Solved Examples

JEE Main/Boards

Example 1: The linear mass density of rod of a length $\mathrm{I}=2 \mathrm{~m}$ varies from A as $(2+x) \mathrm{kg} / \mathrm{m}$. What is the position of center of mass from end A.

Sol: To find C.O.M of continuous mass distributions consider a small element of distribution of mass dm. Then the co-ordinate of C.O.M. is given as

$\therefore \mathrm{x}_{\text {COM }}=\frac{\int \mathrm{xdm}}{\mathrm{M}}$ the limits of integration should be chosen such that the small elements covers entire mass distribution.
Take an element of the rod of infinitesimal length $d x$ at distance x from point A. The mass of the element will be $d m=\lambda d x=(2+x) d x$ As x varies from o to l the element covers the entire rod.

Center of mass of rod $X_{c m}=\frac{\int x d m}{\int d m}$
$X_{c m}=\frac{\int_{0}^{1} x(2+x) d x}{\int_{0}^{1}(2+x) d x}=\frac{\left|\left(x^{2}+\frac{x^{3}}{3}\right)\right|_{0}^{1}}{\left|2 x+\frac{x^{2}}{2}\right|_{0}^{1}}$
$X_{c m}=\frac{I^{2}+\frac{I^{3}}{3}}{2 I+\frac{I^{2}}{2}}=\frac{6 I+\left.2\right|^{2}}{12+3 \mid}$
For I $=2 \mathrm{~m}, \mathrm{X}_{\mathrm{cm}}=\frac{6 \times 2+2 \times 4}{12+3 \times 2}=\frac{20}{18}=\frac{10}{9} \mathrm{~m}$
So center of mass is at a distance $\frac{10}{9} \mathrm{~m}$ from A.

Example 2: One fourth of the mass of square lamina is cut off (see figure). Where does the center of mass of the remaining part of the square shift.

Sol: To find the C.O.M. of a body having a cavity we first fill the cavity with the same density as body and find the C.O.M. (x, y, z) of the whole body. Then we consider the cavity as second body having negative mass and
find the C.O.M $\left(x_{1}, y_{1}, z_{1}\right)$ of the cavity. The C.O.M. of the body with cavity is

$x_{c m}=\frac{m x-m_{1} x_{1}}{\left(m-m_{1}\right)} ; y_{c m}=\frac{m y-m_{1} y_{1}}{\left(m-m_{1}\right)} ; z_{c m}=\frac{m z-m_{1} z_{1}}{\left(m-m_{1}\right)}$
Part of the lamina cut-off is taken as negative mass. Coordinates of center of mass of whole lamina are $\left(\frac{a}{2}, \frac{a}{2}\right)$ and the coordinates of center of mass of cut-off part are $\left(\frac{3 a}{4}, \frac{3 a}{4}\right)$. So the center of mass of remaining part is given as,

$$
\begin{aligned}
& X_{c m}=\frac{m \frac{a}{2}-\frac{m}{4} \cdot \frac{3 a}{4}}{m-\frac{m}{4}}=\frac{\frac{a}{2}-\frac{3 a}{16}}{\frac{3}{4}}=\frac{5 a}{12} m \\
& Y_{c m}=\frac{m \frac{a}{2}-\frac{m}{4} \cdot \frac{3 a}{4}}{m-\frac{m}{4}}=\frac{5 a}{12} m
\end{aligned}
$$

Example 3: The magnitude and direction of the velocities of two identical frictionless balls before they strike each other are as shown in figure. Assuming $e=0.90$, determine the magnitude and direction of the velocity of each ball after the impact. $\mathrm{v}_{\mathrm{A}}=30 \mathrm{~ms}^{-1}$, $\mathrm{v}_{\mathrm{B}}=40 \mathrm{~ms}^{-1}$

Sol: In case of an oblique collision, the momentum of individual particles are added vectorially in the equation of conservation of linear momentum. The equation of restitution is used along line of impact
The component of velocity of each ball along the common tangent at the point of impact will remain the same before and after the collisions. Let x and y axes be along the common normal and common tangent respectively.

So $v^{\prime}{ }_{A y}=v_{A y}=v_{A} \sin 30^{\circ}=15 \mathrm{~ms}^{-1}$
$v_{B y}^{\prime}=v_{B y}=v_{B} \sin 60^{\circ}=20 \sqrt{3}=34.6 \mathrm{~ms}^{-1}$

Along the x axis we conserve the momentum to get
$m_{A} v_{A x}+m_{B} v_{B x}=m_{A} v_{A x}^{\prime}+m_{B} v_{B x}^{\prime}$
$m v_{A} \cos 30+m\left(-v_{B} \cos 60^{\circ}\right)=m v^{\prime}{ }_{A x}+m v^{\prime}{ }_{B x}$
$v^{\prime}{ }_{A x}+v^{\prime}{ }_{B x}=15 \sqrt{3}-20$
Velocity of separation $=e$ (velocity of approach)
$\Rightarrow v_{B x}^{\prime}-v_{A x}^{\prime}=e\left(v_{A x}-v_{B x}\right)$
$v^{\prime}{ }_{B x}-v^{\prime}{ }_{A x}=0.9(15 \sqrt{3}+20)$
Solving (iii) and (iv) are get
$v^{\prime}{ }_{A x}=-17.7 \mathrm{~ms}^{-1}$
$v_{B x}^{\prime}=23.68 \mathrm{~ms}^{-1}$
$\Rightarrow V^{\prime}{ }_{\mathrm{A}}=\sqrt{\mathrm{V}^{\prime}{ }_{\mathrm{Ax}}{ }^{2}+\mathrm{V}^{\prime}{ }_{\mathrm{Ay}}{ }^{2}}=23.2 \mathrm{~ms}^{-1}$
and $v_{B}^{\prime}=\sqrt{v_{B x}^{\prime}{ }^{2}+v^{\prime}{ }_{B y}{ }^{2}}=41.92 \mathrm{~ms}^{-1}$

Example 4: The mass of a rocket is $2.8 \times 10^{6} \mathrm{~kg}$ at launch time of this $2 \times 10^{6} \mathrm{~kg}$ is fuel. The exhaust speed is $2500 \mathrm{~m} / \mathrm{s}$ and the fuel is ejected at the rate of $1.4 \times 10^{4} \mathrm{~kg} / \mathrm{sec}$.
(a) Find thrust on the rocket.
(b) What is initial acceleration at launch time?

Ignore air resistance.

Sol: To lift the rocket upward against gravity, the thrust force in the upward direction due to exiting gases should be greater than or equal to the gravitational force. The equation of motion of the rocket can be written in terms of force as $m \frac{d v}{d t}=F_{g}+v_{r}\left(\frac{d m}{d t}\right)$

Thrust force

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{th}}=\mathrm{v}_{\mathrm{r}}\left(\frac{\mathrm{dm}}{\mathrm{dt}}\right)=2500 \mathrm{~ms}^{-1} \times 1.4 \times 10^{4} \mathrm{kgs}^{-1} \\
& \mathrm{~F}_{\text {th }}=3.5 \times 10^{7} \mathrm{~N}
\end{aligned}
$$

Equation of motion of rocket is

$$
\begin{aligned}
& m \frac{d v}{d t}=-W+v_{r}\left(\frac{d m}{d t}\right)=-m g+v_{r}\left(\frac{d m}{d t}\right) \\
& \left.\Rightarrow \frac{d v}{d t}\right|_{t=0}=-g+\frac{F_{t h}}{m_{0}}=-9.8+\frac{3.5 \times 10^{7} \mathrm{~N}}{2.8 \times 10^{6} \mathrm{~kg}} \\
& \Rightarrow a_{0}=\left(\frac{350}{28}-9.8\right) \mathrm{ms}^{-2} \\
& \Rightarrow a_{0}=12.5-9.8=2.7 \mathrm{~ms}^{-2}
\end{aligned}
$$

Example 5: A projectile is fired at a speed of $100 \mathrm{~m} / \mathrm{s}$ at an angle of 37° above horizontal (see figure) At the highest point the projectile breaks into two parts of mass ratio 1:3. Find the distance from the launching point to the point where the heavier piece lands. The smaller mass has zero velocity with respect to the earth immediately after explosion.

Sol: The range of center of mass of the system during projectile motion is given by $X_{C M}=R=\frac{u^{2} \sin 2 \theta}{g}$. This range is not effected by any internal changes in the system.

The C.O.M of the projectile will hit the horizontal plane at the same point where it would have hit without any explosion i.e. the range of COM will not change. Both the smaller and larger mass will reach the ground together because the vertical components of their velocity are equal to zero after the explosion. (Explosion took place at the highest point of the trajectory and the smaller mass comes to rest just after the explosion). At highest

$$
\begin{aligned}
& \text { point } x_{1}=\frac{R}{2} . \\
& X_{c m}=R=\frac{2 u^{2} \sin \theta \cos \theta}{g}=\frac{2 \times 10^{4} \times 0.6 \times 0.8}{10} \\
& X_{c m}=960=\frac{\frac{m}{4} \cdot \frac{960}{2}+\frac{3 m}{4} \cdot x_{2}}{m} \\
& \Rightarrow 960=\frac{960}{8}+\frac{3}{4} x_{2} \\
& \Rightarrow x_{2}=\frac{4}{3} \times 960 \times \frac{7}{8}=160 \times 7=1120 \mathrm{~m}
\end{aligned}
$$

Example 6: A bullet of mass m strikes a block of mass M connected to a light spring of stiffness k, with a speed v_{0} and gets embedded into mass M. Find the loss of K.E. of the system just after impact

Sol: During collision as there is no net external force acting on the bullet-block system, hence the momentum of the system can be conserved. As the bullet hits block in-elastically, some of its initial K.E. is lost during the collision.

As the bullet of mass m hits the block of mass M, and gets embedded into it, we can write the equation of conservation of linear momentum at the instant of collision, assuming the force due to spring to be negligible, as at this instant the block M has just started moving and the compression in the spring is negligible (see figure)

$$
m V_{0}=(m+M) V \Rightarrow V=\frac{m V_{0}}{m+M}
$$

where V is the velocity of block just after collision.
Loss in kinetic energy of the system of bullet and block is,
$\Delta \mathrm{K}=\frac{1}{2} \mathrm{mv}_{0}^{2}-\frac{1}{2}(\mathrm{M}+\mathrm{m}) \mathrm{V}^{2}$

$$
\begin{aligned}
& =\frac{1}{2}\left[m v_{0}^{2}-(M+m) \frac{m^{2} v_{0}^{2}}{(M+m)^{2}}\right] \\
& =\frac{m v_{0}^{2}}{2}\left[1-\frac{m}{M+m}\right] \\
& \Delta K=\frac{m M v_{0}^{2}}{2(M+m)} J
\end{aligned}
$$

Example 7: Two blocks B and C of mass m each connected by a spring of natural length I and spring constant k rest on an absolutely smooth horizontal surface as shown in figure A third block A of same mass collides elastically to block B with velocity v. Calculate the velocities of blocks, when the spring is compressed as much as possible and also the maximum compression.

Sol: In absence of frictional forces on block, the total mechanical energy of the system comprising the blocks B and C and spring will be conserved. At the time of maximum compression of spring, the mechanical energy of this system in C-frame will be totally stored as elastic potential energy of the spring.
Block A collides with block B elastically. So conserving momentum between A and B we get, (spring force is negligible at the instant of collision)

$$
\begin{aligned}
& \mathrm{mv}=m \mathrm{v}_{\mathrm{A}}=m \mathrm{v}_{\mathrm{A}}+m \mathrm{v}_{\mathrm{B}} \\
& \text { or } \mathrm{v}=\mathrm{v}_{\mathrm{A}}+\mathrm{v}_{\mathrm{B}} \\
& \mathrm{v}=\mathrm{v}_{\mathrm{B}}-\mathrm{v}_{\mathrm{A}}
\end{aligned}
$$

...(ii) (restitution equation)
Solving (i) and (ii), we get
$\mathrm{v}_{\mathrm{A}}=0$ and $\mathrm{v}_{\mathrm{B}}=\mathrm{v}$
For system comprising blocks B and C, the velocity of center of mass after collision is,
$v_{c m}=\frac{m v_{B}}{m+m}=\frac{v}{2} \mathrm{~ms}^{-1}$
As there are no dissipative forces in the horizontal direction the velocity of COM will remain constant. Let us consider the motion of B and C in the C-frame. At the instant of maximum compression the blocks B and C will come to rest in the C-frame. So there velocity in K - frame will become equal to the velocity of COM.
$\therefore \mathrm{v}_{\mathrm{B}}=\mathrm{v}_{\mathrm{C}}=\frac{\mathrm{v}}{2} \mathrm{~ms}^{-1}$
Kinetic energy of system " $B+C$ " just after collision in K frame is,
$K_{\text {sys }}=\frac{1}{2} m v_{B}{ }^{2}+0=\frac{1}{2} m v^{2}$
Now $K_{\text {sys }}=K_{\text {sys } / \mathrm{c}}+\frac{2 \mathrm{mv}_{\mathrm{cm}}^{2}}{2}$
$\Rightarrow \frac{1}{2} \mathrm{mv}^{2}=\mathrm{K}_{\mathrm{sys} / \mathrm{c}}+\mathrm{m} \frac{\mathrm{v}^{2}}{4}$
$\Rightarrow \mathrm{K}_{\text {sys } / \mathrm{c}}=\frac{1}{4} \mathrm{mv}^{2} \quad\left[\mathrm{~K}_{\text {sys } / \mathrm{c}}=\frac{\mu \mathrm{v}_{\text {rel }}^{2}}{2}=\frac{\mathrm{m}}{2} \cdot \frac{\mathrm{v}^{2}}{2}\right]$
Initially the potential energy of spring is zero and when the compression is maximum the energy in C-frame will be entirely converted into potential energy of the spring, thus we can write
$\frac{m v^{2}}{4}=\frac{1}{2} k x_{\max }^{2}$
$\Rightarrow x_{\max }=v \sqrt{\frac{m}{2 k}}$

JEE Advanced/Boards

Example 1: A body of mass M with a small disc of mass m placed on it rests on a smooth horizontal plane as shown in figure. The disc is set in motion in the horizontal direction with velocity v . To what height relative to the initial level will the disc rise after breaking off the body M ? The friction is assumed to be absent.

Sol: As there are no external forces acting on the system comprising m and M in the horizontal direction, the momentum is conservative in the horizontal direction. At the instant the disk m breaks - off from block M, it has a component of velocity u in vertical direction and the disk m and block M have a common velocity V in the horizontal direction.
In horizontal direction we can write,
$m v=(m+M) V \Rightarrow V=\frac{m v}{m+M} \mathrm{~ms}^{-1}$
Once the disc breaks-off the block, then its horizontal velocity will not change and at the highest point of its trajectory, the vertical component of its velocity becomes zero.

Using law of conservation of energy, we get
$\frac{1}{2} m v^{2}=\frac{1}{2} m V^{2}+m g H+\frac{1}{2} M V^{2}$
where H is the height raised by the disc.

$$
\begin{aligned}
& \Rightarrow m g H=\frac{1}{2} m\left(v^{2}\right)-\frac{1}{2}(m+M) V^{2} \\
& \Rightarrow m g H=\frac{1}{2} m v^{2}-\frac{1}{2} \frac{m^{2} v^{2}}{(m+M)}(\text { using (i)) } \\
& \Rightarrow H=\frac{v^{2}}{2 g}\left[1-\frac{m}{m+M}\right] \\
& H=\frac{v^{2}}{2 g} \cdot\left(\frac{M}{m+M}\right) m
\end{aligned}
$$

Example 2: A 20 gm bullet pierces through a plate of mass $M_{1}=1 \mathrm{~kg}$ and then comes to rest inside a second plate of mass $M_{2}=2.98 \mathrm{~kg}$ as shown in the figure. It is found that the two plates, initially at rest, now move with equal velocities. Find the percentage loss in the initial velocity of the bullet when it is between M_{1} and M_{2}. Neglect any loss of material of the plates, due to action of bullet.

Sol: As the net external force on the system during collision is zero, the momentum of system can be conservative.

Conserve momentum for collision of bullet with fist plate, $m v=m u+M_{1} V$
Conserve momentum for collision of bullet with second plate, $m u=\left(m+M_{2}\right) V$
Here the two plates move with equal velocity V after the collision.

Eliminate V from equations (i) and (ii) to get
$m v=m u+M_{1} \frac{m u}{\left(m+M_{2}\right)}$
$u\left[1+\frac{M_{1}}{m+M_{2}}\right]=v ; \Rightarrow u=\frac{v\left(m+M_{2}\right)}{m+M_{1}+M_{2}}$
$\Rightarrow \frac{v-u}{v}=1-\frac{u}{v}=1-\frac{m+M_{2}}{m+M_{1}+M_{2}}$
$\Rightarrow \frac{\Delta v}{v} \times 100 \%=\frac{M_{1}}{m+M_{1}+M_{2}} \times 100 \%$
Putting the values of m, M_{1} and M_{2} we get
$\%$ loss $=\frac{1}{0.020+1+2.98} \times 100 \%$
$\%$ loss $=25 \%$

Example 3: Two bodies A and B of masses m and $2 m$ respectively are placed on a smooth floor. They are connected by a spring. A third body C of mass m moves with a velocity v_{0} along the line joining A and B and collides elastically with A, as shown in figure. At a certain time t_{0}, it is found that the instantaneous velocities of A and B are the same. Further, at this instant the compression of the spring is found to be x_{0}.
Find: (a) The common velocity of A and B at the time t_{0}.
(b) The spring constant.

Sol: The collision between the blocks A and C is elastic. In C-frame at time of maximum compression of spring, the total mechanical energy will be stored as elastic potential energy of spring.
Masses of bodies C and A are same and C

collides elastically with body A initially at rest. So after collision C will come to rest and A will take up the velocity of C (spring force during collision is negligible.) The velocity of center of mass (COM) of the system comprising blocks A and B just after collision is,

$$
\mathrm{v}_{\mathrm{cm}}=\frac{\mathrm{m} \cdot \mathrm{v}_{0}}{3 \mathrm{~m}}=\frac{\mathrm{v}_{0}}{3} \mathrm{~ms}^{-1}
$$

As there are no external forces acting in horizontal direction, the velocity of COM will be constant.

In the C-frame when the compression in the spring is maximum the blocks will come to rest momentarily. Thus there velocity in K - frame will be equal to the velocity of COM.

$$
\Rightarrow \mathrm{v}_{\mathrm{A}}=\mathrm{v}_{\mathrm{B}}=\mathrm{v}_{\mathrm{cm}}=\frac{\mathrm{v}_{0}}{3} \mathrm{~ms}^{-1}
$$

Just after collision the total kinetic energy of blocks A and B in C - frame is,

$$
\mathrm{K}_{\mathrm{sys} / \mathrm{c}}=\frac{1}{2} \mu \mathrm{v}_{\mathrm{rel}}^{2}=\frac{(\mathrm{m})(2 \mathrm{~m})}{2 \times 3 \mathrm{~m}} \cdot \mathrm{v}_{0}^{2} \Rightarrow \mathrm{~K}_{\mathrm{sys} / \mathrm{c}}=\frac{m v_{0}^{2}}{3} \mathrm{~J}
$$

This energy will get converted into the elastic potential energy of the spring at the instant of maximum compression,

$$
\frac{m v_{0}^{2}}{3}=\frac{1}{2} \mathrm{k} x_{\max }^{2}=\frac{1}{2} \mathrm{k} x_{0}^{2} ; \Rightarrow \mathrm{k}=\frac{2 \mathrm{mv}_{0}^{2}}{3 \mathrm{x}_{0}^{2}} \mathrm{~J}
$$

Example 4: A block of mass M with a semi-circular track of radius R rests on a horizontal frictionless surface. A uniform cylinder of radius r and mass m is released from rest at the point A as shown in the figure. The cylinder slips on the semicircular frictionless track.

(a) How far has the block moved when the cylinder reaches the bottom point B of the track?
(b) How fast is the block moving when the cylinder reaches the bottom of the track?

