Solved Examples

JEE Main/Boards

Example 1: A spherical shell is resting against the vertical wall which makes an angle 30° with the vertical as shown in the Figure. Determine the normal reaction at the wall and tension in the string.

Sol: Draw the FBD of the sphere. Resolve the forces in horizontal
 and vertical directions. Apply Newton's first law along the horizontal and vertical directions.

FBD of the sphere is provided. Since sphere is in equilibrium, hence,
$N-T \sin 30=0$
and $\Rightarrow \mathrm{T} \cos 30=\mathrm{mg}$
$\Rightarrow \mathrm{T}=\frac{\mathrm{mg}}{\cos 30}=\frac{5 \times 10 \times 2}{\sqrt{3}}=\left(\frac{100}{\sqrt{3}}\right) \mathrm{N}$.
from (i) $\mathrm{N}=\mathrm{T} \sin 30=\frac{100}{\sqrt{3}} \times \frac{1}{2}=\frac{50}{\sqrt{3}} \mathrm{~N}$.

Example 2: The Figure below shows blocks A and B weighing 4 N and 8 N , respectively and the coefficient of sliding friction between any two surfaces is 0.25 . Find the force necessary to drag the block B to the left with constant velocity in all the cases when (a) A is kept over B and (b) A is held firmly over B.

Sol: In the first case, the blocks A and B move together. The friction force will be exerted on the bottom surface of B. In the second case only block B moves. The friction force will be exerted both on bottom and top surface of block B.

Let us consider free diagrams of A and B as two separate systems shown as follows:

(a) $W_{A}=m_{A} g=4 N ; \quad W_{B}=m_{B} g=8 N$
$N_{B}=N_{A}+m_{B} g=\left(m_{A}+m_{B}\right) g=4+8=12 N$
$\mathrm{F}=\mu \times 12=0.25 \times 12=3 \mathrm{~N}$
(b) $\mathrm{F}=\mu\left(\mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}}\right)$ because B is sliding over horizontal rough surface under it and B will be sliding under A also.
$=\mu\left(m_{A}+m_{B}\right)+\mu m_{A} g=\mu\left(2 m_{A}+m_{B}\right) g=\mu\left(2 W_{A}+W_{B}\right)$
$=0.25(8+8)=4 \mathrm{~N}$

Example 3: Two blocks each having mass of 20 kg rest on frictionless surfaces as shown in the Figure. Assume that the pulleys to be light and frictionless. Now, find (a) the time required for the block A to
 move 1 m down the plane, starting from rest and (b) the tension in the cord connecting the blocks.
Sol: For block A apply Newton's second law of motion along the inclined and for block B apply Newton's second law along the horizontal.
Both the blocks A and B are considered as two independent systems. The FBDs for the blocks A and B are shown in the Figure and

Figure where T is tension in the string.
$m_{A} g \sin \theta-T=m_{A} a$
$N=m_{A} g \cos \theta$
$\mathrm{T}=\mathrm{m}_{\mathrm{B}} \mathrm{a}$
Now, by adding equations (i) and (iii), we obtain

$m_{A} g \sin \theta=\left(m_{A}+m_{B}\right) g \sin \theta$
$\Rightarrow \mathrm{a}=\left(\frac{\mathrm{m}_{\mathrm{A}}}{\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}}\right) \mathrm{g} \sin \theta=\left(\frac{20}{20+20}\right)(10)\left(\frac{3}{5}\right)=3 \mathrm{~m} / \mathrm{s}^{2}$
(a) $s=\frac{1}{2} a t^{2} ; t=\left(\frac{2 s}{a}\right)^{\frac{1}{2}}=\left(2 \times \frac{1}{3}\right)=0.82$
(b) $T=m_{B} a=20 \times 3=60 N$.

Example 4: A body of mass $=2 \mathrm{~kg}$ starts from rest whose force time graph is shown in the following graph.
(a) What is momentum of the body at $t=4$ seconds?
(b) What is velocity of the body at $t=3$ seconds?

Sol: Area under the force-time graph and the time axis is equal to the change in momentum.

(a) Area under the curve from $t=0 \rightarrow 2$ sec.
$A_{1}=2 \times 2=4 \mathrm{~N} . \mathrm{sec}$. Area from $\mathrm{t}=2 \rightarrow 3 \mathrm{sec}$.
$A_{2}=\frac{1}{2} \times 1 \times 2=1 \mathrm{~N} . \mathrm{sec}$.
Area from $\mathrm{t}=3 \rightarrow 4 \mathrm{sec}$.

$$
\mathrm{A}_{3}=-\frac{1}{2} \times 1 \times 3=-1.5 \mathrm{~N} . \mathrm{sec}
$$

Therefore, the net impulse $=4+1-1.5=3.5 \mathrm{~N}$ sec $\mathrm{P}_{f}=$ impulse $+\mathrm{P}_{\mathrm{i}}=3.5+0=3.5 \mathrm{~N}$. s or kg.m / s
(b) Impulse from $t=0 \rightarrow 3 \mathrm{sec}$
$=A_{1}+A_{2}=4+1=5 \mathrm{~N} . \mathrm{sec}$
Momentum at $t=3 \mathrm{sec}=5 \mathrm{~N} \sec \quad($ at $t=0, P=0)$ $\mathrm{mv}=5 ; ~ v=\frac{5}{2}=2.5 \mathrm{~m} / \mathrm{sec}$.

