) (a) Barium carbonate is more soluble in HNO_{3} than in water because carbonate is a weak base and reacts with the H^{+}ion of HNO_{3} causing the barium salt to dissociate.
$\mathrm{BaCO}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Sol 10: (A) (a) The conjugate base of CHCl_{3} is more stable than conjugate base of $\mathrm{CHF}_{3}\left(\mathrm{CF}_{3}\right) . \mathrm{CCl}_{3}$ stabilized by -l effect of chlorine atoms as well as by the electrons. But conjugate base of $\mathrm{CH}_{3}\left(\mathrm{CH}_{3}\right)$ is stabilized only by -I effect of flourine atoms. Here both assertion and reason are true and reason is correct explanation of assertion.

Sol 11: (C) It is a salt of weak acid and weak base

$$
\left[\mathrm{H}^{+}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{w}} \times \mathrm{K}_{\mathrm{a}}}{\mathrm{~K}_{\mathrm{b}}}}
$$

$\mathrm{pH}=7.01$

Sol 12: (A) $X \rightleftarrows 2 Y$

$$
\begin{array}{cc}
x & \rightleftarrows 2 Y \\
1 & 0 \\
(1-x) & 2 x
\end{array}
$$

$k_{p_{1}}=\frac{(2 x)^{2}}{(1-x)}\left(\frac{P_{1}}{1+x}\right)^{1}$

$k_{p_{2}}=\frac{x^{2}}{(1-x)}\left(\frac{P_{2}}{1+x}\right)^{1}$
$\frac{4 \times \mathrm{P}_{1}}{\mathrm{p}_{2}}=\frac{1}{9} \Rightarrow \frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}=\frac{1}{36}$

Sol 13: (B) $\mathrm{Ag}^{+}+\mathrm{Br}^{-} \rightleftarrows \mathrm{AgBr}$
Precipitation starts when ionic product just exceeds solubility product
$\mathrm{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right]$
$\left[\mathrm{Br}^{-}\right]=\frac{\mathrm{K}_{\mathrm{sp}}}{[\mathrm{Ag}+]}=\frac{5 \times 10^{-13}}{0.05}=10^{-11}$
i.e., precipitation just starts when 10^{-11} moles of KBr is added to $1 \mathrm{LAgNO}_{3}$ solution. No of miles of KBr to be added $=10^{-11}$

$$
\begin{aligned}
& =10^{-11} \times 120 \\
& =1.2 \times 10^{-9} \mathrm{~g}
\end{aligned}
$$

Sol 14: (C)

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftarrows \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \quad \mathrm{K}_{1}=4.2 \times 10^{-7} \\
& \mathrm{~B} \rightarrow \mathrm{HCO}_{3}^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{CO}_{3}^{-2} \quad \mathrm{~K}_{2}=4.8 \times 10^{-11}
\end{aligned}
$$

As $K_{2} \ll 1$
All major $\left[\mathrm{H}^{+}\right]_{\text {total }} \approx\left[\mathrm{H}^{+}\right]_{\mathrm{A}}$

Sol 15: (B) $\mathrm{Mg}^{2+}+2 \mathrm{OH}^{-} \rightleftarrows \mathrm{Mg}(\mathrm{OH})_{2}$
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
$\left[\mathrm{OH}^{-}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{Mg}^{2+}\right]}}=10^{-4}$
$\therefore \mathrm{pOH}=4$ and $\mathrm{pH}=10$

Sol 16: (B) Electron releasing groups (Alkyl groups) de stabilizes conjugate base.
The $+I$ effect of $\mathrm{C}_{3} \mathrm{H}_{7}$ is less than $-I$ effect of Cl
K_{a} of HCOOH is 17.9×10^{-5}
K_{a} of $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }_{\mathrm{Cl}}^{\mathrm{CH}}-\mathrm{COOH}$ is 139×10^{-5}
Sol 17: (D)

$$
\begin{array}{ccc}
& \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C} \rightleftarrows & 2 \mathrm{CO}(\mathrm{~g}) \\
\text { Initial moles } & \mathrm{p} & 0 \\
\text { Equilibrium moles } & \mathrm{p}-\mathrm{x} & 2 \mathrm{x}
\end{array}
$$

Total pressure at equilibrium $=0.8$ atm; Total no. of moles $=p+x$.
Therefore, $\mathrm{p} \propto \mathrm{n} ; \frac{0.5}{0.8}=\frac{\mathrm{p}}{\mathrm{p}+\mathrm{x}} \Rightarrow \mathrm{x}=0.3$
$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{CO}}^{2}}{\mathrm{P}_{\mathrm{CO}_{2}}}=\frac{0.6 \times 0.6}{0.2}=1.8 \mathrm{~atm}$
Sol 18: (C) $\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a}} \cdot \mathrm{C}} \Rightarrow 10^{-3}=\sqrt{\mathrm{K}_{\mathrm{a}} \cdot 10^{-1}}$
$\Rightarrow \mathrm{K}_{\mathrm{a}}=10^{-5}$

Sol 19: (D) $\mathrm{pH}=1\left[\mathrm{H}^{+}\right]=10^{-1}=0.1 \mathrm{M}$

$$
\mathrm{pH}=2\left[\mathrm{H}^{+}\right]=10^{-2}=0.01 \mathrm{M}
$$

for dilution of $\mathrm{HCl} \mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$

$$
0.1 \times 1=0.01 \times V_{2}
$$

$\mathrm{V}_{2}=10 \mathrm{lt}$
Volume of water added $=10-1=9$ litre.