Sol: As there are no frictional forces acting on the system comprises cylinder and block, the gravitational potential energy of cylinder is converted into the kinetic energy of cylinder and block.
(a) There are no external forces acting on the system comprising cylinder and the block in the horizontal direction. So we can conserve momentum in the horizontal direction, so when cylinder reaches point B on the block, let its velocity in K-frame be v_{1} towards right and velocity of block in K-frame be v_{2} towards left. So we get

$$
\begin{equation*}
0=\mathrm{mv}_{1}-\mathrm{Mv}_{2} \text { or } \mathrm{mv}_{1}=\mathrm{Mv}_{2} \tag{i}
\end{equation*}
$$

Also the COM of the system was initially at rest and will continue to remain at rest in absence of horizontal external forces. When m moves towards right a distance of $(R-r)$ relative to block M.

We can write,
$X_{c m}=\frac{m x_{1}+M x_{2}}{m+M} \Rightarrow \Delta X_{c m}=\frac{m \Delta x_{1}+M \Delta x_{2}}{m+M}=0$

Now $\Delta x_{1}=(R-r)+\Delta x_{2}$
$\Rightarrow m\left(R-r+\Delta x_{2}\right)+M \Delta x_{2}=0$
$\Rightarrow \Delta x_{2}=-\frac{m}{M+m}(R-r)$
Now ($R-r$) is towards right, so Δx_{2} will be towards left.
(b) Now as there are no dissipative forces acting on the system, total energy of system is conserved. i.e.
$m g(R-r)=\frac{1}{2} m v_{1}^{2}+\frac{1}{2} M v_{2}^{2}$
From (i) and (iii) eliminate v_{1} to get
$m g(R-r)=\frac{1}{2} m \frac{M^{2} v_{2}^{2}}{m^{2}}+\frac{1}{2} M v_{2}^{2}$
$\Rightarrow m g(R-r)=\frac{1}{2} M v_{2}^{2}\left[\frac{M}{m}+1\right]$
$\Rightarrow m g(R-r)=\frac{M(M+m) v_{2}^{2}}{2 m}$
$\Rightarrow v_{2}=m \sqrt{\frac{2 g(R-r)}{M(M+m)}} \mathrm{ms}^{-1}$

Example 5: Two balls of masses m and $2 m$ are suspended by two threads of same length I from the same point on the ceiling. The ball m is pulled aside through an angle α and released after imparting to it a tangential velocity v_{0} towards the other stationery ball. To what heights will the balls rise after collision, if the collision is perfectly elastic?

Sol: In case of perfectly elastic collision, the kinetic energy of the system is conserved. At the maximum vertical displacement of the ball the total kinetic energy is converted in to gravitational potential energy.

Ball of mass m will collide the ball of mass $2 m$, which is initially at rest.

The velocity of impact of m be v, then by conserving energy of m we get
$\frac{1}{2} m v_{0}^{2}+m g l(1-\cos \alpha)=\frac{1}{2} m v^{2}$
$v_{0}^{2}+2 g \mid(1-\cos \alpha)=v^{2}$
Conserve momentum of balls before and after collision to get,

$$
\begin{equation*}
m v=m v_{1}+2 m v_{2} \text { or } v=v_{1}+2 v_{2} \tag{ii}
\end{equation*}
$$

Equation for coefficient of restitution gives
$\mathrm{v}=\mathrm{v}_{2}-\mathrm{v}_{1}$
Add (ii) and (iii) to get $2 \mathrm{v}=3 \mathrm{v}_{2}$
or $v_{2}=\frac{2 v}{3} \mathrm{~ms}^{-1}$ and $\mathrm{v}_{1}=-\frac{\mathrm{v}}{3} \mathrm{~ms}^{-1}$
Conserve energy for ' m ' as it reaches maximum height,
$\frac{1}{2} m\left(\frac{v}{3}\right)^{2}=m g h_{1}$
or $h_{1}=\frac{v^{2}}{18 g}=\frac{v_{0}^{2}+2 g l(1-\cos \alpha)}{18 g}$ [using (i)]
Conserve energy for ' 2 m ' as it reaches maximum height,

$$
\begin{aligned}
& \frac{1}{2} 2 m\left(\frac{2 v}{3}\right)^{2}=2 m g h_{2} \\
& \Rightarrow h_{2}=\frac{1}{2 g} \cdot \frac{4 v^{2}}{9} \\
& \Rightarrow h_{2}=\frac{2}{9 g}\left[v_{0}^{2}+2 g l(1-\cos \alpha)\right] \text { [using (i)] }
\end{aligned}
$$

Example 6: A gun is mounted on a gun carriage movable on a smooth horizontal plane and the gun is elevated at an angle 45° to the horizontal. A shot is fired and leaves the gun inclined at an angle θ to the horizontal. If the mass of gun and carriage is n times that of the shot, find the value of θ.

Sol: As the frictional force on the cart is zero, the momentum of cart comprising cart and bullet is conserved in horizontal direction.

Let the mass of the shot be m and the mass of the gun carriage be nm .

Suppose the velocity of the shot relative to the gun be u and its velocity relative to the ground be V . The gun recoils with a speed v. As the system comprising gun and the shot rests on a smooth horizontal plane, the net horizontal external force will be zero, so conserving momentum in the horizontal direction, taken as the x - axis, we get
$(\mathrm{nm}) \mathrm{v}_{\mathrm{x}}+\mathrm{m} \mathrm{V}_{\mathrm{x}}=0 \Rightarrow \mathrm{~nm} \mathrm{v}_{\mathrm{x}}+\mathrm{m}\left(\mathrm{u}_{\mathrm{x}}+\mathrm{v}_{\mathrm{x}}\right)=0$
$\Rightarrow(n m)(-v)+m(u \cos 45-v)=0$
$\Rightarrow-(\mathrm{n}+1) \mathrm{mv}+\frac{\mathrm{mu}}{\sqrt{2}}=0$
Again, $\mathrm{V}_{\mathrm{x}}=-\mathrm{n} \mathrm{V}_{\mathrm{x}}=-\mathrm{n}(-\mathrm{v}) ; \Rightarrow \mathrm{V}_{\mathrm{x}}=\mathrm{nv}$
Now the component of the velocity of the gun along the vertical i.e. along the y - axis is zero, so the velocity of the shot along the y-axis will be given by
$V_{y}=u \sin 45+0 ; V_{y}=\frac{u}{\sqrt{2}}$
$\Rightarrow \tan \theta=\frac{\mathrm{V}_{\mathrm{y}}}{\mathrm{V}_{\mathrm{x}}}=\frac{\mathrm{u} / \sqrt{2}}{\mathrm{nv}}$ (using (ii) \& (iii))
$\Rightarrow \tan \theta=\frac{\mathrm{u}}{\sqrt{2} \mathrm{nv}}$
From (i) we get $v=\frac{u}{\sqrt{2}(n+1)}$
$\Rightarrow \frac{\mathrm{u}}{\mathrm{v}}=\sqrt{2}(\mathrm{n}+1)$
From (iv) and (v) we get
$\tan \theta=\frac{\mathrm{n}+1}{\mathrm{n}} \Rightarrow \theta=\tan ^{-1}\left(\frac{\mathrm{n}+1}{\mathrm{n}}\right)$

JEE Main/Boards

Exercise 1

Q. 1 Show that center of mass of an isolated system moves with a uniform velocity along a straight line path.
Q. 2 Locate the center of mass of uniform triangular lamina and a uniform cone.
Q. 3 Explain what is meant by center of gravity.
Q. 4 Obtain an expression for the position vector of center of mass of a two particle system.
Q. 5 Obtain an expression for the position vector of the center of mass of a system of n particle.
Q. 6 Prove that center of mass of an isolated system moves with a uniform velocity along a straight line path.
Q. 7 Find the center of mass of three particles at the vertices of an equilateral triangle. The masses of the particles are $0.10 \mathrm{~kg}, 0.15 \mathrm{~kg}$ and 0.20 kg respectively. Each side of the quilateral triangle is 0.5 m long.
Q. 8 Find the center of mass of a triangular lamina.
Q. 9 Two bodies of masses 0.5 kg and 1 kg are lying in XY plane at $(-1,2)$ and $(3,4)$ respetively. What are the co-ordinates of the center of mass ?
Q. 10 Three point masses of $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and 3 kg lie at $(1,2),(0,-1)$ and $(2,-3)$ respectively. Calculate the co-ordinates of the center of mass of the system.
Q. 11 Two particles of mass 2 kg and 1 kg are moving along the same straight line with speeds $2 \mathrm{~ms}^{-1}$ and $5 \mathrm{~ms}^{-1}$ respectively. What is the speed of the center of mass of the system if both the particles are moving (a) in same direction (b) in opposite direction?
Q. 12 Consider a two-particle system with the particles having masses m_{1} and m_{2}. If the first particle is pushed towards the center of mass through a distance d, by what distance should the second particle be moved so as to keep the center of a mass at the same position?
Q. 13 Two particles of masses 1 kg and 3 kg are located at $(2 \hat{i}+5 \hat{j}+13 \hat{k})$ and $(-6 \hat{i}+4 \hat{j}-2 \hat{k})$ meter respectively. Find the position of their center of mass.
Q. 14 Four particles of masses $m_{1}=1 \mathrm{~kg}, m_{2}=2 \mathrm{~kg}$, $m_{3}=3 \mathrm{~kg}$ and $m_{4}=4 \mathrm{~kg}$ are located at the corners of a rectangle as shown in figure. locate the position of center of mass.

Q. 15 Find the center of mass of uniform L shaped (a thin flat plate) with dimensions as shown in figure. The mass of the lamina is 3 kg .

Exercise 2

Single Correct Choice Type

Q. 1 A bullet of mass m moving with a velocity v strikes a vertically suspended wooden block of mass M and embedded in it. If the block rises to a height h, the initial velocity of the bullet will be
(A) $\sqrt{2 \mathrm{hg}}$
(B) $\left(\frac{M+m}{m}\right) \sqrt{2 h g}$
(C) $\left(\frac{m}{M+m}\right) \sqrt{2 h g}$
(D) $\left(\frac{M+m}{m}\right) \sqrt{h g}$
Q. 2 A body of mass 1 kg , which was initially at rest, explodes and breaks into three fragments of masses in the ratio of $1: 1: 3$.
Both the pieces of equal masses fly off perpendicular to each other with a speed of $30 \mathrm{~m} / \mathrm{s}$ each. The velocity of the heavier fragment is
(A) $\frac{10}{\sqrt{2}} \mathrm{~ms}^{-1}$
(B) $10 \sqrt{2} \mathrm{~ms}^{-1}$
(C) $20 \mathrm{~ms}^{-1}$
(D) $20 \sqrt{2} \mathrm{~ms}^{-1}$
Q. 3 If the linear momentum of a body is increased by 50%, its kinetic energy will increase by
(A) 50%
(B) 100%
(C) 125%
(D) 150\%
Q. 4 Two perfectly elastic particles A and B of equal masses travelling along the line joining them with velcity $25 \mathrm{~ms}^{-1}$ and $20 \mathrm{~ms}^{-1}$ respectively collide. Their velocities after the elastic collision will be (in ms^{-1}) respectively.
(A) 0 and 45
(B) 5 and 45
(C) 20 and 25
(D) 25 and 20
Q. 5 A body of mass 2.9 kg is suspended from a string of length 2.5 m and is at rest. A bullet of mass 0.1 kg , moving horizontally with a speed of $150 \mathrm{~ms}^{-1}$ strikes and sticks to it. What is the maximum angle made by the string with the vertical after the impact?
($\mathrm{g}=10 \mathrm{~ms}^{-2}$)
(A) 30°
(B) 45°
(C) 60°
(D) 90°
Q. 6 An isolated particle of mass m is moving in a horizontal plane (x - y), along the x-axis, at a certain height above the ground. It suddenly explodes into two fragments of mass $\frac{m}{4}$ and $\frac{3 m}{4}$. An instant later, the smaller fragment is at $y=+15 \mathrm{~cm}$. The larger fragment at this instant is at
(A) $y=-5 \mathrm{~cm}$
(B) $y=+20 \mathrm{~cm}$
(C) $y=+5 \mathrm{~cm}$
(D) $y=-20 \mathrm{~cm}$
Q. 7 A ball collides elastically with another ball of the same mass. The collision is oblique and initially one of the ball was at rest. After the collision, the two balls move with same speeds. What will be the angle between the velocity of the balls after the collision?
(A) 30°
(B) 45°
(C) 60°
(D) 90°
Q. 8 A body of mass 2 kg moving with a velocity of 3 ms^{-1} collides head-on with a body of mass 1 kg moving with a velocity of $4 \mathrm{~ms}^{-1}$. After collision the two bodies stick together and move with a common velocity which in the units m / s is equal to
(A) $\frac{1}{4}$
(B) $\frac{1}{3}$
(C) $\frac{2}{3}$
(D) $\frac{3}{4}$
Q. 9 Two particles of masses M and 2 M are at a distance D apart. Under the mutual gravitational force they start moving towards each other. The acceleration of their center of mass when they are $D / 2$ apart is:
(A) $2 G M / D^{2}$
(B) $4 \mathrm{GM} / \mathrm{D}^{2}$
(C) $8 \mathrm{GM} / \mathrm{D}^{2}$
(D) Zero

Previous Year's Questions

Q. 1 Two particles A and B initially at rest, move towards each other by mutual force of attraction. At the instant when the speed of A is v and the speed of B is $2 v$, the speed of the center of mass of the system is
(1982)
(A) 3 v
(B) v
(C) 1.5 v
(D) zero
Q. 2 A shell is fired from a cannon with a velocity v $\left(\mathrm{ms}^{-1}\right)$ at an angle θ with the horizontal direction. At the highest point in its path it explodes into two pieces of equal mass. One of the pieces retraces its path to the cannon and the speed $\left(\mathrm{ms}^{-1}\right)$ of the other piece immediately after the explosion is
(1986)
(A) $3 v \cos \theta$
(B) $2 v \cos \theta$
(C) $\frac{3}{2} v \cos \theta$
(D) $\sqrt{\frac{3}{2}} v \cos \theta$
Q. 3 Two particles of masses m_{1} and m_{2} in projectile motion have velocities \vec{v}_{1} and \vec{v}_{2} respectively at time $t=0$. They collide at time t_{0}. Their velocities become \vec{v}_{1}^{\prime} and $\overrightarrow{\mathrm{v}}_{2}^{\prime}$ at time $2 \mathrm{t}_{0}$ while still moving in air. The value of $\left|\left(m_{1} \vec{v}_{1}^{\prime}+m_{2} \vec{v}_{2}^{\prime}\right)-\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}\right)\right|$ is
(2001)
(A) Zero
(B) $\left(m_{1}+m_{2}\right) g t_{0}$
(C) $2\left(m_{1}+m_{2}\right) g t_{0}$
(D) $\frac{1}{2}\left(m_{1}+m_{2}\right) g t_{0}$
Q. 4 Two blocks of masses 10 kg and 4 kg are connected by a spring of negligible mass and placed on a frictionless horizontal surface. An impulse gives a velocity of $14 \mathrm{~ms}^{-1}$ to the heavier block in the direction
of the lighter block. The velocity of the center of mass is
(2002)
(A) $30 \mathrm{~ms}^{-1}$
(B) $20 \mathrm{~ms}^{-1}$
(C) $10 \mathrm{~ms}^{-1}$
(D) $5 \mathrm{~ms}^{-1}$
Q. 5 Look at the drawing given in the figure, which has been drawn with ink of uniform line-thickness. The mass of ink used to draw each of the two inner circles, and each of the two line segments is m. The mass of the ink used to draw the outer circle is 6 m . The coordinates of the center of the different parts are: outer circle $(0,0)$, left inner circle $(-a, a)$, right inner circle (a, a), vertical line $(0,0)$ and horizontal line $(0,-a)$. The y-coordinate of the center of mass of the ink in this drawing is
(2009)

(A) $\frac{\mathrm{a}}{10}$
(B) $\frac{a}{8}$
(C) $\frac{\mathrm{a}}{12}$
(D) $\frac{a}{3}$
Q. 6 Two small particles of equal masses start moving in opposite directions from a point A in a horizontal circular orbit. Their tangential velocities are v and 2 v respectively, as shown in the figure. Between collisions, the particles move with constant speed. After making how many elastic collisions, other than that at A, these two particles will again reach the point A ?
(2009)

(A) 4
(B) 3
(C) 2
(D) 1
Q. 7 A ball of mass 0.2 kg rests on a vertical post of height 5 m . a bullet of mass 0.01 kg , travelling with a velocity $\mathrm{v} \mathrm{ms}^{-1}$ in a horizontal direction, hits the center of the ball. After the collision, the ball and bullet travel independently. The ball hits the ground at a distance
of 20 m and the bullet at the distance of 100 m from the foot of the post. The initial velocity v of the bullet is
(2011)

(A) $250 \mathrm{~ms}^{-1}$
(B) $250 \sqrt{2} \mathrm{~ms}^{-1}$
(C) $400 \mathrm{~ms}^{-1}$
(D) $500 \mathrm{~ms}^{-1}$

Paragraph: Q. 8 - Q. 10

A small block of mass M moves on a frictionless surface of an inclined plane, as shown in figure. The angle of the incline suddenly changes from 60° to 30° at point B. the block is initially at rest at A. Assume that collisions between the block and the incline are total inelastic ($\mathrm{g}=10 \mathrm{~ms}^{-2}$)

Q. 8 The speed of the block at point B immediately after it strikes the second incline is
(2008)
(A) $\sqrt{60} \mathrm{~ms}^{-1}$
(B) $\sqrt{45} \mathrm{~ms}^{-1}$
(C) $\sqrt{30} \mathrm{~ms}^{-1}$
(D) $\sqrt{15} \mathrm{~ms}^{-1}$
Q. 9 The speed of the block at point C, immediately before it leaves the second incline is
(2008)
(A) $\sqrt{120} \mathrm{~ms}^{-1}$
(B) $\sqrt{105} \mathrm{~ms}^{-1}$
(C) $\sqrt{90} \mathrm{~ms}^{-1}$
(D) $\sqrt{75} \mathrm{~ms}^{-1}$
Q. 10 If collision between the block and the incline is completely elastic, then the vertical (upward) component of the velocity of the block at point B, immediately after it strikes the second incline is (2008)
(A) $\sqrt{30} \mathrm{~ms}^{-1}$
(B) $\sqrt{15} \mathrm{~ms}^{-1}$
(C) Zero
(D) $-\sqrt{15} \mathrm{~ms}^{-1}$
Q. 11 This question has Statement-I and Statement-II. Of the four choices given after the Statements, choose the one that best describes the two Statements.

Statement-I: A point particle of mass moving with speed v collides with stationary point particle of mass M . If the maximum energy loss possible is given as
$f\left(\frac{1}{2} m v^{2}\right)$ then $f=\left(\frac{m}{M+m}\right)$.
Statement-II: Maximum energy loss occurs when the particles get stuck together as a result of the collision.
(2013)
(A) Statement-I is true, statement-II is true, statement-II is not a correct explanation of statement-I.
(B) Statement-I is true, statement-II is false.
(C) Statement-I is false, statement-II is true
(D) Statement-I is true, statement-II is true, statement-II is a correct explanation of statement-I.
Q. 12 Distance of the centre of mass of a solid uniform cone from its vertex is z_{0}. If the radius of its base is R and its height is h then z_{0} is equal to:
(2015)
(A) $\frac{3 \mathrm{~h}}{4}$
(B) $\frac{5 h}{8}$
(C) $\frac{3 h^{2}}{8 R}$
(D) $\frac{h^{2}}{4 R}$
Q. 13 A particle of mass m moving in the x direction with speed $2 v$ is hit by another particle of mass $2 m$ moving in the y direction with speed v. If the collision is perfectly inelastic, the percentage loss in the energy during the collision is close to
(2015)
(A) 50\%
(B) 56%
(C) 62%
(D) 44%

JEE Advanced/Boards

Exercise 1

Q. 1 A block of mass 10 kg is suspended from a 3 m long weightless string. A bullet of mass 0.2 kg is fired into the block of horizontally with a speed of $20 \mathrm{~ms}^{-1}$ and it gets embedded in the block. Calculate
(a) The speed acquired by the block
(b) The maximum displacement of the block
(c) The energy converted to heat in the collision.
Q. 2 A projectile of mass 50 kg shot vertically upwards with an initial velocity of $100 \mathrm{~ms}^{-1}$. After 5 s it explodes into two fragments, one of which having mass 20 kg travels vertically up with a velocity of 150 metres $/ \mathrm{sec}$. if $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$.
(a) What is the velcoity of the other fragment at that instant?
(b) Calculate the sum of the momenta of the two fragments 3 s after the explosion. What would have been the momentum of the projectile at this instant if there had been no explosion?
Q. 3 Particle P and Q of mass 20 g and 40 g respectively are simultaneously projected from points A and B on the ground. The initial velocities of P and Q make angle
45° and 135° respectively with line $A B$. Each particle has an initial speed of $49 \mathrm{~ms}^{-1}$. The separation $A B$ is 245 m . Both particles travel in the same vertical plane and undergo a collision. After the collision, P retraces its path. Taking $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$, determine
(a) The position of Q when it hits the ground.
(b) How much time, after the collision, does Q take to reach the ground.