Example 5: Three blocks of masses, and are connected by inextensible strings passing over three massless pulleys as shown in the Figure. The coefficient of friction between the masses and horizontal surfaces is μ. Assume that M_{1} and M_{2} are sliding. Now, find
(a) Relation between accelerations $\mathrm{a}_{1}, \mathrm{a}_{2}$ and a_{3}
(b) Tension T in the strings

Sol: To find the constraint relation between the acceleration of the blocks, measure the distances of blocks from the stationary pulleys. Draw the FBD for each block. For M_{1} and M_{2} apply Newton's second law in horizontal direction. For M_{3} apply Newton's second law in vertical direction.
(a) Forces of friction f, tension T and reaction are marked for the blocks M_{1}, M_{2} and M_{3}.

Now, take the horizontal line $A B$ as the reference line, i.e., x-axis and vertically downward as y-axis.

If x_{1}, x_{2} and x_{3} are the lengths of the strings, then
$x_{1}+x_{2}+2 x_{3}=L$ where L is the constant length of the string.

Now, differentiating twice, $a_{1}+a_{2}+2 a_{3}=0$
As a_{3} is increasing, a_{1} and a_{2} are decreasing.

Thus, the constraint relation shows that
$\mathrm{a}_{1}+\mathrm{a}_{2}=2 \mathrm{a}_{3}$
(b) The equations of motion are given as follows

For $\mathrm{M}_{3}, \mathrm{M}_{3} \mathrm{~g}-\mathrm{T}-\mathrm{T}=\mathrm{M}_{3} \mathrm{a}_{3}$
For $M_{1}, T-\mu M_{1} g=M_{1} a_{1}$
For $\mathrm{M}_{2}, \mathrm{~T}-\mu \mathrm{M}_{2} \mathrm{~g}=\mathrm{M}_{2} \mathrm{a}_{2}$
$\mathrm{a}_{1}+\mathrm{a}_{2}=2 \mathrm{a}_{3}$
Dividing (i) by $M_{3}, g-\frac{2 T}{M_{3}}=a_{3}$
Dividing (ii) by $M_{1}, \frac{T}{M_{1}}-\mu \mathrm{g}=\mathrm{a}_{1}$
Dividing (iii) by $M_{2}, \frac{T}{M_{2}}-\mu g=a_{2}$
Using (iv), $\mathrm{a}_{1}+\mathrm{a}_{2}=2 \mathrm{a}_{3}$
$\frac{T}{M_{1}}-\mu g+\frac{T}{M_{2}}-\mu g=2 g-\frac{4 T}{M_{3}}$
$T\left[\frac{1}{M_{1}}+\frac{1}{M_{2}}+\frac{4}{M_{3}}\right]=2 \mu \mathrm{~g}+2 \mathrm{~g}=2 \mathrm{~g}[\mu+1]$
$\mathrm{T}=\frac{[2 \mathrm{~g}(\mu+1)]}{\frac{1}{\mathrm{M}_{1}}+\frac{1}{\mathrm{M}_{2}}+\frac{4}{\mathrm{M}_{3}}}=\frac{(\mu+1) \mathrm{g}}{\frac{1}{2 \mathrm{M}_{1}}+\frac{1}{2 \mathrm{M}_{2}}+\frac{2}{\mathrm{M}_{3}}}$
Example 6: Masses M and 2 M are connected through pulleys A and B with strings as shown in the Figure. Assume that both the pulleys and the strings are light and all the surfaces are frictionless.
(a) Find the acceleration of the block of mass M .
(b) Find the tension in the string.
(c) Calculate the force exerted on the clamp.

Sol: To find the constraint relation between accelerations of blocks M and 2 M , measure all distances from the fixed pulley A. Apply Newton's second law in horizontal direction for block 2M and Newton's second law in vertical direction for block M.

(a) Let L be the length of the string. Let x_{1} be the length of the vertical string and x_{2} be the length of each string in the horizontal direction. The constraint relation for the string of length L is $x_{1}+2 x_{2}=L$ Now, by differentiating twice, $a_{1}+2 a_{2}=0$
If a_{1} is +ve, then a_{2} is $-v e$,
$a_{1}-2 a_{2}=0$ or $a_{2}=\frac{a_{1}}{2}=\frac{a}{2}$
Let $a_{1}=a$ be the acceleration of M and $\frac{a}{2}$ be the acceleration of 2 M .
$\therefore \quad \mathrm{Mg}-\mathrm{T}=\mathrm{Ma}$
$2 \mathrm{M} \times \frac{\mathrm{a}}{2}=2 \mathrm{~T}$
$2 \mathrm{~T}=\mathrm{Ma}$ or $\mathrm{T}=\frac{\mathrm{Ma}}{2}$
Now, by substituting for T in (i)
$M g-\frac{M a}{2}=M a ; \frac{3 M a}{2}=M g ; \therefore a=\frac{2 g}{3}$
(b) $T=\frac{M a}{2}=\frac{2 g M}{2 \times 3}=\frac{M g}{3}$
(c) Force on clamp $\mathrm{C}=\sqrt{(2 \mathrm{~T})^{2}+(\mathrm{T})^{2}}=\sqrt{5} \mathrm{~T}=\frac{\sqrt{5} \mathrm{Mg}}{3}$.

Example 7: Masses M_{1}, M_{2} and M_{3} are connected by strings of negligible mass which pass over massless and frictionless pulleys P_{1} and P_{2} as shown in the Figure. The masses move such that the portion of the string between P_{1} and P_{2} is parallel to the incline and the portion of the string between P_{2} and M_{3} is horizontal. The masses M_{2} and M_{3} are 0.4 kg each and the coefficient of kinetic friction between masses and surfaces is 0.25 . The inclined plane makes an angle of 37° with the horizontal, however, the mass M_{1} moves with uniform velocity downwards. Now, find
(a) The tension in the horizontal portion of the string
(b) The mass $M_{1}\left(g=9.8 \mathrm{~ms}^{-2}, \sin 37^{\circ}=3 / 5\right)$.