Sol 20: (B)

JEE Advanced/Boards

Exercise 1

Sol 1: $\mathrm{pH}=13$
$\therefore C=\left[H^{+}\right]=10^{-13}$
$\mathrm{n}=\frac{\mathrm{C}}{\mathrm{V}}=\frac{10^{-13}}{10^{3}}=10^{-16}$
No. of H^{+}ions $=\mathrm{n} \times \mathrm{N}_{\mathrm{A}}=10^{-16} \times 6.023 \times 10^{23}$
$=6.022 \times 10^{7}$
Sol 2: $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
Substitute in the value for K_{w} at 298 K :
$10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
Since $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
$10^{-14}=\left[\mathrm{H}^{+}\right]$
Take the root of both sides of the equation to find $\left[\mathrm{H}^{+}\right]$:
$\sqrt{10^{-14}}=\left[\mathrm{H}^{+}\right]$
$\left[\mathrm{H}^{+}\right]=10^{-7} \mathrm{M}$ at 298 K
Similarly At 310 K ,
$2.56 \times 10^{-14}=\left[\mathrm{H}^{+}\right]^{2}$
$\left[\mathrm{H}^{+}\right]=\sqrt{2.56 \times 10^{-14}}=1.6 \times 10^{-7} \mathrm{M}$ at 310 K

Sol 3: $K_{w}=9.62 \times 10^{-14}$
$p K_{w}=-\log \left(9.62 \times 10^{-14}\right)=13.01$
$\mathrm{pH}=\frac{1}{2}\left(\mathrm{pK}_{\mathrm{w}}\right)=\frac{13.01}{2}=6.50$
(ii) (a) Basic, (b)Acidic

Sol 4: $\mathrm{K}_{\mathrm{w}}=2.56 \times 10^{-14} \longrightarrow 60^{\circ} \mathrm{C}$
$\mathrm{pK}_{\mathrm{w}}=-\log \left(2.56 \times 10^{-14}\right)=13.58$
Apply $\mathrm{pH}=\frac{1}{2}\left(\mathrm{pK}_{\mathrm{w}}\right)=\frac{13.58}{2}=6.79$

Sol 5:

(a) Since $\mathrm{H}_{2} \mathrm{SO}_{4}$ dissociates as $\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons \underset{0.2}{2 \mathrm{H}^{+}}+\mathrm{SO}_{4}^{-}$

$$
\mathrm{H}_{3} \mathrm{O}^{+}=\frac{(50 \times 0.2)+(50 \times 0.4)}{50+50}=\frac{30}{100}=0.3
$$

$$
\mathrm{pH}=-\log (0.3)=0.522
$$

(b) $0.1 \mathrm{M} \mathrm{HA}+0.1 \mathrm{M} \mathrm{HB}$

$$
\mathrm{K}_{\mathrm{a}}=2 \times 10^{-5} \mathrm{~K}_{\mathrm{a}}=4 \times 10^{-5}
$$

$$
\left[\mathrm{H}^{+}\right]=\sqrt{(\mathrm{HA})} \underbrace{\mathrm{K}_{\mathrm{a}} \times \mathrm{C}_{1}+\underset{(\mathrm{HB})}{\mathrm{K}_{\mathrm{a}} \times \mathrm{C}_{2}}}_{(\mathrm{HB})}
$$

$$
=\sqrt{2 \times 10^{-5} \times 0.1+4 \times 10^{-5} \times 0.1}
$$

$$
=0.00244
$$

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.00244)=2.61$

Sol 6: Since the solution is fairly concentrated and $\mathrm{K}_{2} / \mathrm{K}_{1} \simeq 10^{-3}\left(\mathrm{~K}_{2} \ll \mathrm{~K}_{1}\right)$, we can use the expression:

$$
\begin{equation*}
\mathrm{K}_{1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{\left[\mathrm{H}_{2} \mathrm{~A}\right]_{0}-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]} \tag{Eq.1.10.10}
\end{equation*}
$$

Which gives

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{-\mathrm{K}_{1} \sqrt{\mathrm{~K}_{1}^{2}+4\left[\mathrm{H}_{2} \mathrm{~A}\right]_{0} \mathrm{~K}_{1}}}{2}
$$

Substituting the given values of K_{1} and $\left[\mathrm{H}_{2} \mathrm{~A}\right]_{0}$ in the above expression, we get

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]} \\
& =\frac{-\left(5.9 \times 10^{-2} \mathrm{M}\right)+\sqrt{\left(5.9 \times 10^{-2} \mathrm{M}\right)^{2}+4(0.1 \mathrm{M})\left(5.9 \times 10^{-2} \mathrm{M}\right)}}{2} \\
& =\frac{-\left(5.9 \times 10^{-2} \mathrm{M}\right)+\left(1.645 \times 10^{-1} \mathrm{M}\right)}{2} \\
& =0.0528 \mathrm{M}
\end{aligned}
$$

We can obtain the concentrations of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \mathrm{HC}_{2} \mathrm{O}_{4}^{-}$ and $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ in 0.1 M solution of oxalic acid from the following relations:

$$
\begin{aligned}
& {\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]=\frac{\left[\mathrm{H}_{2} \mathrm{~A}\right]_{0}}{1+\frac{\mathrm{K}_{1}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}}=\frac{0.1 \mathrm{M}}{1+\left(\frac{5.9 \times 10^{-2} \mathrm{M}}{5.28 \times 10^{-2} \mathrm{M}}\right)}} \\
& \quad=\frac{0.1 \mathrm{M}}{1+1.118}=0.0472 \mathrm{M}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]=\frac{\left[\mathrm{H}_{2} \mathrm{~A}\right]_{0}}{\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\mathrm{K}_{1}}}+1} \\
& =\frac{0.1 \mathrm{M}}{\left(\frac{5.28 \times 10^{-2} \mathrm{M}}{5.90 \times 10^{-2} \mathrm{M}}\right)+1} \\
& \quad=\frac{0.1 \mathrm{M}}{0.8949+1}=0.0528 \mathrm{M} \\
& {\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]=\frac{\left[\mathrm{H}_{2} \mathrm{~A}_{\mathrm{o}}\right]}{\left[\frac{\left.\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{\mathrm{~K}_{1} \mathrm{~K}_{2}}\right.}+\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\mathrm{K}_{2}}} \\
& =\frac{0.1 \mathrm{M}}{\left(5.9 \times 10^{-2} \mathrm{M}\right)\left(6.4 \times 10^{-5} \mathrm{M}\right)}+\frac{5.28 \times 10^{-2} \mathrm{M}}{6.4 \times 10^{-5} \mathrm{M}} \\
& =\frac{\left(5.28 \times 10^{-2} \mathrm{M}\right)^{2}}{738.3+825.0}=0.000064 \mathrm{M}
\end{aligned}
$$