Q. 4 A shell of mass 500 kg travelling horizontally at a speed of $100 \mathrm{~ms}^{-1}$ explodes into just three parts. The first part of mass 200 kg travels vertically upwards at a speed of $150 \mathrm{~ms}^{-1}$ and the second part of mass 150 kg travels horizontal with a speed of $60 \mathrm{~ms}^{-1}$, but in a direction opposite to that of the original shell. What is the velocity fo the third part? What is the path of the center of mass of the fragments after the explosion?
Q. 5 A small sphere of mass 10 g is attached to a point of smooth vertical wall by a light string of length 1 m . The sphere is pulled out in vertical plane perpendicular to the wall so that the string makes an angle of 60°
with the wall and is then released. It is found that after the first rebound, the string makes a maximum angle of 30° with the wall. Calculate the coefficient of restitution and the loss of kinetic energy due to impact. If all the energy is converted into heat, find the heat produced by the impact.
Q. 6 A small ball A slides down the quadrant of a circle as shown in the figure and hits the ball B of equal mass which is initially at rest. Find the velocities of both the balls after collision. Neglect the effect of friction and assume the collision to be elastic.

Q. 7 Two balls A and B of mass 0.10 kg and 0.25 kg respectively are connected by a stretched spring of negligible mass and spring constant $2 \mathrm{Nm}^{-1}$. Unstretched length of the spring is 0.6 m and placed on a smooth table. When the balls are released simultaneously the initial acceleration of ball B is $50 \mathrm{~cm} \mathrm{~s}^{-2}$ west-ward.
(a) What is the magnitude and direction of the initial acceleration of the ball A ?
(b) What is the initial compression of the spring.
(c) What is the maximum distance between balls A and B.
Q. 8 Find the center of mass of a uniform disc of radius a from which a circular section of radius b has been removed. The center of the hole is at a distance c from, the center of the disc.
Q. 9 A man of mass m climbs a rope of length L suspended below a balloon of mass M . The ballon is stationary with respect to ground,
(a) If the man begins to climb up the rope at a speed $v_{\text {rel }}$ (relative to rope) in what direction and with what speed (relative to ground) will the balloon move?
(b) How much has the balloon by climbing the rope.
(c) What is the state of motion after the man stops climbing?
Q. 10 Prove that in case of oblique elastic collision of two particles of equal mass out of which one is at rest, the recoiling particles always move off at right angles to each other.
Q. 11 A uniform thin rod of mass M and length L is standing vertically along the y-axis on a smooth hroizontal surface, with its lower end at the origin $(0,0)$. A slight disturbance at $t=0$ causes the lower end to slip on the smooth surface along the positive x-axis, and the rod starts falling.
(a) What is the path followed by the center of mass of the rod during its fall?
(b) Find the equation of trajectory of a point on the rod located at a distance r from the lower end.
Q. 12 Two blocks of masses m_{1} and m_{2} are connected by a light inextensible string passing over a smooth fixed pulley of negligible mass. Find the acceleration of the center of mass of the system when blocks move under gravity.
Q. 13 A block of mass m is resting on the top of a smooth prism of mass M which is resting on a smooth table. Calculate the distance moved by the prism when the block reaches the bottom.

Q. 14 A shell is fired from a cannon with a velocity v m / s at an angle θ with the horizontal direction. At the highest point of its path is explodes into two pieces of equal masses. What is the speed of other piece immediately after explosion, if one of the piece retraces its path to the cannon?
Q. 15 A particle of mass 4 m which is at rest explodes into three fragments. Two of the fragments each of mass m are found to move with a speed v each is mutually perpendicular directions. Calculate the energy released in the process of explosion.
Q. 16 A moving particle of mass m makes a head on elastic collision with a particle of mass $2 m$ which is initially at rest. Show that the colliding particle losses (8/9)th of its energy after collision.
Q. 17 A ball is dropped on the ground from a height h. If the coefficient of restitution is e, then find the total distance travelled by the ball before coming to rest and the total time elapsed.
Q. 18 A block of mass $m_{1}=150 \mathrm{~kg}$ is at rest on a very long frictionless table, one end of which is terminated in a wall. Another block of mass m_{2} is placed between the first block and the wall, and set in motion towards m_{1} with constant speed u_{2}.

Assuming that all collisions are completely elastic, find the value of m_{2} for which both blocks move with the same velocity after m_{2} has collided once with m_{1} and once with the wall. The wall has effectively infinite mass.
Q. 19 A simple pendulum is suspended from a peg on a vertical wall. The pendulum is pulled away from the wall to a horizontal position and released. The ball hits the wall, the coefficient of restitution being $\left(\frac{2}{\sqrt{5}}\right)$.
What is the minimum number of collisions after which the amplitude of oscillation becomes less than 60° ?
Q. 20 A block A of mass $2 m$ is placed on another block b of mass 4 m which in turn in placed on a fixed table. The two blocks have the same length 4d and they are placed as shown in the figure.

The coefficient of friction (both static and kinetic) between the block B and the table is μ. There is no friction between the two blocks. A small object of mass m moving horizontally along a line passing through the center of mass of the block B and perpendicular to its face with a speed v collides elastically with the block B at a height d above the table.
(a) What is the minimum value of v (call it v_{0}), required to make the block A topple?
(b) If $v=2 v_{0}$ find the distance (from the point P) at which the mass m falls on the table after collision.
Q. 21 A 60 kg man and a 50 kg woman are standing on opposite ends of a platform of mass 20 kg . The platform is placed on a smooth horizontal ground. The man and the woman begin to approach each other. Find the displacement of the platform when the two meet in terms of the displacement x_{0} of the man relative to the platform. The length of the platform is 6 m .
Q. 22 A rope thrown over a pulley has a ladder with a man A on one of its ends and a counter balancing mass M on it other end. The man whose mass is m, climb upwards by $\Delta \vec{r}$ relative to the ladder and the stops. Ignoring the masses of the pulley and the rope, as well as the friction in the pulley axis, find the displacement of the center of mass of this system.
Q. 23 A drinking straw of length $\frac{3 a}{2}$ and mass $2 m$ is placed on a square table of side 'a' parallel to one of its sides such that one third of its length extends beyond the table. An insect of mass $\frac{m}{2}$ lands on the inner end of the straw (i.e., the end which lies on the table) and walks along the straw until it reaches the outer end. It does not topple even when another insect lands on top of the first one. Find the largest mass of the second insect that can have without toppling the straw. Neglect friction.
Q. 24 A boy throws a ball with initial speed $2 \sqrt{\mathrm{ag}}$ at an angle θ to the horizontal. It strikes a smooth vertical wall and returns to his hand. Show that if the boy is standing at a distance ' a ' from the wall, the coefficient of restitution between the ball and the wall equals $\frac{1}{(4 \sin 2 \theta-1)}$. Also show that θ cannot be less than 15°.
Q. 25 A ball is projected from a point A on a smooth inclined plane which makes an angle α to the horizontal. The velocity of projection makes an angle θ with the plane upwards. If on the second bounce the ball is moving perpendicular to the plane, find e in terms of α and θ. Here e is the coefficient of restitution between the ball and the plane.
Q. 26 Two identical smooth balls are projected toward each ther from points A and B on the horizontal ground with same speed of projection. The angle of projection.

The angle of projection in each case is 30°. The distance between A and B is 100 m . The balls collide in air and return to their respective points of projection. If coefficient of restitution is $\mathrm{e}=0.7$, find
(a) The speed of projection of either ball.
(b) Coordinates of point with respect to A where the balls collide.(Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
Q. 27 Three identical particles A, B and C lie on a smooth horizontal table. (see figure) Light inextensible strings which are just taut connect $A B$ and $B C$ and $\angle A B C$ is 135°. An impulse J is applied to the particle C in the direction $B C$.

Find the initial speed of each particle. The mass of each particle in m.

Q. 28 A 2 kg sphere A is connected to a fixed point O by an inextensible cord of length 1.2 m (see figure). The sphere is resting on a frictionless horizontal surface at a distance of 0.5 m from O when it is given a velocity v_{0} in a direction perpendicular to the line OA. It moves freely until it reaches position A^{\prime} when the cord becomes taut.

Determine
(a) The maximum allowable velocity v_{0} if the impulse of the force exerted on the cord is not to exceed 3 Ns .
(b) The loss of energy as the cord becomes taut, if the sphere is given the maximum allowable velocity v_{0}.
Q. 29 An open car of mass 1000 kg is running at $25 \mathrm{~m} / \mathrm{s}$ holds three men each of mass 75 kg . Each man runs with a speed of $5 \mathrm{~ms}^{-1}$ relative to the car and jumps off from the back end. Find the speed of the car if the three men jump off.

(a) In succession
(b) All together.

Neglect friction between the car and the ground.
Q. 30 Ball B is hanging from an inextensible cord $B C$. An identical ball A is released from rest when it is just touching the cord and acquires a velocity v_{0} before striking ball B. Assuming perfectly elastic impact (e = 1) and no friction, determine the velocity of each ball immediately after impact.
Q. 31 A particle whose initial mass is m_{0} is projected vertically upwards at time $t=0$ with speed $g T$, where T is a constant. The particle gradually acquires mass on its way up and at time t the mass of the particle has increased to $m_{0} e^{d T}$. If the added mass is at rest relative to the particle when it is acquired, find the time when the particle is at highest point and its mass at that instant.
Q. 32 Two blocks of mass 2 kg and M are at rest on an inclined plane and are separated by a distance of 6.0 m as shown. The coefficient of friction between each block and the inclined plane is 0.25 . the 2 kg block is given a velocity of $10.0 \mathrm{~ms}^{-1}$ up the inclined plane.

It collides with M, comes back and has a velocity of $1.0 \mathrm{~m} / \mathrm{s}$ when it reaches its initial position. The other blocks M after the collision moves 0.5 m up and comes to rest. Calculate the coefficient of restitution between the blocks and the mass of the block M .
(Take $\sin \theta \approx \tan \theta=0.05$ and $\mathrm{g}=10 \mathrm{~ms}^{-2}$)

Exercise 2

Single Correct Choice Type

Q. 1 A bullet of mass m moving with a velocity v strikes a vertically suspended wooden block of mass M and embedded in it. If the block rises to a height h, the initial velocity of the bullet will be
(A) $\sqrt{2 \mathrm{hg}}$
(B) $\left(\frac{M+m}{m}\right) \sqrt{2 h g}$
(C) $\left(\frac{m}{M+m}\right) \sqrt{2 h g}$
(D) $\left(\frac{M+m}{m}\right) \sqrt{h g}$
Q. 2 Two identical billiard balls A and B of equal mass and radius are in contact on a horizontal table. A similar third ball C strikes these balls symmetrically in the middle and remains at rest after the impact, the coefficient of restitution of the balls is

(A) $\frac{1}{6}$
(B) $\frac{1}{3}$
(C) $\frac{2}{3}$
(D) $\frac{\sqrt{3}}{2}$
Q. 3 A sphere of mass m moving with a constant velocity u hits another stationary sphere of the same mass. If e is the coefficient of the restitution, then the ratio of the velocities of the two spheres after collision will be
(A) $\left(\frac{1-e}{1+e}\right)$
(B) $\left(\frac{1+e}{1-e}\right)$
(C) $\left(\frac{e+1}{e-1}\right)$
(D) $\left(\frac{e-1}{e+1}\right)$
Q. 4 A cannon ball is fired with a velocity of $200 \mathrm{~ms}^{-1}$ at an angle of 60° with the horizontal. At the highest point it explodes into three equal fragments. One goes vertically upwards with a velocity of $100 \mathrm{~ms}^{-1}$, the second one falls vertically downwards with a velocity of $100 \mathrm{~ms}^{-1}$. The third one moves with a velcoity of
(A) $100 \mathrm{~ms}^{-1}$ horizontally
(B) $300 \mathrm{~ms}^{-1}$ horizontally
(C) $200 \mathrm{~ms}^{-1}$ at 60° with the horizontal
(D) $300 \mathrm{~ms}^{-1} \mathrm{at} 60^{\circ}$ with the horizontal
Q. 5 A bullet of mass 0.01 kg , travelling at a speed of 500 m / s, strikes a block of mass 2 kg , which is suspended by a string of length 5 m , and emerges out. The block rises by a vertical distance of 0.1 m . The speed of the bullet after it emerges from the block is
(A) $55 \mathrm{~ms}^{-1}$
(B) $110 \mathrm{~ms}^{-1}$
(C) $220 \mathrm{~ms}^{-1}$
(D) $440 \mathrm{~ms}^{-1}$
Q. 6 A 1 kg ball, moving at $12 \mathrm{~ms}^{-1}$ collides head-on with a 2 kg ball moving in the opposite direction at $24 \mathrm{~m} / \mathrm{s}$. If the coefficient of restitution is $\frac{2}{3}$, then the energy lost
in the collision is in the collision is
(A) 60 J
(B) 120 J
(C) 240 J
(D) 480 J
Q. 7 A body of mass m_{1} and speed v_{1} makes a head-on, elastic collision with a body of mass $m_{2^{\prime}}$ initially at rest. The velocity of m_{1} after the collision is
(A) $\frac{m_{1}+m_{2}}{m_{1} m_{2}} v_{1}$
(B) $\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1}$
(C) $\frac{2 m_{1} v_{1}}{m_{1}+m_{2}}$
(D) $\frac{2 m_{2} v_{1}}{m_{1}+m_{2}}$
Q. 8 In the above example, the velocity of mass m_{2} after the collision is
(A) $\frac{m_{1}+m_{2}}{m_{1} m_{2}} v_{1}$
(B) $\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1}$
(C) $\frac{2 m_{1} v_{1}}{m_{1}+m_{2}}$
(D) $\frac{2 m_{2} v_{1}}{m_{1}+m_{2}}$
Q. 9 A ball of mass m approaches a moving wall of infinite mass with speed v along the normal to the wall. The speed of the wall is u towards the ball. The speed of the ball after an elastic collision with the wall is
(A) $u+v$ away from the wall
(B) $2 u+v$ away from the wall
(C) u - v away from the wall
(D) $v-2 u$ away from the wall.
Q. 10 A neutron is moving with velocity u. It collides head on and elastically with an atom of mass number A. If the initial K.E. of the neutron is E, how much K.E. is retained by neutron after collision?
(A) $[A /(A+1)]^{2} E$
B) $\left[\mathrm{A} /(\mathrm{A}+1)^{2}\right] \mathrm{E}$
(C) $\left[(1-A) /(A+1)^{2}\right] E$
(D) $\left[(A-1) /(A+1)^{2}\right] E$
Q. 11 A ball is dropped from a height h on the ground. If the coefficient of restitution is e, the height to which the ball goes up after it rebounds for the nth time is
(A) $h e^{2} n$
(B) $h e^{2}$
(C) $\frac{e^{2} n}{h}$
(D) $\frac{h}{e^{2 n}}$
Q. 12 Two equal spheres A and B lie on a smooth horizontal circular groove at opposite ends of diameter. A is projected along the groove and at the end of time t impinges on B. If e is coefficient of restitution, the second impact will occur after a time
(A) $\frac{2 t}{e}$
(B) $\frac{\mathrm{t}}{\mathrm{e}}$
(C) $\frac{\pi t}{e}$
(D) $\frac{2 \pi t}{e}$
Q. 13 The center of mass of triangle shown in the figure. has co-ordinates.

(A) $x=\frac{h}{2} ; y=\frac{b}{2}$
(B) $x=\frac{\mathrm{b}}{2} ; y=\frac{\mathrm{h}}{2}$
(C) $x=\frac{b}{3} ; y=\frac{h}{3}$
(D) $x=\frac{h}{3} ; y=\frac{b}{3}$
Q. 14 A cart of mass M is tied to one end of a massless rope of length 10 m . The other end of the rope is in the hands of a man of mass M, the entire system is on a smooth horizontal surface. The man is at $x=0$ and the cart at $x=10 \mathrm{~m}$. if the man pulls the cart by a rope, the man and the cart will meet at the point :
(A) $x=0$
(B) $x=5 \mathrm{~m}$
(C) $x=10 \mathrm{~m}$
(D) They will nevemeet

Multiple Correct Choice Type

Q. 15 Which one of the following statements does not hold god when two balls of masses m_{1} and m_{2} undergo elastic collision?
(A) when $m_{1}<m_{2}$ and m_{2} at rest, there will be maximum transfer of momentum.
(B) when $m_{1}>m_{2}$ and m_{2} at rest, after collision the ball of mass m_{2} moves with four times the velocity of m_{1}
(C) when $m_{1}=m_{2}$ and m_{2} at rest, there will be maximum transfer of K.E.
(D) when collision is oblique and m_{2} at rest with $m_{1}=m_{2}$, after collision the ball moves in opposite directions.

Assertion Reasoning Type

Each of the questions given below consists of two statements, an assertion (A) and reason (R). Select the number corresponding to the appropriate alternative as follows.
(A) If both A and R are true and R is the correct explanation of A.
(B) If both A and R are true but R is not the correct explanation of A.
(C) If A is true but R is false
(D) If A is flase but R is true
Q. 16 Assertion: When two bodies of different masses are just released from different position above the ground, then acceleration of their center of mass is zero.

Reason: When bodies move, their center may change position but is not accelerated.
Q. 17 Assertion: The center of mass of a proton and an electron, released from their respective positions remains at rest.

Reason: The proton and electron attract and move towards each other. No external force is applied, therefore, their center of mass remains at rest.
Q. 18 Assertion: The center of mass of a body may lie where there is no mass.

Reason: Center of mass of a body is a point, where the whole mass of the body is supposed to be concentrated.
Q. 19 Assertion: When a body dropped from a height explodes in mid air, the pieces fly in such a way that their center of mass keeps moving vertically downwards.

Reason: Explosion occurs under internal forces only. External force $=0$.
Q. 20 Assertion: The center of mass of a circular disc lies always at the center of the disc.

Reason: Circular disc is a symmetrical body.
Q. 21 Assertion: At the center of earth, a body has center of mass, but no center of gravity.

Reason:This is because $\mathrm{g}=0$ at the center of earth.
Q. 22 Assertion: The center of mass of a body may lie where there is no mass.

Reason: The center of mass has nothing to do with the mass.

Comprehension Type

In physics, we come across many examples of collisions. The molecules of a gas collide with one another and with the container. The collisions of a neutron with an atom is well known. In a nuclear reactor, fast neutrons produced in the fission of uranium atom have to be slowed down. They are, therefore, made to collide with hydrogen atom. The term collision does not necessarily mean that a particle or a body must actually strike another. In fact, two particles may not even touch each other and yet they are said to collide if one particle influences the motion of the other. When two bodies collide, each body exerts an equal and opposite force on the other. The fundamental conservation law of physics are used to determine the velocities of the bodies after the collision. Collision may be elastic or inelastic. Thus a collision may be defined as an event in which two or more bodies exert relatively strong forces on each other for a relatively short time. The forces that the bodies exert on each other are internal to the system.
Almost all the knowledge about the sub-atomic particles such as electrons, protons, neutrons, muons, quarks, etc. is obtained from the experiments involving collisions.

There are certain collisions called nuclear reactions in which new particles are formed. For example, when a slow neutron collides with a U^{235} nucleus, new nuclei barium-141 and Kr ${ }^{92}$ are formed. This collisioin is called nuclear fission. In nuclear fusion, two nuclei deuterium and tritium collide (or fuse) to form a helium nucleus with the emission of a neutron.
Q. 23 Which one of the following collisions is not elastic?
(A) A hard steel ball dropped on a hard concrete floor and rebounding to its original height.
(B) Two balls moving in the same direction collide and stick to each other
(C) Collision between molecules of an ideal gas.
(D) Collisions of fast neutrons with hydrogen atoms in a fission reactor.
Q. 24 Which one of the following statemnts is true about inelastic collision?
(A)The total kinetic energy of the particles after collision is equal to that before collision.
(B) The total kinetic energy of the particle after collision is less than that before collision.
(C) The total momentum of the particles after collision is less than that before collision.
(D) Kinetic energy and momentum are both conserved in the collision.
Q. 25 In elastic collision
(A) Only energy is conserved.
(B) Only momentum is conserved.
(C) Neither energy nor momentum is conserved.
(D) Both energy and momentum are conserved.