Sol: Apply Newton's first law for each of the blocks as the velocity of each block is constant.

Let T_{1} be the tension between M_{1} and M_{2} and T_{2} be the tension between M_{2} and M_{3}.

Let μ be the coefficient of kinetic friction. Then
(a) $\mathrm{T}_{2}=\mu \mathrm{M}_{3} \mathrm{~g}=0.25 \times 4.0 \times 9.8=9.8 \mathrm{~N}$
(b) $\mathrm{T}_{1}=\mathrm{M}_{1} \mathrm{~g}$
$T_{1}-T_{2}-\mu M_{2} g \cos \theta-M_{2} g \sin \theta=0$
$M_{1} g-9.8-0.25 \times 4 \times 9.8 \times \frac{4}{5}-4 \times 9.8 \times \frac{3}{5}=0$
$M_{1} \times 9.8=9.8+9.8 \times \frac{4}{5}+9.8 \times \frac{12}{5}=0$
$\therefore \mathrm{M}_{1}=1+\frac{4}{5}+\frac{12}{5}=\frac{21}{5}=4.2 \mathrm{~kg}$
Example 8: A rod $A B$ rests with the end A on rough horizontal ground and the end B against smooth vertical wall. The rod is of uniform length and of weight W. If the rod is in equilibrium in the position shown in the Figure, then find:

(a) Frictional force at A
(b) Normal reaction at A
(c) Normal reaction at B.

Sol: For translational equilibrium, the vector sum of all the forces acting on the rod is zero. Take component of forces along horizontal (x-axis) and vertical (y-axis) direction. Sum of components of forces along the x
 and y axes will be zero. For rotational equilibrium, the net torque of all the forces acting on the rod relative to a fixed point (say O) is zero.
Let the length of the rod be 21 . Using the three conditions of equilibrium, the anticlockwise moment is taken as positive.
(i) $\sum F_{x}=0 \quad \therefore N_{B}-f_{A}=0$ or $N_{B}=f_{A}$
(ii) $\sum F_{y}=0 \therefore N_{A}-W=0$ or $N_{A}=W$
(iii) $\sum \tau_{0}=0$

$$
\begin{align*}
& \therefore N_{A}\left(21 \cos 30^{\circ}\right)-N_{B}\left(2 I \sin 30^{\circ}\right)-W\left(I \cos 30^{\circ}\right)=0 \\
& \text { or } \sqrt{3} N_{A}-N_{B}-\frac{\sqrt{3}}{2} W=0 \tag{iii}
\end{align*}
$$

Solving the above three equations, we obtain
(a) $f_{A}=\frac{\sqrt{3}}{2} W$
(b) $\mathrm{N}_{\mathrm{A}}=\mathrm{W}$
(c) $N_{B}=\frac{\sqrt{3}}{2} W$

Example 9: In the adjacent Figure, masses of A, B and C are $1 \mathrm{~kg}, 3 \mathrm{~kg}$ and 2 kg , respectively. Find (a) the acceleration of the system and (b) tension in the string. Neglect friction ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

Sol: Draw the FBD of each block and apply Newton's second law along the incline plane for each block.
(a) In this case, the net pulling force
$=m_{A} g \sin 60^{\circ}+m_{B} g \sin 60^{\circ}-m_{C} g \sin 60^{\circ}$
$=(1)(10) \frac{\sqrt{3}}{2}+(3)(10) \frac{\sqrt{3}}{2}-(2)(10) \frac{1}{2}=24.64 \mathrm{~N}$
Therefore, the total mass being pulled $=1+3+2=6 \mathrm{~kg}$
\therefore Acceleration of the system $a=\frac{21.17}{6}=4.1 \mathrm{~m} / \mathrm{s}^{2}$
(b) For the tension in the string between A and B .

FBD of A is $m_{A} g \sin 60^{\circ}-T_{1}=\left(m_{A}\right)(a)=m_{A}\left(g \sin 60^{\circ}-a\right)$
$\therefore \mathrm{T}_{1}=(1)\left(10 \times \frac{\sqrt{3}}{2}-4.1\right)=4.56 \mathrm{~N}$
(b) For the tension in the string between B and C . FBD of C, $\mathrm{T}_{2}-\mathrm{m}_{\mathrm{c}} \mathrm{g} \sin 30^{\circ}=\mathrm{m}_{\mathrm{c}} \mathrm{a}$
$\therefore \mathrm{T}_{2}=\mathrm{m}_{\mathrm{c}}\left(\mathrm{a}+\mathrm{g} \sin 30^{\circ}\right) \therefore \mathrm{T}_{2}=2\left[3.53+10\left(\frac{1}{2}\right)\right]=18.2 \mathrm{~N}$

Example 10: A small smooth ring of mass m is threaded on a light inextensible string of length 8 L which has its ends fixed at points in the same vertical line at distance 4 L apart. The ring describes horizontal circles at constant speed with both parts of the string taut and with the lower portion of the string horizontal. Find the speed of the ring and tension in the string. The ring is then tied at the midpoint of the string and made to perform horizontal circles at constant speed of $3 \sqrt{g L}$. Find the tension in each part of the string.
Sol: Apply Newton's second law in the radial direction in each case.
When the string passes through the ring, the tension in the string is the same in both the parts. Also from geometry,
$B P=3 L$ and $A P=5 L$
$\mathrm{T} \cos \theta=\frac{4}{5} \mathrm{~T}=\mathrm{mg}$
$\mathrm{T}+\mathrm{T} \sin \theta=\mathrm{T}\left(1+\frac{3}{5}\right)=\frac{8}{5} \mathrm{~T}$
$=\frac{m v^{2}}{B P}=\frac{m v^{2}}{3 L}$
Dividing (ii) by (i) $\frac{\mathrm{v} 2}{3 \mathrm{Lg}}=2$