Sol 7: Since the dissociation is strong, therefore, the $\left[\mathrm{H}^{+}\right]$due to this dissociation is 0.20 M .
Let x be the amount of H^{+}due to this dissociation Hence,

$$
\left[\mathrm{H}^{+}\right]_{\text {total }}=0.20 \mathrm{M}+\mathrm{x}
$$

This in equilibrium gives

$$
\underset{(0.20 \mathrm{M}-\mathrm{x})}{\mathrm{HSO}_{4}^{-}} \rightleftarrows \underset{(0.20 \mathrm{M}+\mathrm{x})}{\mathrm{H}^{+}}+\underset{\mathrm{x}}{\mathrm{SO}_{4}^{2-}}
$$

$$
\begin{aligned}
& \mathrm{K}{ }_{2=}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{SO}_{4}^{2-}\right]}{\left[\mathrm{HSO}_{4}^{-}\right]}=\frac{(0.20 \mathrm{M}+\mathrm{x})(\mathrm{x})}{(0.20 \mathrm{M}-\mathrm{x})}=1.3 \times 10^{-2} \mathrm{M} \\
& \text { Or }(0.20 \mathrm{M}+\mathrm{x})(\mathrm{x})=\left(1.3 \times 10^{-2} \mathrm{M}\right)(0.20 \mathrm{M}-\mathrm{x}) \\
& \\
& \quad \mathrm{x}^{2}+\left(0.20 \mathrm{M}+1.3 \times 10^{-2} \mathrm{M}\right) \\
& \quad \mathrm{x}-\left(1.3 \times 10^{-2} \mathrm{M}\right)(0.20 \mathrm{M})=0
\end{aligned}
$$

This is eadratic equation in x, which gives

$$
\begin{aligned}
& x=\frac{-0.213 \mathrm{M}+\sqrt{\left\{0.213^{2}+4\left(1.3 \times 10^{-2}(0.20)\right) \mathrm{M}^{2}\right\}}}{2} \\
& =\frac{-0.213 \mathrm{M}+0.2362 \mathrm{M}}{2}=0.0116 \mathrm{M}
\end{aligned}
$$

Thus, $\left[\mathrm{H}^{+}\right]_{\text {total }}=(0.2 \mathrm{M}+\mathrm{x})=0.2116 \mathrm{M}$

$$
\begin{aligned}
& {\left[\mathrm{HSO}_{4}^{-}\right]=0.2 \mathrm{M}-\mathrm{x}=0.1884 \mathrm{M}} \\
& {\left[\mathrm{SO}_{4}^{2-}\right]=x=0.0116 \mathrm{M}} \\
& {\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=0}
\end{aligned}
$$

Sol 8:

$$
\left.\begin{array}{lll}
& \mathrm{pK}_{\mathrm{a}}\left(\mathrm{NH}_{4}^{+}\right)=9.26 \\
& \therefore & \mathrm{pK}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=14-9.26=4.74 \\
& \mathrm{NH}_{3}+ & \mathrm{HCl} \\
& & \mathrm{NH}_{4} \mathrm{Cl} \\
\text { Initial } & 20 & 15
\end{array}\right] 0
$$

Mixture is a buffer containing 5 millimol of NH_{3} (base)
And 15 millimol of NH_{4}^{+}(conjugate acid)

$$
\begin{gathered}
\therefore \quad \mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{3}\right]} \\
=4.74+\log 3 \\
\therefore \quad \mathrm{pH}=14-\mathrm{pOH} \\
=9.26-\log 3 \\
=9.26-0.48=8.78
\end{gathered}
$$

Sol 9: $\mathrm{pOH}=\mathrm{pk}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { Base }]}$
Final Volume of NaOH after reaction $=50+75=125 \mathrm{ml}$
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$M_{2}=\frac{0.1 \times 50}{125}=0.04 \mathrm{M}$
Final Volume of $\mathrm{NH}_{4} \mathrm{Cl}=25 \mathrm{ml}$
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$M_{2}=\frac{0.2 \times 50}{25}=0.4 \mathrm{M}$
$\mathrm{pOH}=0.2+\log \frac{[0.4]}{[0.04]}=0.2+1=1.2$
$\mathrm{pH}=14-1.2=12.8$

Sol 10: Methyl red, one with $\mathrm{pH}=5.22$ as midpoint of colour range.

Sol 11: $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}$

Initial concentration of $[\mathrm{HIn}]=75 \%$
Initial concentration of $\left[\mathrm{In}^{-}\right]=25 \%$
Final concentration of $[\mathrm{HIn}]=25 \%$
Initial concentration of $\left[\mathrm{In}^{-}\right]=75 \%$
Thus,
$\mathrm{pH}_{1}=-\log \left(3^{*} 10^{\wedge} 5\right)+\log 75 / 25$
$\mathrm{pH}_{1}=5$
$\left[\mathrm{H}^{+}{ }_{1}\right]=10^{-5} \mathrm{M}$
$\mathrm{pH}_{2}=-\log \left(3^{*} 10 \wedge 5\right)+\log 25 / 75=-4.045$
$\left[\mathrm{H}^{+}{ }_{2}\right]=8.91 \times 10^{-5} \mathrm{M}$
$\left[\mathrm{H}^{+}{ }_{2}\right]=8.91 \times 10^{-5} \mathrm{M}$
$\left[\mathrm{H}^{+}{ }_{2}\right]-\left[\mathrm{H}^{+}{ }_{1}\right]=7.91 \times 10^{-5} \mathrm{M}$

Sol 12: $\mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.8 \times 10^{-5}$
$\mathrm{CH}_{3} \mathrm{COONa}(0.08 \mathrm{M})$
$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
$\frac{1}{\mathrm{~K}_{\mathrm{a}}}=\frac{[\mathrm{HA}]}{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}$
$K_{b}=K_{w} \times K_{a}$
$K_{w}=1 \times 10^{-14}$
$k_{a}=1.8 \times 10^{-5}$
$K_{b}=5.6 \times 10^{-20}=\frac{x^{2}}{(0.08-x)}=\frac{x^{2}}{(0.08)}$
$x=\left[\mathrm{OH}^{-}\right]=0.669 \times 10^{-5} \mathrm{M}$

Sol 13: $K_{b}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$
$2 \mathrm{M} \mathrm{NH} \mathrm{N}_{4} \mathrm{Cl}$ solution of strong acid and weak base.
$\mathrm{pH}=\frac{1}{2}\left[\mathrm{pK}_{\mathrm{w}}-\mathrm{pK}_{\mathrm{b}}-\log \mathrm{C}\right]=4.477$
Sol 14: $\mathrm{pH}=\frac{1}{2}\left[\mathrm{pk}_{\mathrm{w}}+\mathrm{pk}_{\mathrm{a}}+\log \mathrm{C}\right]$
Sol 15: $\mathrm{pH}=\frac{1}{2}\left[\mathrm{pk}_{\mathrm{w}}+\mathrm{pk}_{\mathrm{a}}+\log \mathrm{C}\right]=8.86$

Sol 16:

$M X \rightleftarrows M^{n+}+X^{n-} \quad K_{s p}=\left[M^{n+}\right]\left[X^{n-}\right]=4.0 \times 10^{-18}$
$\mathrm{QX}_{2} \rightleftarrows{\mathrm{Q} 2 \mathrm{n}^{+}+2 \mathrm{X}^{\mathrm{n}-} \quad \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Q}^{2 \mathrm{n}+}\right]\left[\mathrm{X}^{\mathrm{n}-}\right]^{2}=4.0 \times 10^{-18}, ~(1)}^{2}$
Solving yield $\left[\mathrm{M}^{\mathrm{n+}}\right]=2.0 \times 10^{-9} \quad\left[\mathrm{Q}^{2 \mathrm{n}+}\right]=1.0 \times 10^{-6}$ Soluble.