Previous Years' Questions

Q. 1 A body of mass m moving with a velocity v in the x-direction collides with another body of mass M moving in the y -direction with a velocity V . They coalesce into one body during collsion. Find
(a) The direction and magnitude of the momentum of the composite body.
(b) The fraction of the initial kinetic energy transformed into heat during the collision.
(1978)
Q. 2 A 20 g bullet pierces through a plate of mass $M_{1}=1 \mathrm{~kg}$ and then comes to rest inside a second plate of mass $\mathrm{M}_{2}=2.98 \mathrm{~kg}$ as shown in the figure. It is found that the two plates initially at rest, now move with equal velocities. Find the percentage loss in the initial velocity of the bullet when it is between M_{1} and M_{2}. Neglect any loss of material of the plates due to the action of bullet. Both plates are lying on smooth table. (1979)

Q. 3 A circular plate of uniform thickness has a diameter of 56 cm . A circular portion of diameter 42 cm is removed from one edge of the plate as shown in figure. Find the position of the center of mass of the remaining portion.
(1980)

Q. 4 Three particles A, B and C of equal mass move with equal speed v along the medians of an equilateral triangle as shown in figure. They collide at the centroid G of the triangle. After the collision, A comes to rest, B retraces its path with speed v. What is the velocity of C ?

Q. 5 Two bodies A and B of masses m and $2 m$ respectively are placed on a smooth floor. They are connected by a spring. A third body C of mass m moves with velocity v_{0} along the line joining A and B and collides elastically with A as shown in figure. At a certain instant of time t_{0} after collision, it is found that the instantancous velocities of A and B are the same. Further at this instant the compression of the spring is found to be x_{0} Determine (a) the common velocity of A and B at time t_{0} and (b) the spring constant.
(1984)

Q. 6 A simple pendulum is suspended from a peg on a vertical wall. The pendulum is pulled away from the wall to a horizontal position (see figure) and released. The ball hits the wall, the coefficient of restitution being $\frac{2}{\sqrt{5}}$. What is the minimum number of collisions after which the amplitude of oscillations becomes less than 60 degrees?
(1987)
Q. 7 A uniform thin rod of mass M and length L is standing vertically along the y-axis on a smoth horizontal surface, with its lower end at the origin $(0,0)$. A slight disturbance at $t=0$ causes the lower end to slip on the smooth surface along the positive x-axis, and the rod starts falling.
(a) What is the path followed by the center of mass of the rod during its fall?
(b) Find the equation of the trajectory of a point on the rod located at a distance r from the lower end. What is the shape of the path of this point?
(1993)
Q. 8 A wedge of mass m and triangular cross-section ($A B=B C=C A=2 R$) is moving with a constant velocity $(-v \hat{i})$ towards a sphere of radius R fixed on a smooth horizontal table as shown in the figure. The wedge makes an elastic collision with the fixed sphere and returns along the same path without any rotation. Neglect all friction and suppose that the wedge remains in contact with the sphere for a very short time Δt during which the sphere exerts a constant force \vec{F} on the wedge.
(1998)

(a) Find the force \vec{F} and also the normal force \vec{F} exerted by the table on the wedge during the time Δt.
(b) Let h denote the perpendicular distance between the center of mass of the wedge and the line of action of force. Find the magnitude of the torque due to the normal force $\overrightarrow{\mathrm{N}}$ about the center of the wedge during the interval $\Delta \mathrm{t}$.
Q. 9 Three objects A, B and C are kept in a straight line on a frictionless horizontal surface (see figure). These have masses $m, 2 m$ and m, respectively. The object A moves towards B with a speed $9 \mathrm{~ms}^{-1}$ and makes an elastic collision with it. Thereafter, B makes completely inelastic collision with C. All motions occur on the same straight line. Find the final speed (in ms^{-1}) of the object C.
(2009)

Q. 10 A particle of mass m is projected from the ground with an initial speed u_{0} at an angle α with the horizontal.
At the highest point of its trajectory, it makes a completely inelastic collision with another identical particle, which was thrown vertically upward from the ground with the same initial speed u_{0}. The angle that the composite system makes with the horizontal immediately after the collision is $(2013,14,15,16)$
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{4}+\alpha$
(C) $\frac{\pi}{4}-\alpha$
(D) $\frac{\pi}{2}$
Q. 11 A bob of mass m, suspended by a string of length l_{1}, is given a minimum velocity required to complete a full circle in the vertical plane. At the highest point, it collides elastically with another bob of mass m suspended by a string of length I_{2}, which is initially at rest. Both the strings are mass-less and inextensible. If the second bob, after collision acquires the minimum speed required to complete a full circle in the vertical plane, the ratio I_{1} / I_{2} is
(2013)

JEE Main/Boards

Exercise 1

Q. 7
 Q. 9
 Q. 16

Exercise 2

Q. $1 \quad$ Q. 9
Previous Years' Questions
Q. $2 \quad$ Q. $3 \quad$ Q. 5
$\begin{array}{lll}\mathrm{Q} . \\ \mathrm{Q} & \mathrm{Q} .9 & \mathrm{Q} .10\end{array}$

JEE Advanced/Boards

Exercise 1

Q. 3	Q. 6	Q. 7
Q. 10	Q. 20	Q. 21
Q. 28	Q. 32	

Exercise 2

Q. 1	Q. 2	Q. 3
Q. 4	Q. 9	

Previous Years' Questions

Q. 2 Q. 5 Q. 8

Answer Key

JEE Main/Boards

Exercise 1

Q. $9 \frac{5}{3}, \frac{10}{3}$
Q. $10 \frac{7}{6},-\frac{3}{2}$
Q. 11 (a) $3 \mathrm{~ms}^{-1}$ (b) $\frac{1}{3} \mathrm{~ms}^{-1}$ in the direction of motion of 1 kg
Q. $12 \frac{\mathrm{~m}_{1}}{\mathrm{~m}_{2}} \mathrm{~d}$
Q. $13-\hat{i}+\frac{17}{4} \hat{j}+\frac{7}{4} \hat{k}$
Q. $140.5 a \hat{i}+0.7 b \hat{j}$
Q. $15 \frac{5}{6} m ; \frac{5}{6} m$

Exercise 2

Single Correct Choice Type

Q. 1 B
Q. 2 B
Q. 3 C
Q. 4 C
Q. 5 C
Q. 6 A
Q. 7 D
Q. 8 C
Q. 9 D

Previous Years Questions

Q. 1 D
Q. 2 A
Q. 3 C
Q. 4 C
Q. 5 A
Q. 6 C
Q. 7 D
Q. 8 B
Q. 9 B
Q. 10 C
Q. 11 C
Q. 12 A
Q. 13 B

JEE Advanced/Boards

Exercise 1

Q. 1 (a) $0.39 \mathrm{~m} / \mathrm{s}$ (b) 0.220 m (c) 39.32 J
Q. 3 (a) 122.5 m (b) $5 \sqrt{2}$ second.
Q. $50.518,0.0359 \mathrm{~J}, 0.0085 \mathrm{cals}$
Q. $215 \mathrm{~m} / \mathrm{s}, 1080 \mathrm{~kg} \mathrm{~ms}^{-1}$
Q. $4441.25 \mathrm{~m} / \mathrm{s},-27^{\circ}$
$\mathbf{Q} .6 \mathrm{v}_{\mathrm{A}}=0, \mathrm{v}_{\mathrm{B}}=1.4 \mathrm{~m} / \mathrm{s}$
Q. 7 (a) $1.25 \mathrm{~cm} / \mathrm{s}^{2}$ (eastwards) (b) 6.25 cm (c) 66.25 cm
Q. 8 At a distance $\frac{c b^{2}}{a^{2}-b^{2}}$ from O on the other side of the hole.
Q. 9 (a) $-m \vec{v}_{\text {rel }} /(M+m)$ (b) $L \frac{m}{M+m}$ (c) system is stationary
Q. 11 (a) Straight line (b) $\frac{x^{2}}{[L / 2-r]^{2}}+\frac{y^{2}}{r^{2}}=1$
Q. $12\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right)^{2} g$
Q. $13 \frac{\mathrm{mhcot} \theta}{\mathrm{M}+\mathrm{m}}$
Q. $143 v \cos \theta$
Q. $15 \frac{3}{2} m v^{2}$
Q. $17 \frac{\mathrm{~h}\left(1+\mathrm{e}^{2}\right)}{1-\mathrm{e}^{2}}, \sqrt{\frac{2 h}{g}}\left[\frac{1+e}{1-e}\right]$
Q. 1850 kg
Q. 194
Q. 20 (a) $\frac{5}{2} \sqrt{6 \mu g d}$ (b) $=-6 d \sqrt{3 \mu}$
Q. $21 \frac{30-11 x_{0}}{13}$
Q. $22 \frac{\mathrm{~m}}{2 \mathrm{M}} \overrightarrow{\Delta r}$
Q. $23 m^{\prime}-m=\frac{m}{2}$
Q. $25 \frac{\cot \theta \cot \alpha}{2}-1$
Q. $27 \frac{\sqrt{2}}{7 m}, \frac{\sqrt{10}}{7 m}, \frac{3 J}{7 m}$
Q. 28 (a) $1.65 \mathrm{~m} / \mathrm{s}(\mathrm{b}) 2.25 \mathrm{~J}$
Q. 29 (a) $25.97 \mathrm{~m} / \mathrm{s}(\mathrm{b}) 25.92 \mathrm{~m} / \mathrm{s}$
Q. $30\left|v_{B}^{\prime}\right|=0.721 v_{0},\left|v_{A}^{\prime}\right|=0.693 v_{0}$

Q. $31 \mathrm{~T} \ln (2), 2 \mathrm{~m}_{0}$
Q. 32 0.84, 15.011 kg

Exercise 2

Single Correct Choice Type

Q. 1 B
Q. 2 C
Q. 3 A
Q. 4 B
Q. 5 C
Q. 6 C
Q. 7 B
Q. 8 C
Q. 9 B
Q. 10 C
Q. 11 A
Q. 12 A
Q. 13 C
Q. 14 B

Multiple Correct Choice Type

Q. 15 C, D

Assertion Reasoning Type

Q. 16 D
Q. 17 A
Q. 18 B
Q. 19 A
Q. 20 D
Q. 21 A
Q. 22 B

Comprehension Type
Q. 23 B
Q. 24 B
Q. 25 D

Previous Years' Questions

Q. 1 (a) $\theta=\tan ^{-1} \frac{M V}{m v}, P=\sqrt{m^{2} v^{2}+M^{2} V^{2}}$
(b) $\frac{\Delta \mathrm{K}}{\mathrm{K}_{\mathrm{i}}}=\frac{\mathrm{Mm}\left(\mathrm{v}^{2}+\mathrm{V}^{2}\right)}{(\mathrm{M}+\mathrm{m})\left(\mathrm{mv}^{2}+\mathrm{MV}^{2}\right)}$
Q. 2 25\%
Q. 39 cm
Q. 4 Opposite to velocity of B
Q. 5 (a) $v_{0} / 3$ (b) $\frac{2 m v_{0}^{2}}{3 x_{0}^{2}}$
Q. 64
Q. 7 (a) a straight line (b) $\frac{x^{2}}{\left(\frac{L}{2}-r\right)^{2}}+\frac{y^{2}}{r^{2}}=1$
Q. 8 (a) $\overline{\mathrm{F}}=\frac{2 m v}{\Delta t} \hat{\mathrm{i}}-\frac{2 m v}{\sqrt{3} \Delta \mathrm{t}} \hat{\mathrm{k}}, \overline{\mathrm{N}}=\left(\frac{2 m v}{\sqrt{3} \Delta \mathrm{t}}+\mathrm{mg}\right) \hat{\mathrm{k}}(\mathrm{b}) \Rightarrow\left|\bar{\tau}_{\mathrm{N}}\right|=\frac{4 \mathrm{mvh}}{\sqrt{3} \Delta \mathrm{t}}$
Q. $94 \mathrm{~ms}^{-1}$
Q. 10 A
Q. 115

Solutions

JEE Main/Boards

Exercise 1

Sol 1: Isolated system, so external force = 0
$F_{\text {ext }}=0$, therefore acceleration of centre of mass $=0$.
So the centre of mass moves with a constant velocity along a straight line path (Ist law of motion).

Sol 2: (i) Lamina: mass per unit area
$=\frac{M}{\frac{\sqrt{3} a^{2}}{4}}=\rho$ (say)
then $X_{\text {com }}=\int_{0}^{\frac{\sqrt{3}}{2}} \frac{(\rho \cdot d A) \cdot x}{M}$

where $d A=$ area of the strip of thickness $d x$ (shaded reg.)
$=2\left(\frac{\sqrt{3}}{2} a-x\right) \cdot \tan 30^{\circ} d x$
$d A=2\left(\frac{a}{2}-\frac{x}{\sqrt{3}}\right) \cdot d x$
so, $X_{\text {сом }}=\int_{0}^{\frac{\sqrt{3} a}{2}} \rho \frac{\rho \times\left(\frac{a}{2}-\frac{x}{\sqrt{3}}\right) \cdot x \cdot d x}{M}$
$=\frac{\rho}{M} \times 2 \times \int_{0}^{\frac{\sqrt{3} a}{2}}\left(\frac{a x}{2}-\frac{x^{2}}{\sqrt{3}}\right) d x$
$=\frac{4}{\sqrt{3} a^{2}} \times 2 \times\left[\frac{a x^{2}}{4}-\frac{x^{2}}{\sqrt{3}}\right]_{0}^{\frac{\sqrt{3} a}{2}}$
$=\frac{4}{\sqrt{3} a^{2}} \times 2 \times\left[\frac{a}{4} \times \frac{3}{4} a^{2}-\frac{1}{3 \sqrt{3}} \times \frac{3 \sqrt{3} a^{3}}{8}\right]$
$=\frac{4}{\sqrt{3} a^{2}} \times 2 \times\left[\frac{3 a^{3}}{16}-\frac{a^{3}}{8}\right]=\frac{4}{\sqrt{3} a^{2}} \times \frac{3 a^{3}}{16}$
$=\frac{a}{2 \sqrt{3}}$ (from bottom)
(ii)

$\tan \theta=\frac{\mathrm{r}}{\mathrm{h}}$
Let $\rho=\frac{3 M}{\pi r^{2} h}=\frac{\text { mass }}{\text { volume }}$
then $d m=\rho d V$, where $d V=$ volume of shaded region
$d V=\pi . r^{2} . d x$
$=\pi \times[(h-x) \cdot \tan \theta]^{2} d x=\frac{\pi \cdot(h-x)^{2} \cdot r^{2}}{h^{2}} \cdot d x$
so, $x_{\text {сом }}=\frac{\int_{0}^{h} x d m}{M}=\int_{0}^{h} \frac{x \cdot \rho \cdot d V}{M}=\rho \cdot \int_{0}^{h} \frac{x \cdot d V}{M}$
$=\frac{3 M}{\pi r^{2} h \cdot M} \int_{0}^{h} x \cdot d V=\frac{3}{\pi r^{2} h} \int_{0}^{h} \frac{\pi \cdot x \cdot(h-x)^{2} \cdot r^{2}}{h^{2}} d x$
$=\frac{3}{\mathrm{~h}^{3}} \int_{0}^{\mathrm{h}} \mathrm{x} \cdot(\mathrm{h}-\mathrm{x})^{2} \mathrm{dx}=\frac{3}{\mathrm{~h}^{3}} \cdot \frac{\mathrm{~h}^{4}}{12} ; \quad \mathrm{x}_{\text {Сом }}=\frac{\mathrm{h}}{4}$

Sol 3: Centre of gravity is the point at which all the force of gravity is assumed to be applied i.e., there is a force of gravity on each point of the body and hence the complications are reduced by finding a point where all the force is assumed to be applied, this point is centre of gravity.

Sol 4: Now we have
$M_{\text {tot }} \vec{a}_{\text {COM }}=m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}$
where $m=$ mass
a = acceleration
so $M_{\text {Tot. }} \frac{\partial \overrightarrow{\mathrm{V}}_{\text {COM }}}{\mathrm{dt}}=\mathrm{m}_{1} \frac{\partial \overrightarrow{\mathrm{~V}}_{1}}{\mathrm{dt}}+\mathrm{m}_{2} \frac{\partial \overrightarrow{\mathrm{~V}}_{2}}{\mathrm{dt}}$
$x d t$, on integrating w. r. tdt, we get
$M_{\text {Tot. }} \vec{V}_{\text {COM }}=m_{1} \vec{V}_{1}+m_{2} \vec{V}_{2}$
$\Rightarrow \mathrm{M}_{\text {Tot. }} \frac{\partial \overrightarrow{\mathrm{x}}_{\mathrm{COM}}}{\mathrm{dt}}=\mathrm{m}_{1} \frac{\partial \overrightarrow{\mathrm{x}}_{1}}{\mathrm{dt}}+\mathrm{m}_{2} \frac{\partial \overrightarrow{\mathrm{x}}_{2}}{\mathrm{dt}}$
\Rightarrow On multiplying by dt , and integrating
$M_{\text {Tot }} \overrightarrow{\mathrm{x}}_{\text {COM }}=\mathrm{m}_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{x}}_{2}$
So $\overrightarrow{\mathrm{x}}_{\text {COM }}=\frac{\mathrm{m}_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{x}}_{2}}{\mathrm{M}_{\text {tot. }}}$

Sol 5: $M_{\text {Tot. }} \cdot \vec{a}_{\text {COM }}=m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}+\ldots . m_{n} \vec{a}_{n}$
(Now, just like above question, question-4, we can find that

$$
\vec{x}_{\text {COM }}=\frac{m_{1} \vec{x}_{1}+m_{2} \vec{x}_{2}+\ldots m_{n} \vec{x}_{n}}{M_{\text {tot. }}}
$$

Sol 6: We have
$M_{\text {tot. }} \cdot \vec{a}_{\text {COM }}=m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}+\ldots . m_{n} \vec{a}_{n}$
Now, $\overrightarrow{\mathrm{a}}_{\text {COM }}=0$, so we have
$0=m_{1} \frac{d \vec{V}_{1}}{d t}+m_{2} \frac{d \vec{V}_{2}}{d t}+\ldots . m_{n} \frac{d \vec{V}_{n}}{d n}$
$x d t$, and integrating, we get
$\mathrm{C}=\mathrm{m}_{1} \overrightarrow{\mathrm{~V}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{~V}}_{2}+\ldots . \mathrm{m}_{\mathrm{n}} \overrightarrow{\mathrm{V}}_{\mathrm{n}}=\mathrm{M}_{\text {Tot. }} \mathrm{V}_{\text {сом }}$
So $\mathrm{V}_{\text {Сом }}=\frac{\mathrm{C}}{\mathrm{M}_{\text {Tot. }}}=$ constant
Hence proved.