$v=\sqrt{6 \mathrm{Lg}}$ From (i) $\mathrm{T}=\frac{\mathrm{mg}}{4 / 5}=\frac{5}{4} \mathrm{mg}$. In the second case,
$A B P$ is an equilateral triangle
$\mathrm{T}_{1} \cos 60^{\circ}=\mathrm{mg}+\mathrm{T}_{2} \cos 60^{\circ}$
$\mathrm{T}_{1}-\mathrm{T}_{2}=\frac{\mathrm{mg}}{\cos 60^{\circ}}=2 \mathrm{mg}$
$T_{1} \sin 60^{\circ}+T_{2} \sin 60^{\circ}=\frac{m v^{2}}{r}=\frac{9 m g L}{4 L \sin 60^{\circ}}$
$\mathrm{T}_{1}+\mathrm{T}_{2}=\frac{9 \mathrm{mg}}{4 \sin ^{2} 60^{\circ}}=3 \mathrm{mg}$
By solving equations (iii) and (iv), we have
$\mathrm{T}_{1}=\frac{5}{2} \mathrm{mg} ; \mathrm{T}_{2}=\frac{1}{2} \mathrm{mg}$
Example 11: A car is moving in a circular horizontal track of radius 10 m with a constant speed of $10 \mathrm{~m} / \mathrm{s}$. A plumb bob is suspended from roof by a light rigid rod of length 1 m . What is the angle made by the rod with the track?

Sol: In the reference frame of the car the bob will experience a centrifugal force radially outwards. The vector sum of the three forces acting on the bob (the weight, the tension and the centrifugal force) will be equal to zero.

The different forces acting on the bob are shown in the Figure. Resolving the force along the length and perpendicular to the rod, we have

$m g \cos \theta+\frac{m v^{2}}{R} \sin \theta=T ; m g \sin \theta=\frac{m v^{2}}{R} \cos \theta$
$\tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{Rg}}=\frac{(10)^{2}}{(10)(10)}=1 ; \theta=\tan ^{-1}(1)=45^{\circ}$

Example 12: A car moves on a horizontal circular road of radius R, the speed increases at a rate $\frac{d v}{d t}=a$. The frictional coefficient between the road and the tire is μ. Now, find the speed at which the car will skid.

Sol: The net acceleration of the car is the vector sum of centripetal acceleration and tangential acceleration. By Newton's second law the net force of friction acting on the car is equal to mass multiplied by net acceleration.

Here, at any time t, the speed of the car becomes V,
the net acceleration in the plane road is $\sqrt{\left(\frac{v^{2}}{R}\right)^{2}+a^{2}}$.
This acceleration is provided by the frictional force. At the moment car will slide
$m \sqrt{\left(\frac{v^{2}}{R}\right)^{2}+a^{2}}=\mu M g \Rightarrow v=\left[R^{2}\left(\mu^{2} g^{2}-a^{2}\right)\right]^{1 / 4}$

JEE Advanced/Boards

Example 1: In the system of two pulleys connected as shown in the figure, $M_{1}=4 M_{2}$ and mass M_{1} is 20 cm above the ground, whereas mass M_{2} is lying on the ground. Find the distance covered by when the system is released. ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$).

Sol: To find the constraint relation between accelerations of M_{1} and $M_{2^{\prime}}$ measure their distances from fixed pulley A. Apply Newton's second law in vertical direction for each block.
$M_{1}=4 M_{2}$
As M_{1} is heavier, itwill move down with acceleration a and M_{2} will move upward with acceleration 2a because
the strings around the pulley B will move through half the distance as compared to that of A.
$\therefore \mathrm{M}_{1} \mathrm{~g}-2 \mathrm{~T}=\mathrm{M}_{1} \mathrm{a} \mathrm{T}-\mathrm{M}_{2} \mathrm{~g}=\mathrm{M}_{2} \times 2 \mathrm{a}$ or $\mathrm{a}=\frac{\mathrm{g}}{4}$.
Therefore, the time taken for M_{1} to reach the ground at
20 cm distance $\mathrm{s}=\mathrm{ut}+\frac{1}{2} a \mathrm{t}^{2}=\frac{1}{2} a t^{2}$
or $\mathrm{t}=\sqrt{\frac{2 \mathrm{~s}}{\mathrm{a}}}=\sqrt{\frac{2 \times 20 \times 4}{10 \times 100}} \quad\left(\because \mathrm{~s}=\frac{20}{100}\right)$
or $=\sqrt{\frac{16}{100}}=\frac{4}{10}=0.45$
Distance travelled by M_{2}
$\mathrm{x}_{1}=\frac{1}{2} \times(2 \mathrm{a}) \times \mathrm{t}^{2}=\frac{1}{2} \times 2 \times \frac{10}{4} \times(0.4)^{2}=0.4 \mathrm{~m}$
Velocity of M_{2} after 0.4 seconds $=v=u+2$ at
$=0+2 \times \frac{10}{4} \times 0.4 ; \quad v=2 \mathrm{~ms}^{-1}$
Distance covered by M_{2} with velocity $2 \mathrm{~ms}^{-1}$ upwards before coming to rest
$x_{2}=\frac{v^{2}}{2 g}=\frac{(2)^{2}}{2 \times 10}=0.2 \mathrm{~m}$

Distance covered by M_{2} before coming to rest
$=x=x_{1}+x_{2}=0.4+0.2=0.6 \mathrm{~m}$
Example 2: Masses 4 kg and 8 kg are attached to the free end of an inextensible light string passing over two fixed pulleys as shown in the Figure. The movable pulley carries a mass of 16 kg . Assuming frictionless motion, calculate the acceleration of the three masses.