Sol 17: Let the simultaneous solubilities of $A g S C N$ and AgBr be s_{1} and s_{2} mole per litre

$$
\begin{align*}
& {\left[\mathrm{Ag}^{+}\right]=\mathrm{s}_{1}+\mathrm{s}_{2},\left[\mathrm{SCN}^{-}\right]=\mathrm{s}_{1} \text { and }\left[\mathrm{Br}^{-}\right]=\mathrm{s}_{2}} \\
& \quad \mathrm{~K}_{\mathrm{sp}}(\mathrm{AgSCN})=\left[\mathrm{Ag}^{+}\right] \times\left[\mathrm{SCN}^{-}\right] \\
& 1.0 \times 10^{-12}=\left(\mathrm{s}_{1}+\mathrm{s}_{2}\right) \times \mathrm{s}_{1} \tag{i}\\
& 5.0 \times 10^{-13}=\left(\mathrm{s}_{1}+\mathrm{s}_{2}\right) \mathrm{s}_{2} \tag{ii}
\end{align*}
$$

Dividing Equation (i) by Equation (ii), we get

$$
\frac{\mathrm{s}_{1}}{\mathrm{~s}_{2}}=2
$$

Or $\mathrm{s}_{1}=2 \mathrm{~s}_{2}$
Substituting this value in Equation (ii)

$$
\begin{aligned}
& 5.0 \times 10^{-13}=3 \mathrm{~s}_{2}^{2} \\
& \mathrm{~s}_{2}=4.08 \times 10^{-7} \\
& \therefore \quad=8.16 \times 10^{-7}
\end{aligned}
$$

This simultaneous solubilities of AgSCN and AgBr are 8.16×10^{-17} mole per litre and 4.08×10^{-7} mole per litre respectively.

Sol 18: pH will be decided by $\left[\mathrm{H}^{+}\right]$furnished by HCl and $\mathrm{CHCl}_{2} \mathrm{COOH} . \mathrm{CH}_{3} \mathrm{COOH}$ being weak does not dissociate due to common ion effect.

$\mathrm{CHCl}_{2} \mathrm{COOH}$			
Initial conc.	0.09	0	$0.09($ from HCl$)$
Final conc.	$(0.09-x)$	x	$(0.09=x)$

$\therefore \quad\left[\mathrm{H}^{+}\right]=0.09+\mathrm{x}$;
But $\mathrm{pH}=1$
$\therefore \quad\left[\mathrm{H}^{+}\right]=10^{-1}=0.1$
$\therefore \quad 0.09+x=0.1$
$\therefore \quad \mathrm{x}=0.01$
K_{a} for $\mathrm{CHCl}_{2} \mathrm{COOH}$ can be given as:

$$
\begin{array}{r}
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CHCl}_{2} \mathrm{COO}^{-}\right]}{\left[\mathrm{CHCl}_{2} \mathrm{COOH}\right]} \\
=\frac{0.1 \times 0.01}{(0.09-0.01)}=1.25 \times 10^{-2}
\end{array}
$$

Sol 19: $\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-}$
$\mathrm{K}_{\mathrm{a}_{1}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HS}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}$
Further $\mathrm{HS}^{-}=\mathrm{H}^{+}+\mathrm{S}^{2-}$
$\mathrm{K}_{\mathrm{a}_{2}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{S}^{2-}\right]}{\left[\mathrm{HS}^{-}\right]}$
Multiplying both the equations

$$
\mathrm{K}_{\mathrm{a}_{1}} \times \mathrm{K}_{\mathrm{a}_{2}}=\frac{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}
$$

Due to common ion, the ionization of $\mathrm{H}_{2} \mathrm{~S}$ is suppressed and the $\left[\mathrm{H}^{+}\right]$in solution is due to the presence of 0.3 M HCl .

$$
\left[\mathrm{S}^{2-}\right] \frac{\mathrm{K}_{\mathrm{a}_{1}} \times \mathrm{K}_{\mathrm{a}_{2}}\left[\mathrm{H}_{2} \mathrm{~S}\right]}{\left[\mathrm{H}^{+}\right]^{2}}=\frac{10^{-7} \times 10^{-14} \times(0.1)}{\left(2 \times 10^{-4}\right)^{2}}=2.5 \times 10^{-15}
$$

Sol 20: Use $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$for 1 M .

$$
\underset{1-x}{\mathrm{CH}_{3} \mathrm{COOH}} \stackrel{1}{x} \underset{x}{\mathrm{CH}_{3} \mathrm{COO}^{-}}+\underset{x}{\mathrm{H}^{+}}
$$

$\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{x}^{2}}{1-\mathrm{x}}=\mathrm{x}^{2}=1.8 \times 10^{-5} ; \mathrm{x}=4.2 \times 10^{-3}=\left[\mathrm{H}^{+}\right]$
$\therefore \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(4.2 \times 10^{-3}\right)=2.37$
Now, let 1 litre of $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ be diluted to V litres so that the pH of the solution doubles. Let the concentration of the diluted solution be c moles / litre.