Sol 7:

So $\vec{x}_{\text {COM }}=\frac{m_{1} \vec{x}_{1}+m_{2} \vec{x}_{2}+m_{3} \vec{x}_{3}}{M_{\text {Tot. }}}$
$=\frac{150 \times(10)+200 \times(0.5)+100 \times(0.25)}{450}$
$=\frac{25+180}{450}=\frac{125}{450}$
$\vec{x}_{\text {COM }}=0.277 \hat{i}$
$\overrightarrow{\mathrm{y}}_{\text {COM }}=\frac{\mathrm{m}_{1} \overrightarrow{\mathrm{y}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{y}}_{2}+\mathrm{m}_{3} \overrightarrow{\mathrm{y}}_{3}}{\mathrm{M}_{\text {Tot. }}}$
$=\frac{150 \times 0+200 \times(0)+100 \times 0.433}{450}=\frac{43.3}{450}$
$\vec{y}_{\text {COM }}=0.096 \hat{j}$
So $\vec{r}_{\text {COM }}=(0.277 \hat{i}+0.096 \hat{j})$

Sol 8:

$\sin \theta=\frac{b}{2 a}, \cos \theta=\frac{\sqrt{4 a^{2}-b^{2}}}{2 a}$,
$\tan \theta=\frac{b}{\sqrt{4 a^{2}-b}}$
Now, $\rho=\frac{M}{\frac{1}{2} a^{2} \sin 2 \theta}=\frac{M}{a^{2} \sin \theta \cos \theta}$
$\ell=\overbrace{\underbrace{2(\operatorname{a\operatorname {cos}\theta -x)} \cdot \tan \theta}_{\begin{array}{c}A E \\ (A D-D E)\end{array}}}^{E F}$
So, $\mathrm{dA}=\ell$. dx
So, $d m=\rho . d A=\rho . \ell . d x$

$$
\begin{aligned}
& \text { So } \vec{x}_{\operatorname{com}}=\frac{\int_{0}^{a \cos \theta} x \cdot d x}{M} \\
& =\frac{\rho}{M} \cdot \int_{0}^{\operatorname{acos} \theta} x \times 2 x(a \cos \theta-x) \cdot \tan \theta \cdot d x \\
& =\frac{1 \times 2}{a^{2} \sin \theta \cdot \cos \theta} \cdot \int_{0}^{a \cos \theta} x(a \sin \theta-x \tan \theta) d x \\
& =\frac{2}{a^{2} \sin \theta \cdot \cos \theta} \cdot\left[\frac{x^{2}}{2} a \sin \theta-\frac{x^{3} \tan \theta}{3}\right]_{0}^{\operatorname{acos} \theta} \\
& =\frac{2}{a^{2} \sin \theta \cdot \cos \theta} \cdot\left[\frac{a^{3} \sin \theta \cdot \cos 2 \theta}{2}-\frac{a^{3} \sin \theta \cdot \cos ^{2} \theta}{3}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{a^{3} \sin \theta \cdot \cos ^{2} \theta}{3 a^{2} \sin \theta \cdot \cos \theta}=\frac{a \cos \theta}{3} \\
& =\frac{\sqrt{4 a^{2}-b^{2}}}{6}
\end{aligned}
$$

Sol 9: $\vec{r}_{\mathrm{COM}}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{M_{\text {Tot. }}}$
$=\frac{0.5(-1,2)+1(3,4)}{0.5+1}$
$=\frac{(-0.5,1)+(3,4)}{1.5}=\frac{(2.5,5)}{1.5}$
$\vec{r}_{\text {COM }}=\left(\frac{5}{3}, \frac{10}{3}\right)$

Sol 10: Same as question (9)
$\vec{x}_{\text {COM }}=\frac{m_{1} \vec{x}_{1}+m_{2} \vec{x}_{2}+m_{3} \vec{x}_{3}}{m_{1}+m_{2}+m_{3}}$ and
$\overrightarrow{\mathrm{y}}_{\text {COM }}=\frac{\mathrm{m}_{1} \overrightarrow{\mathrm{y}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{y}}_{2}+\mathrm{m}_{3} \overrightarrow{\mathrm{y}}_{3}}{\mathrm{~m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}}$

Sol 11: (a) (2) $\underset{2 \mathrm{~m} / \mathrm{s}}{\longrightarrow----(1) \underset{5 \mathrm{~m} / \mathrm{s}}{\longrightarrow}}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{v}}_{\mathrm{COM}}=\frac{\overrightarrow{\mathrm{m}}_{1} \overrightarrow{\mathrm{v}}_{1}+\overrightarrow{\mathrm{m}}_{2} \overrightarrow{\mathrm{v}}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \\
& =\frac{2 \times 2+5 \times 1}{2+1}=\frac{9}{3}=3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$\overrightarrow{\mathrm{v}}_{\text {COM }}=\frac{2 \times 2-5 \times 1}{2+1}=-1 / 3 \mathrm{~m} / \mathrm{s}$
(-ve direction \Rightarrow velocity is negative direction)

Sol 12:

and $m_{2} b-m_{1} a=0$
$\Rightarrow \mathrm{m}_{2} \mathrm{~b}=\mathrm{m}_{1} \mathrm{a}$

Take origin at $\mathrm{x}_{\text {сом }}$ for simplicity.
Assuming the $\mathrm{x}_{\text {сом }}$ at origin, we have
$m_{1}(-a+d)+m_{2}\left(b-d_{2}\right)=0$
$\Rightarrow \mathrm{m}_{2}\left(\mathrm{~b}-\mathrm{d}_{2}\right)=\mathrm{m}_{1}(\mathrm{a}-\mathrm{d})$
$\Rightarrow m_{2} b-m_{2} d_{2}=m_{1} a-m_{1} d$..
from (1), $m_{2} b=m_{1} a$, putting this in (2)
$m_{1} a-m_{2} d_{2}=m_{1} a-m_{1} d$
$\Rightarrow \frac{m_{1} d}{m_{2}}=d_{2}$
Sol 13: $\vec{r}_{\text {COM }}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{m_{1}+m_{2}}$
$\overrightarrow{\mathrm{x}}_{\text {COM }}=\frac{2 \times 1+3(-6)}{1+3}=\frac{-18+2}{4}=-1$
$\vec{y}_{\text {COM }}=\frac{5 \times 1+4 \times 3}{1+3}=\frac{12+5}{4}=\frac{17}{4}$
$\vec{z}_{\mathrm{COM}}=\frac{13 \times 1+3 \times(-2)}{1+3}=\frac{13-6}{1+3}=\frac{7}{4}$
So, $\vec{r}_{\mathrm{COM}}=\left(-1, \frac{17}{4}, \frac{7}{4}\right)$

Sol 14: $x_{\text {Сом }}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+m_{4} x_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}$
$=\frac{1 \times 0+2 \times a+3 \times a+4 \times 0}{1+2+3+4}=\frac{5 a}{10}=\frac{a}{2} \hat{i}$
$\mathrm{y}_{\text {Сом }}=\frac{\mathrm{m}_{1} \mathrm{y}_{1}+\mathrm{m}_{2} \mathrm{y}_{2}+\mathrm{m}_{3} \mathrm{y}_{3}+\mathrm{m}_{4} \mathrm{y}_{4}}{\mathrm{~m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{2}+\mathrm{m}_{4}}$
$=\frac{1 \times 0+2 \times 0+3 \times b+4 \times b}{10}=\frac{7 b}{10} \hat{j}$
So $\vec{r}_{\text {COM }}=\frac{a}{2} \hat{i}+\frac{7 b}{10} \hat{j}$

Sol 15: Divide the lamina in 3 equal parts with centre of masses as C_{1}, C_{2}, C_{3} respectively.
So, the centre of mass of the whole plate can be found using the centre of mass of these three plates.

Now, from symmetry, we can say that the centre of mass of square plate lies at its centre.
So, $\vec{r}_{C_{1}}=(0.5,0.5)$
$\vec{r}_{C_{2}}=(1.5,0.5)$ and $\vec{r}_{C_{3}}=(0.5,1.5)$
mass of each plate $=1 \mathrm{~kg}$
So $\mathrm{x}_{\text {СОМ }}=\frac{0.5 \times 1+1.5 \times 1+0.5 \times 1}{(1+1+1)}=\frac{2.5}{3}$
$y_{\text {COM }}=\frac{0.5 \times 1+0.5 \times 1+1.5 \times 1}{3}=\frac{2.5}{3}$
So $\vec{r}_{C M}=\left(\frac{2.5}{3}, \frac{2.5}{3}\right)=\left(\frac{5}{6}, \frac{5}{6}\right)$

Exercise 2

Single Correct Choice Type

Sol 1: (B)

velocity of system after collision $=\sqrt{2 g h}$ so using momentum constant
$(M+m) \sqrt{2 g h}=m v$
$\Rightarrow v=\frac{(M+m)}{m} \sqrt{2 g h}$
Sol 2: (B) $\mathrm{m}_{1}=200 \mathrm{~g}, \mathrm{~m}_{2}=200 \mathrm{~g}, \mathrm{~m}_{3}=600 \mathrm{~g}$

from momentum conservation
$\mathrm{x} \Rightarrow 30 \times \mathrm{m}=3 \mathrm{~m} \times \mathrm{v}_{\mathrm{x}}=10 \mathrm{~m} / \mathrm{s}$
$y \Rightarrow 30 \times m=3 \mathrm{~m} \times v_{\mathrm{y}}=10 \mathrm{~m} / \mathrm{s}$
$\Rightarrow v=\sqrt{10^{2}+10^{2}}=10 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Sol 3: (C) Momentum = mv (mass = constant) so new $\mathrm{v}_{\mathrm{n}}=\frac{3 \mathrm{v}}{2}$
New, K. E. $=\frac{1}{2} \times m \times v_{n}{ }^{2}=\frac{1}{2} \times m v^{2} \times\left(\frac{9}{4}\right)$

So increase $=\frac{9}{4} \times\left(\frac{1}{2} m v^{2}\right)-\frac{1}{2} m v^{2}$
$=\frac{5}{4} \times\left(\frac{1}{2} m v^{2}\right)=\frac{5}{4}$ of initial K. E.

Sol 4: (C)

$e=\frac{25-20}{v_{B}-v_{A}}=\frac{5}{v_{B}-v_{A}}=1$
$\Rightarrow \mathrm{v}_{\mathrm{B}}-\mathrm{v}_{\mathrm{A}}=5$
Momentum conservation \Rightarrow
$m .(25)+m .(20)=m .\left(v_{A}\right)+m\left(v_{B}\right)$
$\Rightarrow \mathrm{v}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}=45$
$\Rightarrow \mathrm{v}_{\mathrm{B}}=25 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}_{\mathrm{A}}=20 \mathrm{~m} / \mathrm{s}$

Sol 5: (C)

Using momentum conservation
$1.50 \times 0.1=(2.9+0.1) v$
$\Rightarrow 15=3 \times v \Rightarrow v=5 \mathrm{~m} / \mathrm{s}$
so $\frac{1}{2} m v^{2}=m g h \quad \Rightarrow h=\frac{v^{2}}{2 g}$
$\Rightarrow \mathrm{h}=\frac{25}{2 \times 10}=\frac{5}{4}=1.25 \mathrm{~m}$
So L. $(1-\cos \theta)=1.25 \mathrm{~m}$
$\Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=60^{\circ}$
Sol 6: (A) The center of mass will be on x-axis, so $y_{\text {com }}$ $=0$.
$\Rightarrow 15 \times \frac{\mathrm{m}}{4}+\mathrm{y} \times \frac{3 \mathrm{~m}}{4}=0$
$\Rightarrow \mathrm{y}=-5 \mathrm{~cm}$

Sol 7: (D) Elastic collision \Rightarrow Energy is conserved.
$\frac{1}{2} \times m v_{1}{ }^{2}=\frac{1}{2} \times m \times v_{2}{ }^{2}+\frac{1}{2} m \times v_{2}{ }^{2}$
$\Rightarrow \mathrm{v}_{1}{ }^{2}=2 \mathrm{v}_{2}{ }^{2}$
$\Rightarrow v_{1}=\sqrt{2} v^{\prime}{ }_{2}$

Using momentum conservation
$\Rightarrow 2 \mathrm{mv} \Rightarrow{ }_{2} \cos \theta=\mathrm{mv}_{1}$
$\Rightarrow \cos \theta=\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}^{\prime}} \times \frac{1}{2}$

$$
\cos \theta=\frac{1}{\sqrt{2}} \Rightarrow \theta=45^{\circ} \Rightarrow 90^{\circ}
$$

Sol 8: (C) Momentum conservation

$$
\begin{aligned}
& \Rightarrow 2 \times 3-1 \times 4=(2+1) v \\
& \Rightarrow v=\frac{2}{3} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Sol 9: (D) No external force $\Rightarrow a_{\text {COM }}=0$

Previous Years' Questions

Sol 1: (D) Net force on centre of mass is zero. Therefore, centre of mass always remains at rest.

Sol 2: (A) Let v^{\prime} be the velcoity of second fragment. From conservation of linear momentum,

Just before explosion Just after explosion
$2 m(v \cos \theta)=m v^{\prime}-m(v \cos \theta)$
$\therefore \mathrm{v}^{\prime}=3 \mathrm{v} \cos \theta$

Sol 3: (C) $\left|\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}\right)-\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}\right)\right|$
$=\mid$ Change in momentum of the two particle \mid
$=\mid$ External force on the system $\mid \times$ time interval
$=\left(m_{1}+m_{2}\right) g\left(2 t_{0}\right)=2\left(m_{1}+m_{2}\right) g t_{0}$

Sol 4: (C) $v_{C M}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}$
$=\frac{10 \times 14+4 \times 0}{10+4}=\frac{140}{14}=10 \mathrm{~m} / \mathrm{s}$

Sol 5: (A) y_{CM}
$=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}+m_{4} y_{4}+m_{5} y_{5}}{m_{1}+m_{2}+m_{3}+m_{4}+m_{5}}$
$=\frac{(6 \mathrm{~m})(0)+(\mathrm{m})(\mathrm{a})+\mathrm{m}(\mathrm{a})+\mathrm{m}(0)+\mathrm{m}(-\mathrm{a})}{6 \mathrm{~m}+\mathrm{m}+\mathrm{m}+\mathrm{m}+\mathrm{m}}$
$=\frac{a}{10}$

Sol 6: (C) At first collision one particle having speed 2 v will rotate $240^{\circ}\left(\right.$ or $\left.\frac{4 \pi}{3}\right)$ while other particle having speed v will rotate $120^{\circ}\left(\right.$ or $\left.\frac{2 \pi}{3}\right)$. At first collision they will exchange their velocities. Now as shown in figure, after two collisions they will again reach at point A.

Sol 7: (D) $R=u \sqrt{\frac{2 h}{g}}$

$$
\begin{aligned}
& \Rightarrow 20=v_{1} \sqrt{\frac{2 \times 5}{10}} \text { and } 100=v_{2} \sqrt{\frac{2 \times 5}{10}} \\
& \Rightarrow \quad v_{1}=20 \mathrm{~m} / \mathrm{s}, v_{2}=100 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Applying momentum conservation just before and just after the collision.

$$
\begin{gathered}
(0.01)(\mathrm{v})=(0.2)(20)+(0.01)(100) \\
v=500 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Sol 8: (B) Between A and B, height fallen by block

$$
\mathrm{h}_{1}=\sqrt{3} \tan 60^{\circ}=3 \mathrm{~m} .
$$

\therefore Speed of block just before striking the second incline,
$\mathrm{v}_{1}=\sqrt{2 \mathrm{gh}} \mathrm{h}_{1}=\sqrt{2 \times 10 \times 3}=\sqrt{60} \mathrm{~ms}^{-1}$
In perfectly inelastic collision, component of v_{1} perpendicular to BC will become zero, while component of v_{1} parallel to $B C$ will remain unchanged.
\therefore Speed of block B immediately after it strikes the second inline is,

$\mathrm{v}_{2}=$ component of v_{1} along $B C$
$=\mathrm{v}_{1} \cos 30^{\circ}=(\sqrt{60})\left(\frac{\sqrt{3}}{2}\right)$
$=\sqrt{45} \mathrm{~ms}^{-1}$

Sol 9: (B) Height fallen by the block from B to C $h_{2}=3 \sqrt{3} \tan 30^{\circ}=3 \mathrm{~m}$
Let v_{3} be the speed of block, at point C , just before it leaves the second incline, then:

$$
\begin{aligned}
& v_{3}=\sqrt{v_{2}^{2}+2 g h_{2}} \\
& =\sqrt{45+2 \times 10 \times 3}=\sqrt{105} \mathrm{~ms}^{-1}
\end{aligned}
$$

Sol 10: (C) In elastic collision, component of v_{1} parallel to $B C$ will remain unchanged, while component perpendicular to $B C$ will remain unchanged in magnitude but its direction will be reversed.

$v_{\|}=v_{1} \cos 30^{\circ}=(\sqrt{60})\left(\frac{\sqrt{3}}{2}\right)$
$=\sqrt{45} \mathrm{~ms}^{-1}$
$\mathrm{v}_{\perp}=\mathrm{v}_{1} \sin 30^{\circ}=(\sqrt{60})\left(\frac{1}{2}\right)$
$=\sqrt{15} \mathrm{~ms}^{-1}$
Now vertical component of velocity of block
$\mathrm{v}=\mathrm{v}_{\perp} \cos 30^{\circ}-\mathrm{v}_{\|} \cos 60^{\circ}$
$=(\sqrt{15})\left(\frac{\sqrt{3}}{2}\right)-(\sqrt{45})\left(\frac{1}{2}\right)=0$
Sol 11: (C) Loss of energy is maximum when collision is inelastic as in an inelastic collision there will be maximum deformation.
KE in COM frame is $\frac{1}{2}\left(\frac{\mathrm{Mm}}{\mathrm{M}+\mathrm{n}}\right) \mathrm{V}_{\text {rel }}^{2}$
$K E_{i}=\frac{1}{2}\left(\frac{M m}{M+m}\right) V^{2} \quad K E_{f}=0\left(\because V_{\text {rel }}=0\right)$
Hence loss in energy is $\frac{1}{2}\left(\frac{\mathrm{Mm}}{\mathrm{M}+\mathrm{m}}\right) \mathrm{V}^{2}$
$\Rightarrow \mathrm{f}=\frac{\mathrm{M}}{\mathrm{M}+\mathrm{m}}$

Sol 12: (A) $z_{0}=h-\frac{h}{4}=\frac{3 h}{4}$

Sol 13: (B) $E_{\text {initial }}=\frac{1}{2} m(2 v)^{2}+\frac{1}{2} 2 m(v)^{2}=3 m v^{2}$
$E_{\text {final }}=\frac{1}{2} 3 m\left(\frac{4}{9} v^{2}+\frac{4}{9} v^{2}\right)=\frac{4}{3} m v^{2}$
\therefore Fractional loss $=\frac{3-\frac{4}{3}}{3}=\frac{5}{9}=56 \%$

JEE Advanced/Boards

Exercise 1

Sol 1: (a)
$\xrightarrow[20 \mathrm{~m} / \mathrm{s}]{0.2 \mathrm{~kg}} \underset{ }{\text { 020 }}$
From the conservation of momentum we have,
$m_{1} v_{1}+m_{2} v_{2}=m_{\text {Tot }} \times v$
$0.2 \times 20+10 \times 0=(10+0.2) \times v$
$\Rightarrow 4=10.2 \times v$
$v=\frac{4}{10.2} \mathrm{~m} / \mathrm{s}=0.392 \mathrm{~m} / \mathrm{s}$
(b) From conservation of energy (Force by string is perpendicular to displacement, hence no work done by string)
$\frac{1}{2} \times m \times v^{2}=\mathrm{mgh}_{\text {vert. }}$
$\Rightarrow h=\frac{v^{2}}{2 g}=\frac{(0.392)^{2}}{2 \times 9.81}=0.0078 \mathrm{~m}$
$=7.8 \mathrm{~mm} \approx 0.008 \mathrm{~m}$
In horizontal direction:

$R(1-\cos \theta)=0.008 \mathrm{~m}$
$\Rightarrow \cos \theta=\frac{1-0.08}{R}=1-0.0027=0.9973$
So $R \sin \theta=3 \times \sqrt{\left(1-\cos ^{2} \theta\right)}$
$=3 \times \sqrt{1-(0.9937)^{2}}=0.220 \mathrm{~m}$
So total displacement $=0.220 \mathrm{~m}$
(c) Initial energy:
$\frac{1}{2} \times m_{B} \times v_{B}^{2}=\frac{1}{2} \times(0.2) \times(20)^{2}=40 \mathrm{~J}$
Final energy:
$\frac{1}{2} \times \mathrm{m}_{\text {Tot }} \times \mathrm{v}_{\text {Tot }}{ }^{2}=\frac{1}{2} \times 10.2 \times(0.392)^{2}=0.8 \mathrm{~J}$
So energy lost $=40 \mathrm{~J}-0.8 \mathrm{~J}=39.2 \mathrm{~J}$

Sol 2:

(20) $\uparrow 100 \mathrm{~m} / \mathrm{s}$
(30) $\uparrow v^{\prime}$
$\uparrow 100 \mathrm{~m} / \mathrm{s} \quad \downarrow \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
50
(a) Now, from equation of motion
$v=u+a t=100-9.8 \times(5)=51 \mathrm{~m} / \mathrm{s}$
so $v=51 \mathrm{~m} / \mathrm{s}$
Now at this velocity, particle exploded, $\Delta \mathrm{t}$ is very small and hence momentum can be conserved.