Sol: To find the constraint relation between accelerations of blocks measure their distances from the fixed pulleys. Apply Newton's second law in vertical direction for each block.

Let a, b and c be the respective accelerations of masses $A(8 \mathrm{~kg}), B(4 \mathrm{~kg})$, and $C(16 \mathrm{~kg})$ such that a and b are downward and c is upward. Let x_{1} and x_{2} be the distances of strings from axial line passing through P and Q to the blocks A and B, respectively. Let x_{3} be the length of the string from the axial line $P Q$ to the center of the movable pulley. If L is the length of the string, then the constraint relation gives
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{3}=\mathrm{L}=$ constant
Differentiating $\frac{\mathrm{dx}_{1}}{\mathrm{dt}}+\frac{\mathrm{dx}_{2}}{\mathrm{dt}}+2 \frac{\mathrm{dx}_{3}}{\mathrm{dt}}=0$
Differentiating again $\frac{d^{2} x_{1}}{d t^{2}}+\frac{d^{2} x_{2}}{d t^{2}}+2 \frac{d^{2} x_{3}}{d t^{2}}=0$
or $\mathrm{a}+\mathrm{b}-2 \mathrm{c}=0$ or $\mathrm{a}+\mathrm{b}=2 \mathrm{c}$.

As tension T is equal in all the strings as it passes over smooth pulleys, equations for the strings are as follows:
$8 \mathrm{~g}-\mathrm{T}=8 \mathrm{a}$
$2 \mathrm{~T}-16 \mathrm{~g}=16 \mathrm{c}$
$4 \mathrm{~g}-\mathrm{T}=4 \mathrm{~b}$
$a+b=2 c$
From Eqs. (ii) and (iv), we obtain
$2 \mathrm{~T}-16 \mathrm{~g}=8 \times 2 \mathrm{c}=8 \mathrm{a}+8 \mathrm{~b}$
By substituting a and b from Eqs (i) and (iii)
$2 \mathrm{~T}-16 \mathrm{~g}=8 \mathrm{~g}-\mathrm{T}+8 \mathrm{~g}-2 \mathrm{~T}=16 \mathrm{~g}-3 \mathrm{~T}$
$5 \mathrm{~T}=32 \mathrm{~g}$ or $\mathrm{T}=\frac{32}{5} \mathrm{~g}$.
Now, from Eq (i)
$8 \mathrm{a}=8 \mathrm{~g}-\mathrm{T}=8 \mathrm{~g}-\frac{32}{5}=\frac{32}{5} ; a=\frac{g}{5}$
From Eq (iii),
$4 \mathrm{~b}=4 \mathrm{~g}-\mathrm{T}=4 \mathrm{~g}-\frac{32 \mathrm{~g}}{5}=\frac{-12 \mathrm{~g}}{5}$
$c=\frac{a+b}{2}=\frac{\left(\frac{g}{5}-\frac{3 g}{5}\right)}{2} \therefore c=-\frac{g}{5}$
$\therefore 16 \mathrm{~kg}$ and 8 kg go downward and $4 \mathrm{~kg} \mathrm{go} \mathrm{upward}$.

Example 3: A block of mass m is pulled up by means of a thread up and inclined plane forming an angle α with the horizontal. The coefficient of friction is equal to μ. Find the angle β which the thread must form with the inclined plane for the tension of the thread to be minimum. Also, find the value of minimum tension.

Sol: Draw the FBD of the block. Apply Newton's first law along the perpendicular to the inclined plane and Newton's second law along the inclined plane for the block.

When the body is just about to move up, the force of friction f is acting downward. If N is the normal reaction, the force of friction f is equal to $\mu \mathrm{N}$. Further, T and mg can be resolved into rectangular components parallel and perpendicular to the inclined plane as shown in the Figure.
$\therefore \mathrm{T} \cos \beta=\mathrm{mg} \sin \alpha+\mu \mathrm{N}$
$\mathrm{N}+\mathrm{T} \sin \beta=\mathrm{mg} \cos \alpha$ or $\mathrm{N}=\mathrm{mg} \cos \alpha-\mathrm{T} \sin \beta$
Now, by substituting in Eq.(i), we obtain
$\mathrm{T} \cos \beta=\mathrm{mg} \sin \alpha+\mu \mathrm{mg} \cos \alpha-\mu \mathrm{T} \sin \beta$
or $\mathrm{T} \cos \beta+\mu \mathrm{T} \sin \beta=\mathrm{mg}(\sin \alpha+\mu \cos \alpha)$
$\mathrm{T}=\frac{\mathrm{mg}(\sin \alpha+\mu \cos \alpha)}{\cos \beta+\mu \sin \beta}$
For T to be minimum, $\cos \beta+\mu \sin \beta$ should be maximum.
$\therefore \frac{\mathrm{d}}{\mathrm{d} \beta}(\cos \beta+\mu \sin \beta)=0$

and $\frac{d^{2}}{d \beta^{2}}(\cos \beta+\mu \sin \beta)$ is negative.
$\therefore-\sin \beta+\mu \cos \beta=0$ or $\mu=\frac{\sin \beta}{\cos \beta}=\tan \beta$
Also, $\frac{d}{d \beta}(-\sin \beta+\mu \cos \beta)=-\cos \beta+\mu \sin \beta$
which is negative.
\therefore For minimum $T, \beta=\tan ^{-1} \mu$
The value of $T_{\text {min }}$ can be found by writing β in terms of μ.