Thus, $\mathrm{CH}_{3} \stackrel{\mathrm{c}}{\left.\mathrm{C} O-\mathrm{x}^{\prime}\right)} \mathrm{OH} \rightleftharpoons \underset{\mathrm{x}^{\prime}}{\mathrm{CH}_{3} \mathrm{COO}^{-}}+\underset{\mathrm{x}^{\prime}}{\mathrm{H}^{+}}$
$K_{a}=\frac{x^{\prime} \cdot x^{\prime}}{\left(c-x^{\prime}\right)}=1.8 \times 10^{-5}$
Further $\mathrm{pH}=-\log \mathrm{x}^{\prime}=2 \times 2.37=4.74(\mathrm{pH}$ doubles on dilution)
Or $\log x^{\prime}=-4.74=\overline{5} .26 ; x^{\prime}=1.8 \times 10^{-5}$.
Sub. x^{\prime} in (1) we get, $c=3.6 \times 10^{-5}$
As the number of moles of $\mathrm{CH}_{3} \mathrm{COOH}$ before and after dilution will be the same.
\therefore Moles of $\mathrm{CH}_{3} \mathrm{COOH}=$ Molarity \times Volume in litres.
$\therefore 3.6 \times 10^{-5} \times \mathrm{V}=1 \times 1\binom{$ Initial molarity $=1}{$ Initial volume $=1}$
$V=2.78 \times 10^{4}$ litres

Sol 21: Acetic acid has to use as salt-acid molar ratio is 1.8: 1

Sol 22: At the end point, m.e. (on millimoles) of the salt produced
$=$ m.e. of $\mathrm{NaOH}=0.1 \times 36.12=3.612$
(Since salt formed will be univalent and so for such salts m.m. = m.e.)
m.e. (millimole) of HCl added $=0.1 \times 18.06=1.806$

The addition of 1.806 m.e. of HCl will produce the same number of m.e. of the unknown acid and reduce the amount of the salt by 1.806 m.e.
\therefore m.e. (millimole) of the unknown acid $=1.806$
And m.e. (or millimole) of the salt $=3.612-1.8006=1.806$.
Using,
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\text { millimole of salt }}{\text { millimole of acid }}$

Sol 23: Let us find $\left[\mathrm{H}^{+}\right]$of HCOOH before adding HCOONa.

For the equilibrium,
$\mathrm{HCOOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCOO}^{-}$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HCOOH}]}
$$

$\left(\because\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCOO}^{-}\right]\right)$
$\therefore\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a}} \cdot[\mathrm{HCOOH}]}=\sqrt{1.8 \times 10^{-4} \times 0.2}=6 \times 10^{-3}$

Now, on the addition of sodium formate in the acid, we have,
$\left[\mathrm{H}^{+}\right]=\frac{[\text { acid }]}{[\text { salt }]}=1.8 \times 10^{-4} \times \frac{0.2}{0.1}=3.6 \times 10^{-4}$
Calculate pH .

Exercise 2

Single Correct Choice Type

Sol 1: (A) $\mathrm{pH}=-\log \left[4^{+}\right]=\frac{1}{\log _{10}\left[4^{+}\right]}$or
$\left[4^{+}\right]=10^{-\mathrm{pH}}$
$\therefore\left[4^{+}\right]=10^{-2}$ and $\left[\mathrm{H}^{+}\right]=10^{-6}$
$10^{-2}=10^{-6}$
\therefore Factor $=10^{4}$

Sol 2: (C) Overall dissociation
Constant $=1.0 \times 10^{-5} \times 5.0 \times 10^{-10}$
Acid $\left(\mathrm{H}_{2} \mathrm{~A}\right)=5.0 \times 10^{-15}$

Sol 3: (D) $\mathrm{k}_{\mathrm{b}}=2 \times 10^{-6} ; 0.01 \mathrm{M} \mathrm{RNH}_{2}$
$10^{-4} \mathrm{M} \mathrm{NaOH}$

Common ion effect due to NaOH
$\mathrm{k}_{\mathrm{b}}=\frac{\left[\stackrel{\oplus}{\mathrm{R}}_{\mathrm{N}}^{\mathrm{H}} \mathrm{H}_{3}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{RNH}_{2}\right]}$
$\mathrm{pOH}=-\log \mathrm{k}_{\mathrm{b}}+\log \frac{[\mathrm{C} \cdot \mathrm{A}]}{[\text { Base }]}$
$=-\log \left(2 \times 10^{-6}\right)+\log \frac{(0.01)}{10^{-4}}$
$=-\log 2+6+\log 0.01+4$
$=10-2-0.3010=7.699$
$\mathrm{POH}=-\log \left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{OH}^{-}\right]=10^{-7.699}$

Sol 4: (B) Salt of WB \& WA
Degree of hydrolysis $=50 \% ; M=0.1 \mathrm{M}$
$M_{2}=0.2 \mathrm{M}$
\% hydrolysis of salt = ?

$$
\begin{aligned}
& \mathrm{h}_{1}=\sqrt{\frac{\mathrm{K}_{\mathrm{h}}}{\mathrm{C}_{1}}} \quad \mathrm{~h}_{2}=\sqrt{\frac{\mathrm{K}_{\mathrm{h}}}{\mathrm{C}_{2}}} \\
& \mathrm{~h}_{1}^{2} \mathrm{C}_{1}=\mathrm{K}_{\mathrm{h}} \quad \mathrm{~h}_{2}^{2} \mathrm{C}_{2}=\mathrm{K}_{\mathrm{h}} \\
& \mathrm{~h}_{1}^{2} \mathrm{C}_{1}=\mathrm{h}_{2}^{2} \mathrm{C}_{2}
\end{aligned}
$$

Sol 5: (B) $\underset{0.1 \mathrm{~N}}{\mathrm{NH}_{4} \mathrm{OH}}+\underset{0.1 \mathrm{~N}}{\mathrm{HCl}} \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$
$K=\frac{x^{2}}{(0.1-x)^{2}} ; \quad \sqrt{K}=\frac{x}{0.1-x}$
$\frac{12}{12}=1$

Sol 6: (D) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{\Theta}+\mathrm{H}_{3} \mathrm{O}^{\oplus}$
$K_{a}=1.8 \times 10^{-5}$
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{\Theta}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{k}_{\mathrm{b}}=\frac{\mathrm{Kw}}{\mathrm{Ka}}=\frac{10^{-14}}{1.8 \times 10^{-5}}=5.55 \times 10^{-10}$

Sol 7: (C) $\mathrm{pK}_{\mathrm{a}}=4.80 ; \mathrm{pK}_{\mathrm{b}}=4.78$
$\mathrm{pH}=\frac{1}{2}\left(\mathrm{pR}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a}}-\mathrm{pK}_{\mathrm{b}}\right)$