So $50 \times 51=20 \times 150+30 \times \mathrm{v}^{\prime}$
$\Rightarrow 2550=3000+30 \times \mathrm{v}^{\prime}$
$\Rightarrow v^{\prime}=\frac{-450}{30}=-15 \mathrm{~m} / \mathrm{s}$
(b) When no explosion:
$v=u+a t$
$\Rightarrow v=100-9.8 \times 8=21.6 \mathrm{~m} / \mathrm{s}$
so momentum $=m \times v$
$=50 \times 21.6=1080 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
When explosion:
For $20 \mathrm{~kg} \mathrm{v}=\mathrm{u}+\mathrm{at}$
$=150-9.8 \times(\mathrm{s})=120.6 \mathrm{~m} / \mathrm{s}$
For $30 \mathrm{~kg} v=\mathrm{u}+\mathrm{at}$
$=-15-9.8 \times 3=-44.4 \mathrm{~m} / \mathrm{s}$
So total momentum
$=20 \times(120.6)-(44.4) \times(30)$
$=2412-1332=1080 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

Sol 3: (a) The particle are meet at the mid-point of the trajectory (i. e. vertical velocity $=0$)
$u=49 \mathrm{~m} / \mathrm{s}$
So $t=\frac{u \sin \theta}{g}$
Thus, $\mathrm{v}_{\mathrm{x}}=$ horizontal velocity $=u \cos \theta$

Now to retrace the path velocity of P must be $u \cos \theta$ in the (-)ve direction, so now using momentum balance
$m_{1} v_{1}+m_{2} v_{2}=m_{1} v^{\prime}{ }_{1}+m_{2} v^{\prime}{ }_{2}$
$\Rightarrow 20 \times(u \cos \theta)+40 \times(-u \cos \theta)$
$=20 \times(u \cos \theta)+40 \times v_{2}^{\prime}$
$\Rightarrow 40 \times \mathrm{v}_{2}=0 \Rightarrow \mathrm{v}_{2}^{\prime}=0$
so the horizontal velocity of particle Q after collision would be 0 .
so position of Q would be just below the point of collision

So position of $\mathrm{Q}=\frac{\mathrm{u} \cos 45^{\circ} \times \mathrm{u} \sin 45^{\circ}}{\mathrm{g}}$
$=\frac{u^{2} \sin 90^{\circ}}{2 g}=\frac{u^{2}}{2 g}=\frac{(49)^{2} \times 10}{2 \times 9.8}=122.5 \mathrm{~m}$
From position A in the (+)ve x-direction
(b) Time take would be same as the vertical component has not changed, so
$\mathrm{t}=\frac{\mathrm{u} \sin \theta}{\mathrm{g}}=\frac{49 \times \sin 45^{\circ}}{9.8}=3.54 \mathrm{sec}$
Sol 4:

Now, since there is no external force
Using momentum conservation in x -direction
$500 \times 100=150 \times v_{x}+150 \times(-60)$
$\Rightarrow 150 \times v_{\mathrm{x}}=5 \times 10^{4}+9000$
$150 \times v_{x}=59 \times 10^{3}$
$\Rightarrow v_{\mathrm{x}}=393.33 \mathrm{~m} / \mathrm{s}$

Similarly in y-direction
$0=150 \times 200+150 \times\left(-v_{y}\right)$
$\Rightarrow v_{y}=200 \mathrm{~m} / \mathrm{s}$
So $v_{\text {II }}=393.33 \hat{i}-200 \hat{j}$
|| $\mathrm{v}_{\text {III }} \|=441.26 \mathrm{~m} / \mathrm{s}$
and $\theta=\tan ^{-1} \frac{-200}{393.33}=-27^{\circ}$

Sol 5:

Velocity of ball just before impact
$=\sqrt{2 g \mathrm{~L}(1-\cos \theta)}=\sqrt{2 \times 9.8 \times 1 / 2}$
$=\sqrt{9.8}=3.13 \mathrm{~m} / \mathrm{s}$
v of ball after impact $\Rightarrow \mathrm{mg}(\Delta \mathrm{h})=\frac{1}{2} \mathrm{mv}^{2}$
(energy conservation)
$\Rightarrow \sqrt{2 \mathrm{gL} .\left(1-\cos 30^{\circ}\right)}=\mathrm{v}_{\mathrm{f}}$
$\Rightarrow \sqrt{2 \times 9.8 \times\left(1-\frac{\sqrt{3}}{2}\right)}=v_{\mathrm{f}}$
$\Rightarrow v_{f}=\sqrt{2.626}$
$\Rightarrow v_{\mathrm{f}}=1.62 \mathrm{~m} / \mathrm{s}$
so coefficient of rest. $=\frac{1.62}{3.13}=0.517$
Loss of kinetic energy $=$ heat produced
$=\frac{1}{2} \times m \times\left(v_{i}^{2}-v_{f}^{2}\right)$
$=\frac{1}{2} \times(0.01) \times\left[(3.13)^{2}-(1.62)^{2}\right]$
$=\frac{0.0717}{2}=0.036 \mathrm{~J}$
$=0.0085$ cal.

Sol 6: No friction \Rightarrow no torque, so its pure translational motion

Now, conservation of energy
$\Rightarrow \frac{1}{2} \times \mathrm{mv}^{2}=\mathrm{mgh}$
$\Rightarrow \mathrm{v}=\sqrt{2 \mathrm{gh}}$
$=\sqrt{2 \times 9.8 \times 0.1}$
$\mathrm{v}=1.4 \mathrm{~m} / \mathrm{s}$
Now, as collision is elastic
$\underset{\mathrm{m}}{\mathrm{A}} \underset{1.4 \mathrm{~m} / \mathrm{s}}{ }$
(B) $\underset{\mathrm{v}_{\mathrm{A}}}{\underset{(}{\longrightarrow}}$
$\underbrace{\longrightarrow}_{\overrightarrow{v_{B}}}$
so $v_{B}-v_{A}=1.4 \mathrm{~m} / \mathrm{s}$
and conservation of momentum gives:
$m_{A} v_{A}+m_{B} V_{B}=m_{A} \times 1.4 \mathrm{~m} / \mathrm{s}$
$\Rightarrow v_{A}+v_{B}=1.4 \mathrm{~m} / \mathrm{s}$
on solving (i) and (ii)
$v_{\mathrm{B}}=1.4 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}_{\mathrm{A}}=0 \mathrm{~m} / \mathrm{s}$

Sol 7:

(a) Initial acceleration of $B=0.5 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~W}$

So, $k x=(0.5)(0.25)$
As the magnitude of force would be the same for A,
Initial acceleration of $A=\frac{\mathrm{kx}}{0.1}=\frac{(0.5)(0.25)}{0.1}$

$$
\begin{aligned}
& =1.25 \mathrm{~m} / \mathrm{s}^{2} \mathrm{E} \\
& =1.25 \mathrm{~cm} / \mathrm{s}^{2} \mathrm{E}
\end{aligned}
$$

(b) $x=\frac{(0.5)(0.25)}{k}=\frac{(0.5)(0.25)}{2}$

$$
\begin{aligned}
& =0.0625 \mathrm{~m} \\
& =6.25 \mathrm{~cm}
\end{aligned}
$$

(c) Max distance would be when spring is fully elongated. And, symmetry of conservation of energy implies that expansion would be equal to companion.
So, Maximum distance between
A and $B=60 \mathrm{~cm}+6.25 \mathrm{~cm}$
$=66.25 \mathrm{~cm}$

Sol 8:

Now $\vec{r}_{\text {COM }}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{m_{1}+m_{2}}$
Take the disks as these two bodies and treat m_{2} as negative

Given body =

So $\mathrm{x}_{\text {сом }}=\frac{\rho \cdot \pi \mathrm{a}^{2} \cdot(0)-\rho \cdot \pi \mathrm{b}^{2} \times \mathrm{c}}{\rho \cdot\left(\pi \mathrm{a}^{2}-\pi \mathrm{b}^{2}\right)}$
where $\rho=\frac{\mathrm{m}}{\text { area }}$
$x_{\text {COM }}=\frac{-b^{2} c}{\left(a^{2}-b^{2}\right)}$

Sol 9: (a) No external force, hence $\mathrm{v}_{\text {сом }}=0$

thus,
$\mathrm{m} . \mathrm{v}_{\text {max. }}-\mathrm{M} . \mathrm{v}_{\mathrm{B}}=0$
$\Rightarrow \mathrm{mv}_{\text {max. }}=\mathrm{M} . \mathrm{v}_{\mathrm{B}}$
and $\mathrm{v}_{\text {rel. }}=\mathrm{v}_{\text {max. }}+\mathrm{v}_{\mathrm{B}}$
$v_{\text {rel. }}=\left(\frac{M}{m}+1\right) v_{B}$
$\Rightarrow v_{B}=\frac{v_{\text {rel }} \cdot m}{(m+M)}$
$\Rightarrow v_{B}=\frac{m \cdot v_{\text {rel }}}{(m+M)}$ in (-)ve direction
(b) $D_{\text {rel. }}=L$

Let $\mathrm{x}_{\text {сом }}=0$
then $m . x_{1}-M . x_{2}=0$

$x_{1} \neq x_{2}=$ distance covered by man and balloon in ground frame, so
$x_{1}+x_{2}=L$
$\Rightarrow\left(\frac{M}{m}+1\right) x_{2}=L$
$\Rightarrow x_{2}=\left(\frac{m L}{m+M}\right)$
in the downward direction
(c) No external force: initial velocity $=$ final velocity $=0$

Sol 10:

No generation of momentum would be there in the y-direction

Energy conservation \Rightarrow
$\frac{1}{2} m v^{2}=\frac{1}{2} m v_{1}{ }^{2}+\frac{1}{2} m v_{2}{ }^{2}$
$\Rightarrow \mathrm{v}^{2}=\mathrm{v}_{1}{ }^{2}+\mathrm{v}_{2}{ }^{2}$
Also, $\mathrm{mv}_{1} \sin \theta=m v_{2} \sin \theta$
$\Rightarrow \mathrm{v}_{1}=\mathrm{v}_{2}$
Now, using (i) and (ii), we get
$\mathrm{v}^{2}=2 \mathrm{v}_{1}{ }^{2}$
$\Rightarrow \mathrm{v}=\sqrt{2} \mathrm{v}_{1}$
and using momentum conservation in x-direction:
$\mathrm{mv}=2 \mathrm{mv} \mathrm{v}_{1} \cos \theta$
$\Rightarrow \cos \theta=\frac{1}{\sqrt{2}}$
$\Rightarrow \theta=45^{\circ}$ so angle between them $=90^{\circ}$
Hence proved.

Sol 11:

(a) Now as there is no horizontal force on rod, there would be no displacement of COM of the rod. Thus, the path followed will be a straight line.
(b) $x \operatorname{comp}$. of $r=\frac{L}{2} \cos \theta-r \cos \theta$
$x=\left(\frac{L}{2}-r\right) \cos \theta$
and $y \operatorname{comp}$. of $r=r \sin \theta=y$
$\Rightarrow \frac{x^{2}}{(L / 2-r)^{2}}+\frac{y^{2}}{r^{2}}=1$

Sol 12:

(+)

So, $T-m_{1} g=m_{1} a_{1}$
$m_{2} g-T=m_{2} a_{1}$
$\Rightarrow\left(m_{2}-m_{1}\right) g=\left(m_{1}+m_{2}\right) a$
$\Rightarrow \mathrm{a}=\frac{\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right) \mathrm{g}}{\mathrm{m}_{1}+\mathrm{m}_{2}}$
Now $\mathrm{a}_{\text {сом }}=\frac{\mathrm{m}_{1} \mathrm{a}_{1}+\mathrm{m}_{2} \mathrm{a}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$
$=\frac{m_{2} \cdot\left[\frac{-\left(m_{2}-m_{1}\right) g}{\left(m_{1}+m_{2}\right)}\right]+m_{1} \cdot\left[\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\right] g}{m_{1}+m_{2}}$
$=\frac{-m_{2}^{2} g+m_{1} m_{2} g+m_{1} \cdot m_{2} g-m_{1}^{2} g}{\left(m_{1}+m_{2}\right)^{2}}$
$=\frac{-\left(m_{1}-m_{2}\right)^{2}}{\left(m_{1}+m_{2}\right)^{2}} g \Rightarrow$ in the $(-)$ ve direction.

Sol 13: There is no external force in horizontal direction, so $\mathrm{x}_{\text {сом }}$ is same after this relative horizontal distance $=\mathrm{h} \cot \theta$

Let x_{1} and x_{2} be the distance travelled by the block and prism, respectively in ground frame.
so, $x_{1}+x_{2}=h \cos \theta$
and $m_{1} x_{1}-M x_{2}=0$
[taking $x_{\text {сом }}$ as origin]
$\Rightarrow \mathrm{m}_{1} \mathrm{x}_{1}=\mathrm{Mx}{ }_{2}$
$\Rightarrow x_{1}=\frac{M}{m} x_{2}$, putting this in (i)
$\left(\frac{M}{m}+1\right) x_{2}=h \cot \theta$
$\Rightarrow \quad x_{2}=\frac{m \cdot h \cot \theta}{(m+M)}$

Sol 14:

If the particle retraces its path, its velocity must be same as before i.e. $\operatorname{vcos} \theta$ in the opposite direction (independent of mass), so using the momentum conservation:
$2 m .(v \cos \theta)=m \cdot(-v \cos \theta)+m \cdot v^{\prime}$
$\Rightarrow \mathrm{mv}^{\prime}=3 \mathrm{mvcos} \theta$
$\Rightarrow \mathrm{v}^{\prime}=3 \mathrm{v} \cos \theta$

Sol 15:

Momentum conservation in x-direction
$m . v+2 m .\left(-v_{x}\right)=0$
$\Rightarrow \mathrm{v}_{\mathrm{x}}=\frac{\mathrm{v}}{2}$
Similarly, $\mathrm{v}_{\mathrm{y}}=\frac{\mathrm{v}}{2}$
so total energy
$=\frac{1}{2} \times m \times v^{2}+\frac{1}{2} \times m \times v^{2}+\frac{1}{2} \times(2 m)\left(v_{x}{ }^{2}+v_{y}{ }^{2}\right)$
$=m v^{2}+m \cdot\left[\frac{v^{2}}{4}+\frac{v^{2}}{4}\right]=\frac{3 m v^{2}}{2}$

Sol 16:

Elastic collision $\Rightarrow \frac{v_{2}-v_{1}}{v-0}=1$
$\Rightarrow \mathrm{v}_{2}-\mathrm{v}_{1}=\mathrm{v}$
and using momentum conservation
$m v=m v_{1}+2 m v_{2}$
$\Rightarrow m v=m\left(v_{2}-v_{1}\right)+2 m v_{2}$
$\Rightarrow 2 \mathrm{mv}=3 \mathrm{mv}_{2}$
$\Rightarrow v_{2}=\frac{2 v}{3}$ and thus $v_{1}=\frac{-v}{3}$
so kinetic energy before collision:
$=\frac{1}{2} m v^{2}$
kinetic energy after collision
$=\frac{1}{2} \times m \times \frac{v^{2}}{9}=\frac{m v^{2}}{18}$
loss $=\frac{1}{2} m v^{2}-\frac{m v^{2}}{18}=\frac{8 m v^{2}}{18}=\frac{8}{9} \times \frac{1}{2} m v^{2}$
$=\frac{8}{9} \times($ initial K. E. $)$

Sol 17:

v at first impact $=\sqrt{2 g h}$
and time at first impact $=\sqrt{\frac{2 h}{g}}$
(eq. of motion)
Now, $u_{n}=$ velocity after nth impact
$=e^{n} \cdot \sqrt{2 h g}$
so total distance $=h+\sum_{n=1}^{\infty} \frac{u_{n}^{2}}{2 g} \times 2$
$\left[\frac{u_{n}^{2}}{2 g} \times 2=\frac{u^{2}}{g} \Rightarrow\right.$ distance between two impacts]
$=h+2 e^{2} . h+2 e^{4} . h . . .$.
=h. $\left[1+2 e^{2}\left(1+e^{2}+e^{4} \ldots ..\right)\right]$
=h. $\left[1+\frac{2 \mathrm{e}^{2}}{1-\mathrm{e}^{2}}\right]=\frac{\mathrm{h} \cdot\left[1+\mathrm{e}^{2}\right]}{\left[1-\mathrm{e}^{2}\right]}$
Similarly total time

$$
\begin{aligned}
& =\sqrt{\frac{2 h}{g}}+\sum_{n=1}^{\infty} \frac{2 u_{n}}{g}\left[\begin{array}{c}
\frac{2 \times u_{n}}{8} \\
\text { two impacts }
\end{array}\right] \\
& =\sqrt{\frac{2 h}{g}}+\sqrt{\frac{2 h}{g}} \cdot 2 e+\sqrt{\frac{2 h}{g}} \cdot 2 e^{2}+\ldots \\
& =\sqrt{\frac{2 h}{g}}\left[1+2 e\left(1+e+e^{2} \ldots\right)\right] \\
& =\sqrt{\frac{2 h}{g}}\left[1+\frac{2 e}{1-e}\right]=\sqrt{\frac{2 h}{g}} \cdot\left[\frac{1+e}{1-e}\right]
\end{aligned}
$$

Sol 18: If the block m_{2} is moving with same velocity after wall collision \Rightarrow the velocity of block m_{1} and m_{2} has same magnitude.

Now $\frac{u_{2}}{v_{1}-\left(-v_{1}\right)}=1$
$\Rightarrow u_{2}=2 v_{1}$
and using momentum conservation
$\mathrm{u}_{2} \mathrm{~m}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}-\mathrm{m}_{2} \mathrm{v}_{1}$
$\Rightarrow 2 \mathrm{~m}_{2} \mathrm{v}_{1}=\mathrm{m}_{1} \mathrm{v}_{1}-\mathrm{m}_{2} \mathrm{v}_{1} \Rightarrow 3 \mathrm{~m}_{2} \mathrm{v}_{1}=\mathrm{m}_{1} \mathrm{v}_{1}$
$\Rightarrow 3 \mathrm{~m}_{2}=\mathrm{m}_{1}$
$\Rightarrow \quad m_{2}=50 \mathrm{~kg}$

Sol 19:

For the amplitude to be less than 60°.
$\frac{1}{2} m v^{2}<m g(\Delta h)$
$\Rightarrow v^{2}<2 g(\Delta h)$
$\mathrm{v}^{2}<2 \mathrm{gL}\left(1-\cos 60^{\circ}\right)$
$\Rightarrow \mathrm{v}^{2}<\mathrm{gL}$
v after n collisions $=e^{n} \cdot \sqrt{2 g L}$
$\Rightarrow \mathrm{e}^{2 \mathrm{n}} .(2 \mathrm{gL})<\mathrm{gL}$
$\Rightarrow \mathrm{e}^{2 \mathrm{n}}<\frac{1}{2} \quad \Rightarrow\left(\frac{4}{5}\right)^{\mathrm{n}}<\frac{1}{2}$
$\Rightarrow \mathrm{n}=4$ is the largest value satisfying.