$$
\begin{aligned}
& \cos \beta=\frac{1}{\sqrt{1+\mu^{2}}}, \sin \beta=\frac{1}{\sqrt{1+\mu^{2}}} \\
& \therefore T_{\min }=\frac{m g(\sin \alpha+\mu \cos \alpha)}{\cos \beta+\mu \sin \beta} \\
& =\frac{m g(\sin \alpha+\mu \cos \alpha)}{\frac{1}{\sqrt{1+\mu^{2}}}+\frac{\mu^{2}}{\sqrt{1+\mu^{2}}}}=\frac{m g(\sin \alpha+\mu \cos \alpha)}{\frac{1+\mu^{2}}{\sqrt{1+\mu^{2}}}} \\
& =\frac{m g(\sin \alpha+\mu \cos \alpha)}{\sqrt{1+\mu^{2}}}
\end{aligned}
$$

Example 4: Find the constraint relation in the Figure.

Sol: To find the constraint relation between accelerations of blocks measure their distances from stationary points. For block m_{1} measure the distance from fixed pulley on the wedge. For block m_{2} measure the distance from the fixed roof.

Since length of each string is constant
$x_{1}+\left(y_{2}-y_{3}\right)+y_{2}=c_{1}$
$\mathrm{y}_{1}-\mathrm{y}_{2}=\mathrm{c}_{2} \Rightarrow 2 \mathrm{y}_{1}-2 \mathrm{y}_{2}=2 \mathrm{c}_{2}$
By adding (i) and (ii), we obtain
$\left(\mathrm{x}_{1}-\mathrm{y}_{3}+2 \mathrm{y}_{1}\right)=\mathrm{c}_{1}+2 \mathrm{c}_{2}$
$\mathrm{x}_{1}+2 \mathrm{y}_{1}=\mathrm{y}_{3}+\mathrm{c}_{1}+2 \mathrm{c}_{2}=\mathrm{c}$
(since $y_{3}=$ constant)
Differentiating (iii) w.r.t. $\frac{d^{2} x_{1}}{d t^{2}}+2 \frac{d^{2} y_{1}}{d t^{2}}=0$
$-a_{1}+2 a_{2}=0 \Rightarrow a_{1}=2 a_{2}$
Example 5: A pendulum is hanging from the ceiling of a car having acceleration a_{0} with respect to the ground. Find the angle made by the string with the vertical.

Sol: In the reference frame of the car the pendulum bob will experience a pseudo force. For the bob to be in equilibrium, the vector sum of all the forces acting on it in the frame of the car should be zero.

The situation is shown in the Figure. Suppose that the mass of the bob is m and string makes an angle θ with the vertical. We shall now proceed based on the car frame. This frame is non-inertial as it has acceleration a_{0} with respect to an inertial frame (the road). Hence, if we use Newton's second law we shall have to include a pseudo force.
Now, consider the bob as the complete system.
Then, the forces acting on it are:
(a) T along the string, by the string
(b) mg downward, by the earth
(c) $m a_{0}$ towards left (pseudo force).

(a)

The FBD is shown in the Figure. As the bob is at rest (remember we are discussing the motion with respect to car) the force in (a), (b) and (c) should add to zero. Take the X -axis along the forward horizontal direction and the Y-axis along the upward vertical direction.
The components of the forces along the X -axis give $\mathrm{T} \sin \theta-\mathrm{ma} \mathrm{a}_{0}=0$ or, $\mathrm{T} \sin \theta=m \mathrm{a}_{0}$
And the components along the Y -axis give
$\mathrm{T} \cos \theta-\mathrm{mg}=0$ or, $\mathrm{T} \cos \theta=\mathrm{mg}$
Dividing (i) by (ii) $\tan \theta=\mathrm{a}_{0} / \mathrm{g}$
Thus, the string makes an angle
$\tan ^{-1}\left(a_{0} / g\right)$ with the vertical
Example 6: A smooth ring A of mass m can slide on a fixed horizontal rod. A string tied to the ring passes over a fixed pulley B and carries a block C of mass $M(=2 m)$ as shown in the Figure. At an instant the string between the ring and pulley makes an angle θ with the rod. (a) Show that, if the ring slides with a speed v, the block descends with speed $v \cos \theta$. (b) With what acceleration will the ring start moving if the system is released from rest with $\theta=30^{\circ}$?

Sol: Find the constraint relation between the acceleration of the ring and the block. Measure the distances of ring and the block from the fixed pulley B.

(a) Suppose in a small time interval Δt the ring is displaced from A to A^{\prime} and the block from C to C^{\prime}. Drop a perpendicular $A^{\prime} P$ from A^{\prime} to $A B$. For small displacement $A^{\prime} B=P B$. Since the length of the string is constant,
we have $A B+B C=A^{\prime} B+B C^{\prime}$
or, $A P+P B+B C=A^{\prime} B+B C$
or, $A P=B^{\prime} C-B C=C C^{\prime} \quad$ (as $A^{\prime} B=P B$)
or, $\quad A A^{\prime} \cos \theta=C^{\prime}$
or, $\frac{\mathrm{AA}^{\prime} \cos \theta}{\Delta \mathrm{t}}=\frac{\mathrm{CC}}{} \mathrm{Cl}^{\prime}$
or, (velocity of the ring) $\cos \theta=$ (velocity of the block).
(b) If the initial acceleration of the ring is a, that of the block will be a $\cos \theta$. Let T be the tension in the string at this instant. Consider the block as the system. The forces acting on the block are
(i) Mg downward due to earth, and
(ii) T upward due to string.
equation of motion of the block is
$\mathrm{Mg}-\mathrm{T}=\mathrm{Macos} \theta$
Now, consider the ring as the system. The forces acting on the ring are
(i) Mg downward due to gravity,
(ii) N upward due to the rod,
(iii) T along the string due to string.