Sol 8: (B) $\left(x^{\oplus} \mathrm{Na}^{+}\right) 0.1 \mathrm{M} \quad 10 \mathrm{ml}$
HCl 0.1 M
$\mathrm{k}_{\mathrm{b}}\left(\mathrm{x}^{\oplus}\right)=10^{-6}$
$K_{a} \times K_{b}=K_{w}$
$\mathrm{k}_{\mathrm{a}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}}=\frac{10^{-14}}{10^{-6}}=10^{-8}$
$\mathrm{K}_{\mathrm{In}}=\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{\left[\mathrm{H}_{\mathrm{In}}\right]}=\frac{\left[\mathrm{H}^{+}\right][\text {base }]}{[\text { acid }]}$
$\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}}=\frac{\text { [acid }]}{[\text { base }]}=10^{-9} \frac{[0.1]}{[0.1]}$
$\mathrm{pH}=\frac{1}{2}(\mathrm{pK}_{\mathrm{w}}-\mathrm{pK}_{\mathrm{b}}-\underbrace{\log \mathrm{a}}_{\mathrm{pK}_{\mathrm{a}}})$
Sol 9: (A) Vol. of buffer soln. $=100 \mathrm{ml}$
$M_{\text {buffer }}=0.1 \mathrm{M}$
$\mathrm{pH}=5.5$
$\mathrm{pK}_{\mathrm{a}}(\mathrm{HA})=5$
$\mathrm{NaOH}+(\mathrm{HA}+\mathrm{NaA})=\mathrm{pH}(5.5)$

$$
\underbrace{\mathrm{pK}_{\mathrm{a}}=5}_{100 \mathrm{ml}}
$$

$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { salt }]}{[\text { acid }]}=5+\log \frac{[0.1]}{[0.1]}=5$
Contributing $\mathrm{pH}=0.5$ by NaOH
$0.5=-\log \left[\mathrm{H}^{+}\right]$
$A \log (-0.5)=\left[H^{+}\right]$
$\left[\mathrm{H}^{+}\right]=3.16$
$\left[\mathrm{OH}^{-}\right]=10.84=\frac{\text { no. of moles }}{\text { vol. }}$

Sol 10: (D)

KOH
0.2M

40 ml

HCOOH

0.1 M

160 ml

$$
\mathrm{K}_{\mathrm{a}}=2 \times 10^{-4}
$$

No. of Millimoles $=\mathrm{M} \times \mathrm{Vol}$
\therefore Milimoles of $\mathrm{KOH}=0.2 \times 40=8$
Milimoles of $\mathrm{HCOOH}=0.1 \times 160=16$
Milimoles of HCOOK produced $=8$
Milimoles of HCOOH remained $=16-8=8$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\text { millimoles of salt }}{\text { milimoles of acid }}$
$=-\log \left(2 \times 10^{-4}\right)+\log \frac{8}{8}=4-0.3010=3.699$
$\mathrm{pOH}=14-3.699=10.3$

Sol 11: (A) For buffer solution

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]}=4.5+\log \frac{[\text { Salt }]}{[\text { Acid }]}
$$

As H A is 50% ionized, $[$ Salt $]=[$ Acid $]$
This is because of the total 100% only $\% 50$ is ionized which is equivalent to the concentration of the remaining buffer solution.

If it was 75% then we would consider $(100-75) \%$, but in this case $[$ Salt $] \neq[$ Acid $]$.
$\mathrm{pH}=4.5$
$\mathrm{pH}+\mathrm{pOH}=14$
or $\mathrm{pOH}=14-4.5=9.5$

Sol 12: (A) C is the conjugate acid of A, and D is the conjugate base of B

Sol 13: (A) $\mathrm{NaH}_{2} \mathrm{PO}_{2}$ is not an acid salt.

Sol 14: (B) pH of buffer solution is not affected by dilution.

Sol 15: (C) Buffer solution constitute of weak acid and its conjugate base or vice versa.

Sol 16: (C) Buffer solution constitute of weak acid and its conjugate base or vice versa.

Multiple Correct Choice Type

Sol 17: (A, B) Buffer solution constitute of weak acid and its conjugate base or vice versa.

Sol 18: (B,C) (B) $\underset{\text { Acid }}{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}} \rightleftharpoons \underset{\text { Conjugate Base }}{\mathrm{HPO}_{4}^{2-}}+\mathrm{H}^{+}$
(C) Conceptual fact

Sol 19: (\mathbf{B}, \mathbf{C}) Concentration of salt (C) at equivalent point is 0.25 M
Volume of HCl is used at equivalent point is 100 ml

Sol 20: ($\mathbf{A}, \mathbf{B}, \mathbf{C}$) Phenolphthalein is suitable indicator for the titration of weak acid vs strong base and strong acid vs strong base.

Sol 21: ($\mathbf{A}, \mathbf{B}, \mathbf{C}$) All the three relation are correct for alkaline solution.
(A) $\mathrm{pH}>\frac{\mathrm{pK}_{\mathrm{w}}}{2}$
(B) $\mathrm{pH}>\mathrm{pOH}$
(C) $\mathrm{pOH}<\frac{\mathrm{pK}_{\mathrm{w}}}{2}$

Sol 22: (A, B) $\mathrm{pH}=\mathrm{pk}_{\mathrm{a}}+\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}$
Initial concentration of [HIn] $=75 \%$
Initial concentration of $\left[\mathrm{In}^{-}\right]=25 \%$

Final concentration of $[\mathrm{HIn}]=25 \%$
Final concentration of $\left[\mathrm{ln}^{-}\right]=75 \%$
$\mathrm{pH}_{1}=-\log \left(3 \times 10^{-5}\right)+\log \frac{75}{25}=5$
$\left[\mathrm{H}_{1}^{+}\right]=10^{-5} \mathrm{M}$
$\mathrm{pH}_{2}=-\log \left(3 \times 10^{-5}\right)+\log \frac{25}{75}=4.05$

Sol 23: (A, C, D) A very high value of equilibrium constant indicates that the forward is almost complete. Thus CN^{-}is stronger base than ONO^{-}. (C) and (D) are factual.

Sol 24: (A, D)

$$
\begin{aligned}
& \underset{\text { Acid }}{\mathrm{HF}} \rightleftharpoons \underset{\text { Conjugate Base }}{\mathrm{F}^{-}}+\mathrm{H}^{+} \\
& \underset{\text { Acid }}{\mathrm{HS}^{-}} \rightleftharpoons \underset{\text { Conjugate Base }}{\mathrm{S}^{2-}}+\mathrm{H}^{+}
\end{aligned}
$$

Sol 25: (B, C, D) $\mathrm{H}_{2} \mathrm{SO}, \mathrm{HNO}_{3^{\prime}} \mathrm{NaOH}$ all of them will suppress the ionization of phthalic acid in an aqueous solution.