Sol 20: (a)

Now, using momentum conservation $\Rightarrow 4 \mathrm{mv}_{2}+m v_{1}=m v$
$\Rightarrow 4 \mathrm{v}_{2}+\mathrm{v}_{1}=\mathrm{v}$
Elasticity $\frac{\mathrm{v}_{2}-\mathrm{v}_{1}}{\mathrm{v}}=1$
$\Rightarrow \mathrm{v}_{2}-\mathrm{v}_{1}=\mathrm{v}$
(i) + (ii) $\Rightarrow 5 v_{2}=2 v \Rightarrow v_{2}=\frac{2 v}{5}$ and
$v_{1}=\frac{-3 v}{5}$
To topple, the distance by 4 m block should be 2 d . (No horizontal force on 2 m block, and hence that block remains stationary)

$\mathrm{N}_{1}+4 \mathrm{mg}=\mathrm{N}_{2^{\prime}}$
Now $\mathrm{N}_{1}=2 \mathrm{mg}$
$\Rightarrow N_{2}=6 \mathrm{mg}$
So $f=6 \mu \mathrm{mg}$
thus acceleration (or deceleration)
$a=\frac{f}{4 m}=\frac{6 \mu \mathrm{mg}}{4 \mathrm{~m}}=\frac{3 \mu \mathrm{~g}}{2}$
So now the velocity (or_{2}) required
$\Rightarrow \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$
$\Rightarrow 0=v_{2}^{2}+2\left(\frac{-3 \mu \mathrm{~g}}{2}\right) \times(2 \mathrm{~d}) \Rightarrow \mathrm{v}_{2}=\sqrt{6 \mu \mathrm{gd}}$
so, $v_{2}=\frac{2 v}{5}$ from above,
$\Rightarrow \quad v=\frac{5}{2} v_{2}=\frac{5}{2} \sqrt{6 \mu \mathrm{gd}}$
(b) Now $v=2 v_{0}=\frac{10}{2} \sqrt{6 \mu \mathrm{gd}}$
$v=5 \sqrt{6 \mu \mathrm{gd}} \mathrm{m} / \mathrm{s}$
Now
$\mathrm{m} \rightarrow \mathrm{v} \rightarrow 4 \mathrm{~m} \Rightarrow \mathrm{~m} \longrightarrow \mathrm{v}_{1} \xrightarrow[\mathrm{H}]{\mathrm{m}} \longrightarrow \mathrm{v}_{1}$
so $v_{2}-v_{1}=v$ (elasticity)
and $m \times v=m \times v_{1}+4 m \times v_{2}$
[Momentum conservation]
$\Rightarrow v=v_{1}+4 v_{2}$
$\Rightarrow 2 \mathrm{v}=5 \mathrm{v}_{2}$
$\Rightarrow \mathrm{v}_{2}=\frac{2 \mathrm{v}}{5}$ and $\mathrm{v}_{1}=\frac{-3 \mathrm{v}}{5}$
So $v_{1}=-3 \sqrt{6 \mu \mathrm{gd}}$
Now time $\Rightarrow \sqrt{\frac{2 d}{g}}$
so distance $=\mathrm{v}_{1} \times \mathrm{t}$
$=-3 \times \sqrt{6 \mu \mathrm{gd}} \times \sqrt{\frac{2 d}{g}}=-6 d . \sqrt{3 \mu}$

Sol 21:

(-)

Now no external force thus $\mathrm{x}_{\text {сом }}=$ constant ≈ 0.
$x_{1}, x_{2^{\prime}}, x_{3} \Rightarrow$ displacement of man, woman and platform respectively w.r.t. ground frame then,
$60 \times x_{1}+50 \times x_{2}+20 \times x_{3}=0$
$\Rightarrow 6 \mathrm{x}_{1}+5 \mathrm{x}_{2}+2 \mathrm{x}_{3}=0$
and distance by man w.r.t. platform
$x_{0}=x_{1}-x_{3}$
and displacement of woman w. r. t platform $=x_{2}-x_{3}$
also $x_{1}-x_{3}-\left(x_{2}-x_{3}\right)=6$
$\Rightarrow x_{1}-x_{2}=6$
$x_{2}=x_{1}-6$ and $x_{1}=x_{0}+x_{3}$
so thus putting these in (i)
6. $\left(x_{0}+x_{3}\right)+5\left(x_{1}-6\right)+2 x_{3}=0$
$6 x_{0}+6 x_{3}+5\left(x_{0}+x_{3}\right)-30+2 x_{3}=0$
$11 x_{0}+13 x_{3}-30=0$
$\Rightarrow x_{3}=\frac{30-11 x_{0}}{13}$
so displacement $=\frac{30-11 x_{0}}{13}$ in (+)ve direction.

Sol 22:

Now, we have
$\mathrm{X}_{\mathrm{B}}=\mathrm{X}_{\mathrm{L}}$ (constraint)
Now $x_{m}-\left(-x_{L}\right)=\Delta \vec{r}$
Now displacement of centre of mass
$\Rightarrow \Delta \vec{S}=\frac{M \cdot x_{B}+m \cdot x_{m}-(M-m) x_{L}}{M+M-m+m}$
$=\frac{M \cdot x_{B}+m \cdot x_{m}-(M-m) x_{L}}{2 M}$
$=\frac{M\left(x_{B}-x_{L}\right)+m\left(x_{m}+x_{L}\right)}{2 M}$
$\left[\left(x_{B}-x_{L}\right)=0\right]$
$=\frac{m \cdot \Delta \vec{r}}{2 M}$

Sol 23: Let the total mass of both insects be ' m '
For the limiting case of toppling, normal reaction would pass through the corner.

$N=2 m g+m^{\prime} g$

$$
\begin{aligned}
& m^{\prime} g\left(\frac{a}{2}\right)=2 m g\left(\frac{a}{4}\right) \\
& \Rightarrow m^{\prime}=m
\end{aligned}
$$

As the mass of first insect is $\frac{m}{2}$, the second insect would
also have the same mass.
Hence, mass of the other insect $=m^{\prime}-m=\frac{m}{2}$

Sol 24:

Horizontal velocity: $2 \sqrt{\mathrm{ag}} \cdot \cos \theta$
after collision: $\frac{2 \sqrt{a g} \cos \theta}{(4 \sin 2 \theta-1)}$
so time (total)
$=\frac{d}{2 \sqrt{a g} \cos \theta}+\frac{d(4 \sin 2 \theta-1)}{2 \sqrt{a g} \cos \theta}=\frac{d .(4 \sin 2 \theta)}{2 \sqrt{a g} \cos \theta}$
Now this time must be equal to time of flight

$$
\begin{aligned}
& =\frac{2 u \sin \theta}{g} \Rightarrow \frac{2 \cdot 2 \sqrt{a g}}{g}=\frac{d(4 \sin 2 \theta)}{2 \sqrt{a g} \cos \theta} \\
& \Rightarrow \frac{\text { a.g. } \sin 2 \theta}{g}=d \cdot \sin 2 \theta \Rightarrow d=a
\end{aligned}
$$

also, $\mathrm{e}<1 \Rightarrow \frac{1}{4 \sin 2 \theta-1}<1$
$\Rightarrow \sin 2 \theta>\frac{1}{2} \Rightarrow 2 \theta>30^{\circ} \Rightarrow \theta>15^{\circ}$

Sol 25:

Time for first collision, $T_{1}=\frac{2 \mu \sin \theta}{g \cos \alpha}$
Time for second collision, $T_{2}=e\left(\frac{2 \mu \sin \theta}{g \cos \alpha}\right)$
As velocity becomes perpendicular to the surface, its horizontal component (along the surface) must go to ' O '.

$$
O=\mu \cos \theta-g \sin \alpha\left(T_{1}+T_{2}\right)
$$

$\Rightarrow \mu \cos \theta=g \sin \alpha\left(\frac{2 \mu \sin \theta}{g \cos \alpha}\right)(1+e)$
$\Rightarrow 1+\mathrm{e}=\frac{\cot \theta \cot \alpha}{2}$
$\Rightarrow \mathrm{e}=\frac{\cot \theta \cot \alpha}{2}-1$

Sol 26:

here time of flight $=\frac{2 u \sin \theta}{g \cos \alpha}$
total time for second bounce
$=\frac{2 \mathrm{u} \sin \theta}{\mathrm{g} \cos \alpha}+\frac{2 \mathrm{ue} \sin \theta}{\mathrm{g} \cos \alpha}$
Also equation of motion along incline $=\frac{\mathrm{u} \cos \theta}{\mathrm{g} \sin \alpha}$
so $\frac{u \cos \theta}{g \sin \alpha}=\frac{2 u \sin \theta}{g \cos \alpha}+\frac{2 u e \sin \theta}{g \cos \alpha}$
$\Rightarrow \frac{\cos \theta}{\sin \alpha}-\frac{2 \sin \theta}{\cos \alpha}=\frac{2 e \sin \theta}{\cos \alpha}$
$\Rightarrow \frac{(\cot \theta \cdot \cot \alpha-2)}{2}=\mathrm{e}$
$\Rightarrow \mathrm{e}=\frac{1}{2} \cot \alpha \cdot \cot \theta-1$

Sol 27:

Now we have,
$J-J^{\prime}=m v_{c}$
... (i) (moment eqn)
$\mathrm{v}_{\mathrm{c}}=\mathrm{V}_{\mathrm{B} \|}$
...(ii) (constraint eqn)
$J^{\prime}-J^{\prime \prime} \cos 45^{\circ}=m v_{B \|}$

(impulse momentum eq ${ }^{n}$)
$J^{\prime \prime} \sin 45^{\circ}=m v_{B \perp}$
(impulse momentum eq${ }^{n}$)
$J^{\prime \prime}=\mathrm{mv}_{\mathrm{A}}$
(impulse momentum eq ${ }^{n}$)
$\left(v_{B\| \|}-v_{B \perp}\right) \frac{1}{\sqrt{2}}=v_{A}$
(constraint equation)
so we have 6 variables ($J^{\prime}, J^{\prime \prime}, \mathrm{V}_{\mathrm{B} \mid{ }^{\prime}} \mathrm{V}_{\mathrm{B}^{\prime}} \mathrm{V}_{\mathrm{A}}$ and v_{c}) and six equations,
on solving, we get
$v_{c}=\frac{3 \mathrm{~J}}{7 \mathrm{~m}}$,
$v_{B}=\frac{\sqrt{10}}{7 m}$,
$v_{A}=\frac{\sqrt{2}}{7 m}$

Sol 28:

(a) The comp. \perp to the string will only be there and the momentum along the thread will be lost.

So $m v_{0} \cos \left(90^{\circ}-\theta\right)<3 N_{s}$
$\Rightarrow 2 \times \mathrm{v}_{0} \times \sin \theta<3$
$\Rightarrow \mathrm{v}_{0}<\frac{3}{2 \sin \theta}$
$\Rightarrow \mathrm{v}_{0}<\frac{3 \times 1.2}{2 \times \sqrt{(1.2)^{2}-(0.5)^{2}}}$
$\Rightarrow v_{0}<1.65 \mathrm{~m} / \mathrm{s}$
(b) The energy remaining
$=\frac{1}{2} \times m\left(v_{0} \cos \theta\right)^{2}=\frac{1}{2} m v_{0}{ }^{2} \cos ^{2} \theta$
so loss $=\frac{1}{2} m v_{0}{ }^{2}-\frac{1}{2} m v_{0}{ }^{2} \cos ^{2} \theta$
$=\frac{1}{2} m v_{0}{ }^{2}\left(1-\cos ^{2} \theta\right)=\frac{1}{2} m v_{0}{ }^{2} \cdot \sin ^{2} \theta$
$=\frac{1}{2} \times 2 \times(1.65)^{2} \times \frac{(1.2)^{2}-(0.5)^{2}}{(1.2)^{2}}=2.25$ Joules.

Sol 29:

(a) (i)

So $v_{2}-v_{1}=5 \Rightarrow v_{1}=v_{2}-5$
and
$(1225) \times 25=1150 \times v_{2}+75 \times v_{1}$
$1225 \times 25=1150 \times v_{2}+75 \times\left(v_{2}-5\right)$
$1240 \times 25=1225 v_{2}$
$\Rightarrow v_{2}=\frac{1240 \times 25}{1225}=25.306 \mathrm{~m} / \mathrm{s}$
(ii)

$1150 \times 25.306=1075 \times v_{2}+75 \times v_{1}$
$\Rightarrow 1150 \times 25.306=1075 \mathrm{v}_{2}+75\left(\mathrm{v}_{2}-5\right)$
$\Rightarrow \frac{1150 \times 25.306+75 \times 5}{1075}=v_{2}$
$\Rightarrow v_{2}=25.63 \mathrm{~m} / \mathrm{s}$
(iii)

$1075 \longrightarrow \mathrm{~V}_{2}$

$1075 \times 25.63=1000 \times v_{2}+75 \times v_{1}$
$\Rightarrow 1075 \times 25.63=1000 \mathrm{v}_{2}+75\left(\mathrm{v}_{2}-5\right)$
$\Rightarrow \frac{1075 \times 25.63+75 \times 5}{1075}=v_{2}$
$\Rightarrow v_{2}=25.97 \mathrm{~m} / \mathrm{s}$
(b)All together
$\Rightarrow 1225 \times 25=1000 \times v_{2}+225 \times v_{1}$
$\Rightarrow 1225 \times 25=1000 \mathrm{v}_{2}+225\left(\mathrm{v}_{2}-5\right)$
$\Rightarrow \frac{1225 \times 25+225 \times 5}{1225}=v_{2}=25.92 \mathrm{~m} / \mathrm{s}$

Sol 30:

$\sin \theta=\frac{R}{2 R}=\frac{1}{2} \Rightarrow \theta=30^{\circ}$
Now, using elasticity, (along line of impact)
$\frac{\mathrm{v}_{A} \cos 60^{\circ}+\mathrm{v}_{\mathrm{By}} \cdot \frac{\sqrt{3}}{2}+\mathrm{v}_{\mathrm{Bx}} \cdot \frac{1}{2}}{\mathrm{v}_{0} \cdot \frac{\sqrt{3}}{2}}=1$
$\Rightarrow \frac{\mathrm{v}_{\mathrm{A}}}{2}+\frac{\sqrt{3} \mathrm{v}_{\mathrm{By}}}{2}+\frac{\mathrm{v}_{\mathrm{Bx}}}{2}=\frac{\mathrm{v}_{0} \sqrt{3}}{2}$
$\Rightarrow \mathrm{v}_{\mathrm{A}}+\mathrm{v}_{\mathrm{By}} \cdot \sqrt{3}+\mathrm{v}_{\mathrm{Bx}}=\mathrm{v}_{0} \sqrt{3}$
using energy balance,
$\frac{1}{2} m v_{0}{ }^{2}=\frac{1}{2} m v_{A}{ }^{2}+\frac{1}{2} m\left(v_{B x}{ }^{2}+v_{B y}{ }^{2}\right)$
$\Rightarrow \mathrm{v}_{0}{ }^{2}=\mathrm{v}_{\mathrm{A}}{ }^{2}+\mathrm{v}_{\mathrm{Bx}}{ }^{2}+\mathrm{v}_{\mathrm{By}}{ }^{2}$
Momentum along x-direction
$\Rightarrow \mathrm{v}_{\mathrm{A}}-\mathrm{v}_{\mathrm{Bx}}=0 \Rightarrow \mathrm{v}_{\mathrm{A}}=\mathrm{v}_{\mathrm{Bx}}$
so on, solving $\mathrm{v}_{0}-\frac{2 \mathrm{v}_{\mathrm{A}}}{\sqrt{3}}=\mathrm{v}_{\mathrm{By}}$
Putting this in (ii)
$\Rightarrow v_{0}{ }^{2}=2 v_{A}{ }^{2}+\left(v_{0}-\frac{2 v_{A}}{\sqrt{3}}\right)^{2}$
$\Rightarrow \mathrm{v}_{\mathrm{A}}=\frac{2 \sqrt{3} \mathrm{v}_{0}}{\sqrt{3}} \Rightarrow 0.693 \mathrm{v}_{0}$
So, $v_{B x}=0.693 v_{0}$ and
$v_{\text {By }}=v_{0}-\frac{2 v_{A}}{\sqrt{3}}=v_{0}-\frac{4}{5} v_{0}=\frac{v_{0}}{5}=0.2 v_{0}$
So, $v_{B}=\sqrt{(0.693)^{2}+(0.2)^{2}} \cdot v_{0}$
$\Rightarrow \mathrm{v}_{\mathrm{B}}=0.721 \mathrm{v}_{0}$

Sol 31: $\frac{d P}{d t}=F=\frac{d(m u)}{d t}=\frac{u d m}{d t}+\frac{m \cdot d u}{d t}$
$-m g=\frac{u}{T} \cdot m_{0} e^{t / T}+m \cdot \frac{d u}{d t}$
$-g=\frac{u}{T}+\frac{d u}{d t}$
$\Rightarrow \int_{u_{0}, 0}^{u, t} d\left(u . e^{t / T}\right)=\int_{0}^{t}-g \cdot e^{t / T} \cdot d t$
u. $e^{t / T}-u_{0}=-g T .\left(e^{t / T}-1\right)$
$\Rightarrow \mathrm{u}(\mathrm{t})=\mathrm{u}_{0} \cdot \mathrm{e}^{-\mathrm{t} / \mathrm{T}}-\mathrm{gT} .\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{T}}\right)$
so here, $u(t)=0$
$\Rightarrow g T . e^{-t / T}-g T\left(1-e^{-t / T}\right)=0$
$\Rightarrow \mathrm{e}^{-\mathrm{t} / \mathrm{T}}=\frac{1}{2}$
$\Rightarrow \mathrm{e}^{\mathrm{t} / \mathrm{T}}=2 \Rightarrow \mathrm{t}=\mathrm{T} \ln 2$
So $m=m_{0} \cdot e^{t / T}$
$\mathrm{m}=2 \mathrm{~m}_{0}$

Sol 32:

$m g \sin \alpha$

$\mathrm{N}=\mathrm{Mg} \cos \alpha$
So $f=\mu N=\mu M g \cos \alpha$
so acceleration of 2 kg block
$=\frac{\mu \mathrm{mg} \cos \alpha+\mathrm{mg} \sin \alpha}{\mathrm{m}}=\mu \mathrm{g} \cos \alpha+\mathrm{g} \sin \alpha$

So for a distance of $6 m, v$ just before impact would be:

$$
\begin{aligned}
& v^{2}=u^{2}-2 a s \\
& \Rightarrow v^{2}=(10)^{2}-2 \times 6 \times[0.25 \times 10 \\
& \quad \times 0.998+10 \times 0.05] \\
& =100-12 \times[3] \\
& v^{2}=64 \\
& v_{\text {in. }}=8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Now, after collision:

so acc. $=\mu \mathrm{g} \cos \alpha-\mathrm{g} \sin \alpha$
$=2.5-0.5=2 \mathrm{~m} / \mathrm{s}^{2}$
So $v^{2}=u^{2}-2$ as
$1^{2}=u^{2}-2 \times 2 \times 6$
$\Rightarrow \mathrm{u}^{2}=25 \Rightarrow \mathrm{u}=5 \mathrm{~m} / \mathrm{s}$
so after collision vof 2 kg block $=5 \mathrm{~m} / \mathrm{s}$
For M block:
$a_{c c}=$ same as in $1^{\text {st }}$ part (ind. of mass,)
$=\mu \mathrm{g} \cos \alpha+\mathrm{g} \sin \alpha=3 \mathrm{~m} / \mathrm{s}^{2}$ (in (-)ve direction)
So $v^{2}=u^{2}+2$ as
$0=u^{2}+2 \times(-3) \times(0.5)$
$\Rightarrow \mathrm{u}=1.732 \mathrm{~m} / \mathrm{s}$
so coefficient of restitution
$=\frac{5+1.732}{8}=\frac{6.732}{8}=0.84$
Using momentum conservation, just before impact
$m \times v_{i}=m \times v_{f}+M \times v_{m}$
$2 \times 8=2 \times(-5)+M \times 1.732$
$\Rightarrow \frac{26}{1.732}=M=15.011 \mathrm{~kg}$

Exercise 2

Single Correct Choice Type
Sol 1: (B)

v of system after collision $=\sqrt{2 g h}$ so using momentum conservation.
$(M+m) \sqrt{2 g h}=m v$
$\Rightarrow v=\frac{(M+m)}{m} \sqrt{2 g h}$

Sol 2: (C)

Let the initial velocity of
$C=v$
then momentum conservation in y gives
$\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}$
and using momentum conservation in x ,
$\mathrm{mv}=2 \mathrm{mv} \mathrm{v}_{\mathrm{A}} \cos 30^{\circ}$
$\Rightarrow \mathrm{v}=\sqrt{3} \mathrm{v}_{\mathrm{A}} \quad \Rightarrow \mathrm{v}_{\mathrm{A}}=\frac{\mathrm{v}}{\sqrt{3}}$
so coefficient of restitution
$=\frac{\text { final relative velocity }}{\text { initial relative velocity }}=\frac{v / \sqrt{3}}{v \sqrt{3} / 2}=\frac{2}{3}$

Sol 3: (A)

$e=\frac{v_{2}-v_{1}}{u} \Rightarrow v_{2}-v_{1}=u e$
and momentum conservation \Rightarrow
$\mathrm{mu}=\mathrm{mv}_{1}+\mathrm{mv}_{2}$
$\Rightarrow v_{1}+v_{2}=u$
So $2 v_{2}=u(e+1)$
$\Rightarrow \mathrm{v}_{2}=\frac{\mathrm{u}(\mathrm{e}+1)}{2}$ and thus,
$v_{1}=\frac{(1-e) u}{2}$

Sol 4: (B)