Taking components along the rod, the equation of motion of the ring is
$\mathrm{T} \cos \theta=\mathrm{ma}$
From (i) and (ii)
$M g-\frac{m a}{\cos \theta}=M a \cos \theta$
or, $\quad a=\frac{M g \cos \theta}{m+M \cos ^{2} \theta}$
Putting $\theta=30^{\circ}, \mathrm{M}=2 \mathrm{~m}$ and $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$;
therefore, $A=6.78 \mathrm{~m} / \mathrm{s}^{2}$

Example 7: Three blocks of masses $m_{1^{\prime}} m_{2}$ and m_{3} are connected as shown in the Figure. All the surfaces are frictionless and the string and the pulleys are light. Find the acceleration of m_{1}.

Sol: Draw the FBD of all the blocks and the pulley B. The acceleration of pulley B is same in magnitude as the acceleration of m_{1}. In the frame of pulley B blocks m_{2} and m_{3} will experience pseudo forces.
Suppose the acceleration of m_{1} is a_{0} toward the right. That will also be the downward acceleration of the pulley B because the string connecting m_{1} and B is constant in length. This implies that the decrease in the separation between m_{2} and B equals the increase in the separation between m_{3} and B. Therefore, the upward acceleration of m_{2} with respect to B equals the downward acceleration of m_{3} with respect to B. Let this acceleration be a.

The acceleration of with respect to the ground $=a_{0}-a$ (downward) and the acceleration of with respect to the ground $=a_{0}+a$ (downward) .

These accelerations will be used in Newton's laws. Let the tension be T in the upper string and T^{\prime} in the lower string. Consider the motion of the pulley B.

The forces on this light pulley are
(a) T upward by the upper string and
(b) $2 \mathrm{~T}^{\prime}$ downward by the lower string.

As the mass of the pulley is negligible,

$$
\begin{equation*}
2 \mathrm{~T}^{\prime}-\mathrm{T}=0 \text { Giving } \mathrm{T}^{\prime}=\mathrm{T} / 2 . \tag{i}
\end{equation*}
$$

Motion of: The acceleration is a_{0}, in the horizontal direction. The forces on m_{1} are
(a) T by the string (horizontal).
(b) $m_{1} g$ by the earth (vertically downward) and
(c) N by the table (vertically upward).

In the horizontal direction, the equation is
$\mathrm{T}=\mathrm{m}_{1} \mathrm{a}_{0}$
Motion of: Acceleration is $a_{0}-a$ in the downward direction. The forces on m_{2} are
(a) $m_{2} g$ downward by the earth and
(b) $\mathrm{T}^{\prime}=\mathrm{T} / 2$ upward by the string.

Thus $m_{2} g-T / 2=m_{2}\left(a_{0}-a\right)$
Motion of m_{3} : Acceleration is $\left(a_{0}+a\right)$ in the downward direction. The forces on are
(a) $m_{3} g$ downward by the earth and
(b) $\mathrm{T}^{\prime}=\mathrm{T} / 2$ upward by the string.

Thus $m_{3} g-T / 2=m_{3}\left(a_{0}+a\right)$
We want to calculate a_{0}, so we shall eliminate T and a from (ii), (iii), and (iv).

Putting T from (ii) in (iii) and (iv),

$$
a_{0}-a=\frac{m_{2} g-m_{1} a_{0} / 2}{m_{2}}=g-\frac{m_{1} a_{0}}{2 m_{2}}
$$

and $a_{0}+a=\frac{m_{3} g-m_{1} a_{0} / 2}{m_{3}}=g-\frac{m_{1} a_{0}}{2 m_{3}}$
Adding, $2 \mathrm{a}_{0}=2 \mathrm{~g}-\frac{\mathrm{m}_{1} \mathrm{a}_{0}}{2}\left(\frac{1}{\mathrm{~m}_{2}}+\frac{1}{\mathrm{~m}_{3}}\right)$
or, $\quad a_{0}=g-\frac{m_{1} a_{0}}{4}\left(\frac{1}{m_{2}}+\frac{1}{m_{3}}\right)$
or, $\quad a_{0}\left[1+\frac{m_{1}}{4}\left(\frac{1}{m_{2}}+\frac{1}{m_{3}}\right)\right]=g$
or, $\quad a_{0}=\frac{g}{\left[1+\frac{m_{1}}{4}\left(\frac{1}{m_{2}}+\frac{1}{m_{3}}\right)\right]}$

Example 8: All the surfaces shown in the figure. are assumed to be frictionless. The block of mass m slides on the prism which in turn slides backward on the horizontal surface. Find the acceleration of the smaller block with respect to the prism.

Sol: Draw the FBD of both the blocks. In the reference frame of block M, the block m will experience pseudo force. Apply Newton's second law on the block m along the inclined plane and Newton's first law along the perpendicular to the inclined plane. For block M apply Newton's second law along the horizontal.

Let the acceleration of the prism be in the backward direction. Consider the motion of the smaller block from the frame of the prism.

The forces on the block are
(i) N normal force,
(ii) mg downward (gravity), and
(iii) ma_{0} forward(pseudo).

The block slides down the plane. Components of the forces parallel to the incline give
$m a_{0} \cos \theta+m g \sin \theta=m a$
or $a=a_{0} \cos \theta+g \sin \theta$
Components of the force perpendicular to the incline give $N+m a_{0} \sin \theta=m g \cos \theta$.
Now, consider the motion of the prism from the lab frame. No pseudo force is needed as the frame used is inertial. The forces acting now are
(i) Mg downward,
(ii) N normal to the incline (by the block), and
(iii) N^{\prime} upward (by the horizontal surface).