Match the Columns

Sol 26: $A \rightarrow q ; B \rightarrow r ; C \rightarrow s ; D \rightarrow p$
(A) $\mathrm{CH}_{3} \mathrm{COOH}-$ Weak acid
(B) $\mathrm{H}_{2} \mathrm{SO}_{4}$ - Strong acid
(C) NaOH -Strong base
(D) NH_{3}-Weak base

Sol 27: $A \rightarrow s ; B \rightarrow s ; C \rightarrow q$
Propyl red and malachite green are suitable indicators for strong acid and strong base titrations.

Previous Years' Questions

Sol 1: (A) K_{p} for a given reversible reaction depends only on temperature.

Sol 2: (A) $K_{a}(H X)=\frac{K_{w}}{K_{b}}=10^{-4}$

$$
\Rightarrow \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}
$$

$=\mathrm{pK}_{\mathrm{a}}$

$$
\left[\because\left[\mathrm{X}^{-}\right]=[\mathrm{HX}]\right]=4
$$

Sol 3: (C) The reaction of HA with strong base is:

$$
\begin{aligned}
& \mathrm{HA}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{A}^{-} \\
& \mathrm{K}=\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]} \times \frac{\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]}=\frac{\mathrm{K}_{\mathrm{a}}}{\mathrm{~K}_{\mathrm{w}}}=\frac{10^{-4}}{10^{-14}}=10^{10}
\end{aligned}
$$

Sol 4: (D) $M X: K_{\text {sp }}=S^{2}=4 \times 10^{-8} \Rightarrow S=2 \times 10^{-4}$

$$
\begin{aligned}
M X_{2}: K_{\text {sp }} & =4 S^{3}=3.2 \times 10^{-4} \Rightarrow 5=2 \times 10^{-5} \\
M_{3} X: K_{\text {sp }} & =27 S^{4} \\
& =2.7 \times 10^{-15} \\
& \Rightarrow S=10^{-4}
\end{aligned}
$$

Order of solubility is:

$$
\mathrm{MX}>\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}_{2}
$$

Sol 5: (D) $\mathrm{BOH}+\mathrm{Ha} \rightarrow \mathrm{Ba}+\mathrm{H}_{2} \mathrm{O}^{\mathrm{B}^{+}}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \underset{\mathrm{ch}}{\mathrm{BOH}}+\underset{\mathrm{ch}}{\mathrm{H}^{+}}$
For titration $N_{\text {acid }_{1}} V_{\text {acid }_{1}}=N_{\text {acid }_{2}} V_{\text {acid }_{2}}$

$$
\frac{2}{15} \times v=2.5 \times \frac{2}{5}
$$

v = vol g HCI7.5mL
In resulting solution, conc. of salt

$$
\begin{aligned}
& {[\mathrm{BCI}]=\frac{\frac{2}{5} \times 2.5}{10}=0.1} \\
& \because \frac{\mathrm{ch}^{2}}{1-\mathrm{h}}=\frac{\mathrm{k}_{\mathrm{w}}}{\mathrm{k}_{\mathrm{b}}} \text { or } \mathrm{h}=\sqrt{\frac{\mathrm{k}_{\mathrm{w}}}{\mathrm{k}_{\mathrm{b}} \times \mathrm{c}}}=\sqrt{\frac{10^{-19}}{16^{-12} \times 0.1}} \\
& \mathrm{~h}=\sqrt{\frac{1}{10}} \text { how } \\
& {\left[\mathrm{H}^{+}\right]=\mathrm{ch}=0.1 \times \sqrt{\frac{1}{01}}=3.16 \times 10^{-2} \mathrm{M}=3.2 \times 10^{-2} \mathrm{M}}
\end{aligned}
$$

Sol 6: (C, D) In HNO_{3} and $\mathrm{CH}_{3} \mathrm{COONa}$ combination, if HNO_{3} is present in limiting amount, it will be neutralised completely, leaving behind some excess of $\mathrm{CH}_{3} \mathrm{COONa}$:

Sol 7: (B, C, D) $\mathrm{Cl}^{-}, \mathrm{CN}^{-}$and SCN^{-}forms precipitate with $\mathrm{Cu}(\mathrm{I})$, remove $\mathrm{Cu}(\mathrm{I})$ ion from equilibrium and reaction shift in backward direction according to Le-Chatelier's principle.

Sol 8: In pure water, solubility $=\frac{9.57}{58} \times 10^{-3}$ $=1.65 \times 10^{-4} \mathrm{M}$

$$
\begin{aligned}
& \mathrm{K}_{\text {sp }}=4 \mathrm{~S}^{3}=4\left(1.65 \times 10^{-4}\right)^{3}=1.8 \times 10^{-11} \\
& \begin{array}{l}
\text { In } 0.02 \mathrm{M} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2 i} \\
\text { solubility of } \mathrm{Mg}(\mathrm{OH})_{2}
\end{array}=\sqrt{\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{mg}^{2+}\right]}} \times \frac{1}{2} \\
& =1.5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \\
& =1.510^{-5} \times 58 \mathrm{~g} \mathrm{~L}^{-1} \\
& =8.7 \times 10^{-4} \mathrm{~g} \mathrm{~L}^{-1}
\end{aligned}
$$

Sol 9: (i) 0.20 mole HCl will neutralise 0.20 mole $\mathrm{CH}_{3} \mathrm{COONa}$, producing $0.20 \mathrm{~mol} \mathrm{CH} 3 \mathrm{COOH}^{2}$. Therefore, in the solution
moles of $\mathrm{CH}_{3} \mathrm{COOH}=1.20$
moles of $\mathrm{CH}_{3} \mathrm{COONa}=0.80$

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]} \\
& =-\log \left(1.8 \times 10^{-5}\right)+\log \frac{(0.80)}{1.20}=4.56
\end{aligned}
$$

(ii) $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{HCl} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaCl}$

Initial	0.10	0.20	0	0
Final	0	0.10	0.10	0.10

Now the solution has 0.2 mol acetic acid and 0.1 mole HCl . Due to presence of HCl , ionisation of $\mathrm{CH}_{3} \mathrm{COOH}$ can be ignored (common mainly due to HCl .

$$
\begin{aligned}
& \Rightarrow\left[\mathrm{H}^{+}\right]=0.10 \\
& \Rightarrow \mathrm{pH}=-\log (0.10)=1.0
\end{aligned}
$$

Sol 10: $\quad \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) f \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$

$$
1-x \quad 1-x \quad x \quad x
$$

$\mathrm{Q}_{\mathrm{c}}=\mathrm{I}<\mathrm{K}_{\mathrm{c}^{\prime}}$ ie, reaction proceed in forward direction to attain equilibrium.

$$
\begin{aligned}
& \Rightarrow 16=\left(\frac{x}{1-x}\right)^{2} \\
& \Rightarrow \quad x=0.80 \\
& \Rightarrow \quad[\mathrm{NO}]=0.80 \mathrm{M},\left[\mathrm{NO}_{2}\right]=0.20 \mathrm{M}
\end{aligned}
$$

Sol 11: (C) $\mathrm{H}_{3} \mathrm{BO}_{3}$ (orthoboric acid) is a weak lewis acid.

$$
\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{\oplus}
$$

It does not donate proton rather it acceptors OH^{-}form water.