We have
Momentum cons.: in y-direction
$m \times 100+m(-100)+m v_{y}=0$
$\Rightarrow \mathrm{v}_{\mathrm{y}}=0$
x-direction: $3 \mathrm{~m} . \mathrm{u} \cos 60^{\circ}=m v_{x}$
$\Rightarrow \mathrm{v}_{\mathrm{x}}=3 \times 200 \times \frac{1}{2}=300 \mathrm{~m} / \mathrm{s}$

Sol 5: (C)

v of block after the bullet emerges can be found using energy conservation
$\mathrm{mgh}=\frac{1}{2} \mathrm{mv}^{2}$
$\Rightarrow v=\sqrt{2 g h}=\sqrt{2 \times 9.8 \times 0.1}=1.4 \mathrm{~m} / \mathrm{s}$
so now using momentum conservation
$500 \times 0.01=2 \times 1.4+0.01 \times v^{\prime}$
$\Rightarrow 5-2.8=0.01 \times v^{\prime} \quad \Rightarrow 2.2=0.01 \times v^{\prime}$
$\mathrm{v}^{\prime}=220 \mathrm{~m} / \mathrm{s}$

Sol 6: (C)

So $e=\frac{v_{2}-v_{1}}{36}=\frac{2}{3}$
$\Rightarrow v_{2}-v_{1}=24$
Using momentum conservation
$12 \times 1-2 \times(24)=1 \times v_{1}+2 \times v_{2}$
$\Rightarrow-36=v_{1}+2 v_{2}$
$\Rightarrow 3 \mathrm{v}_{2}=-12$

$$
\begin{aligned}
& \Rightarrow v_{2}=-4 \mathrm{~m} / \mathrm{s} \text { and } \mathrm{v}_{1}=-28 \mathrm{~m} / \mathrm{s} \\
& \mathrm{E}_{\text {initial }}=\frac{1}{2} \times(1) \times 12^{2}+\frac{1}{2} \times 2 \times 24^{2} \\
& =72+576=648 \mathrm{~J} \\
& \mathrm{E}_{\text {final }}=\frac{1}{2} \times 1 \times(28)^{2}+\frac{1}{2} \times 2 \times 4^{2} \\
& =16+392=408 \mathrm{~J} \\
& \text { So } \Delta \mathrm{E}=240 \mathrm{~J}
\end{aligned}
$$

Sol 7: (B)

$\mathrm{e}=1=\frac{\mathrm{v}_{2}^{\prime}-\mathrm{v}_{1}^{\prime}}{\mathrm{v}_{1}} \Rightarrow \mathrm{v}_{2}^{\prime}-\mathrm{v}_{1}^{\prime}=\mathrm{v}_{1}$
and $m_{1} v_{1}=m_{1} v_{1}+m_{2} v_{2}^{\prime}$
$\Rightarrow v_{1}=v^{\prime}{ }_{1}+\frac{m_{2}}{m_{1}} \cdot v_{2}^{\prime}$
so $(1)+(2) \Rightarrow\left(1+\frac{m_{2}}{m_{1}}\right) v_{2}^{\prime}=2 v_{1}$
$\Rightarrow v_{2}^{\prime}=\frac{2 v_{1} \cdot m_{1}}{\left(m_{1}+m_{2}\right)}$
and $v^{\prime}{ }_{1}=v^{\prime}{ }_{2}-v_{1}=\frac{2 v_{1} \cdot m_{1}}{\left(m_{1}+m_{2}\right)}-v_{1}$
$=\frac{m_{1} v_{1}-m_{2} v_{1}}{m_{1}+m_{2}}=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) v_{1}$

Sol 8: (C) $v_{2}^{\prime}=\frac{2 v_{1} m_{1}}{\left(m_{1}+m_{2}\right)}$

Sol 9: (B)

$e=1=\frac{v_{x}-(-u)}{-v-u}$
$v_{x}=-u-v-u=-v-2 u$
$2 u+v \Rightarrow$ away from wall.

Sol 10: (C)
(m) $\underset{E}{\longrightarrow} u$
$\longrightarrow \mathrm{v}_{1} \quad \longrightarrow \mathrm{v}_{2}$
$e=\frac{v_{2}-v_{1}}{u}=1 \Rightarrow v_{2}-v_{1}=u$

Momentum conservation
$m u=A m v_{2}+m u_{1}$
$\Rightarrow A v_{2}+v_{1}=u$
$\Rightarrow(A+1) v_{2}=2 u \quad$ or $v_{2}=\frac{2 u}{(A+1)}$
$v_{1}=v_{2}-u=\frac{2 u}{(A+1)}-u=\frac{(1-A) u}{(1+A)}$
$E=\frac{1}{2} \times m \times \frac{(1-A)^{2} u^{2}}{(1+A)^{2}}=\frac{E \cdot(1-A)^{2}}{(1+A)^{2}}$

Sol 11: $(\mathbf{A}) v$ at first imp. $=\sqrt{2 g h}$
v at after $1^{\text {st }} \mathrm{imp} .=\mathrm{e} \sqrt{2 \mathrm{gh}}$
v at after nth imp. $=\mathrm{e}^{\mathrm{n}} \sqrt{2 \mathrm{gh}}$
$h=\frac{v^{2}}{2 g}=e^{2 n} \cdot \frac{2 g h}{2 g}=e^{2 n} . h$

Sol 12: (A)

$\mathrm{v}_{\mathrm{A}}=\frac{\pi \mathrm{R}}{\mathrm{t}}$,
$\mathrm{v}_{2}-\mathrm{v}_{1}=\mathrm{ev}_{\mathrm{A}}$ (elasticity)
and $\mathrm{v}_{2}+\mathrm{v}_{1}=\mathrm{v}_{\mathrm{A}}$ (mom. cons. $)$
$\Rightarrow v_{2}=\frac{(e+1) v_{A}}{2}$ and $v_{1}=\frac{(1-e) v_{A}}{2}$
so total time $=\frac{D_{\text {rel }}}{v_{\text {rel }}}=\frac{2 \pi r}{\left[\frac{e+1}{2}-\left(\frac{1-e}{2}\right)\right] v_{A}}$
$=\frac{2 \pi r \times t}{e . \pi r}=\frac{2 t}{e}$

Sol 13: (C)

Equation $\Rightarrow \frac{\mathrm{y}}{\mathrm{h}}+\frac{\mathrm{x}}{\mathrm{b}}=1$,
$\rho=\frac{\mathrm{M}}{\mathrm{hb} / 2}=\frac{2 \mathrm{M}}{\mathrm{hb}}$ So $\mathrm{x}_{\text {сом }}=\int \frac{\mathrm{x} \cdot \mathrm{dm}}{\mathrm{M}}$
$x_{\text {COM }}=\int_{0}^{b} \frac{x^{x . \rho . h . ~}\left(1-\frac{x}{b}\right) d x}{M}=\frac{2}{b}\left[\frac{x^{2}}{2}-\frac{x^{3}}{3 b}\right]_{0}^{b}=\frac{b}{3}$
Similarly, $\mathrm{y}_{\text {СOM }}=\frac{\mathrm{h}}{3}$

Sol 14: (B)

At $x=5 \mathrm{~m}$
$M_{1} \vec{x}_{1}+M_{2} \vec{x}_{2}=0$
$\Rightarrow \vec{x}_{1}+\vec{x}_{2}=0$ and $\vec{x}_{1}-\vec{x}_{2}=10$
$\Rightarrow \vec{x}_{1}=5 \mathrm{~m} \& \vec{x}_{2}=-5 \mathrm{~m}$

Multiple Correct Choice Type

Sol 15: (C, D)
Elastic collision $\Rightarrow 100$ \% energy transfer
The relative velocity along tangent is zero but in oblique collision the tangent direction is not the one perpendicular to the line joining centres.

Assertion Reasoning Type

Sol 16: (D) $\mathrm{a}_{\text {сом }} \neq 0$ as $\mathrm{F}_{\text {ext }} \neq 0$. (in COM frame it is zero)

Sol 17: (A) Proper exp.

Sol 18: (B) It is average and it may be outside body.

Sol.19: (A) In explosion only internal forces are involved.

Sol 20: (D) Disk may be non-uniform.

Sol 21: (A) (A) true, (R) true \Rightarrow correct reason

Sol 22: (B) $A \rightarrow$ true, $R \rightarrow$ true. But R not explanation of A.

Comprehension Type

Sol 23: (B) Obvious (inelastic)

Sol 24: (B) Inelastic collision leads to loss of energy.

Sol 25: (D) Basic concept.

Previous Years' Questions

Sol 1: (a) From conservation of linear momentum, momentum of composite body

$$
\begin{aligned}
& \overrightarrow{\mathrm{p}}=\left(\overrightarrow{\mathrm{p}}_{\mathrm{i}}\right)_{1}+\left(\overrightarrow{\mathrm{p}}_{\mathrm{i}}\right)_{2}=(\mathrm{mv}) \hat{\mathrm{i}}+(\mathrm{MV}) \hat{\mathrm{j}} \\
\therefore \quad & |\overrightarrow{\mathrm{p}}|=\sqrt{(\mathrm{mv})^{2}+(\mathrm{MV})^{2}}
\end{aligned}
$$

Let it makes an angle α with positive x-axis, then

$$
\alpha=\tan ^{-1}\left(\frac{p_{y}}{p_{x}}\right)=\tan ^{-1}\left(\frac{M V}{m v}\right)
$$

(b) Fraction of initial kinetic energy transformed into heat during collision

$$
\begin{aligned}
& \quad=\frac{K_{f}-K_{i}}{K_{f}}=\frac{K_{f}}{K_{i}}-1 \\
& =\frac{p^{2} / 2(M+m)}{\frac{1}{2} m v^{2}+\frac{1}{2} M V^{2}}-1 \\
& =\frac{(m v)^{2}+(M V)^{2}}{(M+m)\left(m v^{2}+M V^{2}\right)}-1 \\
& =\frac{M m\left(v^{2}+V^{2}\right)}{(M+m)\left(m v^{2}+M V^{2}\right)}
\end{aligned}
$$

Sol 2: Applying conservation of linear momentum twice. We have

$$
\begin{align*}
& m v=M_{1} v_{1}+m v_{2} \tag{i}\\
& m v_{2}=\left(M_{2}+m\right) v_{1} \tag{ii}
\end{align*}
$$

Solving Eqs. (i) and (ii), we get

$$
\frac{v_{2}}{v}=\frac{M_{2}+m}{M_{1}+M_{2}+m}
$$

Substituting the values of $m: M_{1}$ and M_{2} we get, percentage of velocity retained by bullet.

$$
\begin{aligned}
& \frac{\mathrm{v}_{2}}{\mathrm{v}} \times 100=\left(\frac{2.98+0.02}{1+2.98+0.02}\right) \times 100=75 \% \\
& \therefore \text { \%loss }=25 \%
\end{aligned}
$$

Sol 3: Suppose r_{1} be the distance of centre of mass of the remaining portion from centre of the bigger circle, then

$$
\begin{aligned}
& A_{1} r_{1}=A_{2} r_{2} \\
& r_{1}=\left(\frac{A_{2}}{A_{1}}\right) r_{2} \\
& r_{1}=\frac{\pi(42)^{2}}{\pi\left[(56)^{2}-(42)^{2}\right]} \times 7=9 \mathrm{~cm}
\end{aligned}
$$

Sol 4: Before collision net momentum of the system was zero. No external force is acting on the system. Hence, momentum after collision should also be zero. A has come to rest. Therefore, B and C should have equal and opposite momenta or velocity of C should be V in opposite direction of velocity of B.

Sol 5: Collision between A and C is elastic and mass of both the blocks is same. Therefore, they will exchange their velocities i.e., C will come to rest and A will be moving will velocity v_{0}. Let v be the common velocity of A and B, then from conservation of linear momentum, we have
(A)

At rest
(B)

(C)

$$
m_{A} v_{0}=\left(m_{A}+m_{B}\right) v
$$

$$
\text { or } \quad m v_{0}=(m+2 m) v \text { or } v=\frac{v_{0}}{3}
$$

(b) From conservation of energy, we have

$$
\begin{aligned}
& \frac{1}{2} m_{A} v_{0}^{2}=\frac{1}{2}\left(m_{A}+m_{B}\right) v^{2}+\frac{1}{2} k x_{0}^{2} \\
& \text { or } \quad \frac{1}{2} m v_{0}^{2}=\frac{1}{2}(3 m)\left(\frac{v_{0}}{3}\right)^{2}+\frac{1}{2} k x_{0}^{2} \\
& \text { or } \quad \frac{1}{2} k x_{0}^{2}=\frac{1}{3} m v_{0}^{2} \text { or } k=\frac{2 m v_{0}^{2}}{3 x_{0}^{2}}
\end{aligned}
$$

Sol 6: As shown in figure initially when the bob is at A, its potential energy is mgl . When the bob is released and it strikes the wall at B, its potential energy $\mathrm{mg} l$ is converted into its kinetic energy. If v be the velocity with which the bob strikes the wall, then

$$
\begin{equation*}
\mathrm{mg} l=\frac{1}{2} \mathrm{mv}^{2} \text { or } \mathrm{v}=\sqrt{(2 \mathrm{~g} l)} \tag{i}
\end{equation*}
$$

Speed of the bob after rebounding (first time)

$$
\begin{equation*}
\mathrm{v}_{1}=\mathrm{e} \sqrt{(2 \mathrm{~g} l)} \tag{ii}
\end{equation*}
$$

The speed after second rebound is $\mathrm{v}_{2}=\mathrm{e}^{2} \sqrt{(2 \mathrm{~g} l)}$
In general after n rebounds, the speed of the bob is
$v_{n}=e^{n} \sqrt{(2 g l)}$
Let the bob rises to a height h after n rebounds. Applying the law of conservatioin of energy, we have

$$
\begin{align*}
& \frac{1}{2} \mathrm{mv}_{\mathrm{n}}^{2}=\mathrm{mgh} \\
\therefore \quad & \mathrm{~h}=\frac{\mathrm{v}_{\mathrm{n}}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{e}^{2 \mathrm{n}} \cdot 2 \mathrm{~g} l}{2 \mathrm{~g}}=\mathrm{e}^{2 \mathrm{n}} \cdot l \\
& =\left(\frac{2}{\sqrt{5}}\right)^{2 \mathrm{n}} \cdot l=\left(\frac{4}{5}\right)^{\mathrm{n}} l \tag{iv}
\end{align*}
$$

If θ_{n} be the angle after n collisions, then

$$
\mathrm{h}=l-l \cos \theta_{\mathrm{n}}=l\left(1-\cos \theta_{\mathrm{n}}\right)
$$

From Eqs. (iv) and (v), we have

$$
\left(\frac{4}{5}\right)^{n} l=l\left(1-\cos \theta_{n}\right) \text { or }\left(\frac{4}{5}\right)^{n}=\left(1-\cos \theta_{n}\right)
$$

For θ_{n} to be less than 60°, i.e., $\cos \theta_{n}$ is greater than $\frac{1}{2}$, i.e., $\left(1-\cos \theta_{n}\right)$ is less than $\frac{1}{2}$, we have

$$
\left(\frac{4}{5}\right)^{n}<\left(\frac{1}{2}\right)
$$

The condition is satisfied for $n=4$.
$\therefore \quad$ Required number of collisions $=4$.

Sol 7: (a) Since, only two forces are acting on the rod, its weight Mg (vertically downwards) and a normal reaction N at point of contact B (vertically upwards).

No horizontal force is acting on the rod (surface is smooth).

Therefore, CM will fall vertically downwards towards negative y-axis i.e., the path of $C M$ is a straight line.
(b) Refer figure (B). We have to find the trajectory of a point $P(x, y)$ at a distance r from end B.

$$
\begin{align*}
& C B=L / 2 \\
\therefore \quad & O B=(L / 2) \cos \theta \\
& M B=r \cos \theta \\
\therefore \quad & x=O B-M B=\cos \theta\{(L / 2-r)\} \\
\text { or } & \cos \theta=\frac{x}{\{(L / 2)-r\}} \tag{i}
\end{align*}
$$

Similarly, $y=r \sin \theta$
or $\sin \theta=\frac{y}{r}$
Squaring and adding Eqs. (i) and (ii), we get

$$
\sin ^{2} \theta+\cos ^{2} \theta=\frac{x^{2}}{\{(L / 2)-r\}^{2}}+\frac{y^{2}}{r^{2}}
$$

or $\frac{x^{2}}{\{(L / 2)-r\}^{2}}+\frac{y^{2}}{r^{2}}=1$
This is an equation of an ellipse. Hence, path of point P is an ellipse whose equation is given by (iii).

Sol 8: (a) Since, the collision is elastic, the wedge will return with velocity v \hat{i}
(i)

Now, linear impulse in x-direction
= change in momentum in x-direction.
$\therefore \quad\left(\mathrm{F} \cos 30^{\circ}\right) \Delta \mathrm{t}=\mathrm{mv}-(-\mathrm{mv})=2 \mathrm{mv}$
$\therefore \quad F=\frac{2 m v}{\Delta t \cos 30^{\circ}}=\frac{4 m v}{\sqrt{3} \Delta t}$

$$
F=\frac{4 m v}{\sqrt{3} \Delta t}
$$

$\therefore \quad \overrightarrow{\mathrm{F}}=\left(\mathrm{F} \cos 30^{\circ}\right) \hat{\mathrm{i}}-\left(\mathrm{F} \sin 30^{\circ}\right) \hat{\mathrm{k}}$
or $\quad \overrightarrow{\mathrm{F}}=\left(\frac{2 \mathrm{mv}}{\Delta \mathrm{t}}\right) \hat{\mathrm{i}}-\left(\frac{2 \mathrm{mv}}{\sqrt{3} \Delta \mathrm{t}}\right) \hat{\mathrm{k}}$
(ii) Taking the equilibrium of wedge in vertical z-direction during collision.

$$
\begin{aligned}
& N=m g+F \sin 30^{\circ} \\
& N=m g+\frac{2 m v}{\sqrt{3} \Delta t}
\end{aligned}
$$

or in vector form

$$
\overrightarrow{\mathrm{N}}=\left(m g+\frac{2 m v}{\sqrt{3} \Delta t}\right) \hat{\mathrm{k}}
$$

(b) For rotational equilibrium of wedge [about (CM] anticlockwise torque of $\mathrm{F}=$ clockwise torque due to N .

\therefore Magnitude of torque of N about $\mathrm{CM}=$ magnitude of torque of F about CM

$$
\begin{aligned}
& =F . h \\
& \left|\vec{\tau}_{N}\right|=\left(\frac{4 m v}{\sqrt{3} \Delta t}\right) h
\end{aligned}
$$

Sol 9: After elastic collision,
$v_{A}^{\prime}=\left(\frac{m-2 m}{m+2 m}\right)(9)+\frac{2(2 m)}{m+2 m}(0)=-3 m s^{-1}$
Now from conservation of linear momentum after all collisions are complete,
$\mathrm{m}\left(+9 \mathrm{~ms}^{-1}\right)=\mathrm{m}\left(-3 \mathrm{~ms}^{-1}\right)+3 \mathrm{~m}\left(\mathrm{v}_{\mathrm{C}}\right)$
or $\quad \mathrm{v}_{\mathrm{C}}=4 \mathrm{~ms}^{-1}$

Sol 10: (A) Velocity of particle performing projectile motion at highest point
$=\mathrm{v}_{1}=\mathrm{v}_{0} \cos \alpha$
Velocity of particle thrown vertically upwards at the position of collision

$\mathrm{mu}_{0} \cos \alpha$
$=v_{2}^{2}=u_{0}^{2}-2 g \frac{u^{2} \sin ^{2} \alpha}{2 g}=v_{0} \cos \alpha$
So, from conservation of momentum
$\tan \theta=\frac{m v_{0} \cos \alpha}{m u_{0} \cos \alpha}=1$
$\Rightarrow \theta=\pi / 4$

Sol 11: The initial speed of $1^{\text {st }}$ bob (suspended by a string of length I_{1}) is $\sqrt{5 \mathrm{~g}_{1}}$.

The speed of this bob at highest point will be $\sqrt{g_{1}}$.
When this bob collides with the other bob there speeds will be interchanged.
$\sqrt{\mathrm{gl}_{1}}=\sqrt{5 \mathrm{gl}_{1}} \Rightarrow \frac{\mathrm{l}_{1}}{\mathrm{l}_{2}}=5$.