Hence, (C) is correct.

Sol 12: (C) If $\beta_{\text {eq }}=0.7$
$K_{p}=\frac{8 \times(0.7)^{2}}{4-(0.7)^{2}}=\frac{3.92}{3.51}>1$
Which can't be possible as $\Delta G^{\circ}>0(\Rightarrow K p<1)$.
\therefore Therefore, option (C) is incorrect.

Sol 13:

Let the solubility of AgCl is x mollitre $\mathrm{AgCI} \rightleftarrows \underset{x}{\mathrm{Ag}^{+}}+\underset{\mathrm{x}}{\mathrm{CI}^{-}}$
Let the solubility of AgCl is x mollitre $\mathrm{CuCI} \rightleftarrows \underset{y}{\mathrm{Cu}^{+}}+\underset{\mathrm{y}}{\mathrm{Cl}^{-}}$
$\therefore \mathrm{K}_{\text {sp }}$ of $\mathrm{AgCl}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-1}\right]$
$1.6 \times 10^{-10}=x(x+y)$
Similarly K_{sp} of $\mathrm{CuCl}=\left[\mathrm{Cu}^{+}\right]\left[\mathrm{Cl}^{-}\right]$
$1.6 \times 10^{-6}=y(x+y)$
On solving (i) and (ii)
$\left[\mathrm{Ag}^{+}\right]=1.6 \times 10^{-7}$
$\therefore \mathrm{x}=7$

Sol 14: (B)

$$
\mathrm{M}\left|\mathrm{M}^{2+}(\mathrm{aq}) \| \underset{0.001 \mathrm{M}}{\mathrm{M}^{2+}(\mathrm{aq})}\right| \mathrm{M}
$$

Anode: $\quad \mathrm{M} \rightarrow \mathrm{M}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
Cathode: $\quad \frac{\mathrm{M}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{M}}{\mathrm{M} 2+(\mathrm{aq}) \mathrm{c} \rightleftharpoons \mathrm{M}^{2+}(\mathrm{aq})_{\mathrm{a}}}$
$E_{\text {cell }}=0-\frac{0.059}{2} \log \left\{\frac{\mathrm{M}^{2+}(\mathrm{aq})_{a}}{10^{-3}}\right\}$
$0.059=-\frac{0.059}{2} \log \left\{\frac{M^{2+}(a q)_{a}}{10^{-3}}\right\}-2=\log \left\{\frac{M^{2+}(a q)_{a}}{10^{-3}}\right\}$
$10^{-2} \times 10^{-3}=\mathrm{M}^{2+}(\mathrm{aq})_{\mathrm{a}}=$ solubility $=\mathrm{s}$
$\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~S}^{3}=4 \times\left(10^{-5}\right)^{3}=4 \times 10^{-15}$

Sol 15: (D) pKa of PhOH (carbolic acid) is 9.98 and that of carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ is 6.63 thus phenol does not give effervescence with HCO_{3}^{-}ion.

Sol 16: (A) Rate in weak acid $=\frac{1}{100}$ (rate in strong
acid)

$$
\begin{array}{ll}
\therefore & {\left[\mathrm{H}^{+}\right]_{\text {weak acid }}=\frac{1}{100}\left[\mathrm{H}^{+}\right]_{\text {strong acid }}} \\
\therefore & {\left[\mathrm{H}^{+}\right]_{\text {weak acid }}=\frac{1}{100} \mathrm{M}=10^{-2} \mathrm{M}} \\
\therefore & \mathrm{C} \alpha=10^{-2} \\
\therefore & \mathrm{~K}_{\mathrm{a}}=10^{-4}
\end{array}
$$

Option (A) is correct.
Sol 17: (B) $\mathrm{K}_{\mathrm{sp}}=1.1 \times 10^{-12}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{-2}\right]$
$1.1 \times 10^{-12}=[0.1]^{2}[\mathrm{~s}]$
$s=1.1 \times 10^{-10}$

Sol 18: (B)

$$
\begin{array}{ccc}
t=0 \text { (No.ofmoles) } & 1 & 0 \\
t=t & 1-\frac{\beta}{2} & \beta \\
t=t_{e q} & \left(1-\frac{\beta_{\mathrm{eq}}}{2}\right) & \beta_{e q}
\end{array}
$$

$$
P_{x}=2\left(\frac{\beta_{\mathrm{eq}}}{1+\frac{\beta_{\mathrm{eq}}}{2}}\right) \quad n \text { Total }=1-\frac{\beta_{\mathrm{eq}}}{2}+\beta_{\mathrm{eq}}=\left(1+\frac{\beta_{\mathrm{eq}}}{2}\right)
$$

$$
\mathrm{Px}_{2}=2\left(\frac{1-\beta_{\mathrm{eq} / 2}}{1+\beta_{\mathrm{eq} / 2}}\right)
$$

$$
K_{P}=\frac{(P x)^{2}}{P_{x_{2}}}=\frac{\left[2\left(\frac{\beta_{\mathrm{eq}}}{1+\beta_{\mathrm{eq}} / 2}\right)\right]^{2}}{\left[2\left(\frac{1-\beta_{\mathrm{eq}} / 2}{1+\beta_{\mathrm{eq}} / 2}\right)\right]^{2}}=\frac{2 \beta_{\mathrm{eq}}^{2}}{1-\frac{\beta_{\mathrm{eq}}^{2}}{4}}=\frac{8 \beta_{\mathrm{eq}}^{2}}{4-\beta_{\mathrm{eq}}^{2}}
$$