Horizontal components give,
$N \sin \theta=\mathrm{Ma}_{0}$ or, $\mathrm{N}=\mathrm{Ma}_{0} / \sin \theta$.
Replacing in (ii) $\frac{M a_{0}}{\sin \theta}+M a_{0} \sin \theta=m g \cos \theta$
or, $a_{0}=\frac{m g \sin \theta \cos \theta}{M+m \sin ^{2} \theta}$
From (i), $\quad a_{0}=\frac{m g \sin \theta \cos ^{2} \theta}{M+m \sin ^{2} \theta}+g \sin \theta=\frac{(M+m) g \sin \theta}{M+m \sin ^{2} \theta}$

Example 9: A block of mass 0.4 kg is attached to a vertical rotating spindle of length 1.6 m by two springs each of length 1 m of equal lengths as shown in the Figure. The period of rotation is 1.2 seconds. Find the tension in the springs.

Sol: The sum of the horizontal components of tensions in the two springs will provide the necessary centripetal acceleration to the block. The vector sum of the vertical components of tensions in the two springs will balance the weight of the block.
Let T_{1} and T_{2} be the tension in the springs when these springs subtend an angle θ each with the horizontal direction. Let $A B=R$ be the radius of circular path traversed by mass B in the horizontal plane.
$R=A B=\sqrt{1-(0.8)^{2}}=\sqrt{1-0.64}=\sqrt{0.36}=0.6$
$\sin \theta=\frac{A C}{B C}=\frac{0.8}{1}=0.8 \mathrm{~m}$
$\cos \theta=\frac{A B}{B C}=\frac{0.6}{1}=0.6 \mathrm{~m}$
Angular velocity $=\omega=\frac{2 \pi}{\mathrm{~T}}=\frac{2 \pi}{1.2}=\frac{\pi}{0.6}$
Resolving T_{1} and T_{2} into rectangular component
$\mathrm{T}_{2} \sin \theta=\mathrm{T}_{1} \sin \theta+\mathrm{mg}$
$\left(T_{1}+T_{2}\right) \cos \theta=m \omega^{2} R$
$\mathrm{T}_{2} \cos \theta=m \omega^{2} \mathrm{R}-\mathrm{T}_{1} \cos \theta$
Multiply (i) by $\cos \theta$,
$\mathrm{T}_{2} \sin \theta \cos \theta=\mathrm{T}_{1} \sin \theta \cos \theta+\mathrm{mg} \cos \theta$
Multiply (ii) by $\sin \theta$,
$T_{2} \sin \theta \cos \theta=m \omega^{2} R \sin \theta-T_{1} \sin \theta \cos \theta$
Adding, $2 \mathrm{~T}_{2} \sin \theta \cos \theta=m \omega^{2} R \sin \theta+m g \cos \theta$
$2 T_{2}=\frac{m \omega^{2} R \sin \theta}{\sin \theta \cos \theta}+\frac{m g \cos \theta}{\sin \theta \cos \theta}$
$=\frac{m \omega^{2} R}{\cos \theta}+\frac{\mathrm{mg}}{\sin \theta}=\frac{0.4 \times \pi^{2} \times 0.6}{(0.6)^{2} \times 0.6}+\frac{0.4 \times 10}{0.8}=\frac{0.4 \times \pi^{2}}{(0.6)^{2}}+5$

$$
2 \mathrm{~T}_{2}=10.97+5=15.97 \quad \therefore \mathrm{~T}_{2}=7.99 \mathrm{~N} \approx 8 \mathrm{~N}
$$

Subtracting the above mentioned terms,

$$
\begin{aligned}
2 \mathrm{~T}_{1} & =\frac{\mathrm{m} \omega^{2} \mathrm{R}}{\cos \theta}-\frac{\mathrm{mg}}{\sin \theta}=10.97-5=5.97 \\
\mathrm{~T}_{1} & =2.99 \approx 3 \mathrm{~N}
\end{aligned}
$$

Example 10: A block of mass m is pulled by means of a thread up an inclined plane forming an angle θ with the horizontal. The coefficient of friction is μ. Find the inclination of the thread with the horizontal so that tension in the thread is minimum. What is the value of the minimum tension?

Sol: Draw the FBD of the block. Apply Newton's second law along the direction of the incline and Newton's first law along the direction perpendicular to the incline.

Let the mass moves up the plane with acceleration a.
Writing the equation of motion, we obtain
$R+T \sin \alpha=m g \cos \theta$
$R=m g \cos \theta-T \sin \alpha$
$T \cos \alpha-m g \sin \theta-f=m a$
where t is the force of friction
$\mathrm{f}=\mu(\mathrm{mg} \cos \theta-\mathrm{T} \sin \alpha)$
Substituting the value of f from Eq (iii)
in Eq (ii) $\mathrm{T} \cos \alpha-\mathrm{mg} \sin \theta-\mu \mathrm{mg} \cos \theta+\mu \mathrm{T} \sin \alpha=\mathrm{ma}$
$\mathrm{T}(\cos \alpha+\mathrm{m} \sin \alpha)=\mathrm{ma}+\mathrm{mg} \sin \theta+\mu \mathrm{mg} \cos \theta$
$\mathrm{T}=\frac{\mathrm{ma}+\mathrm{mg} \sin \theta+\mu \mathrm{mg} \cos \theta}{\cos \alpha+\mu \sin \alpha}$
For T to be minimum $(\cos \alpha+\mu \sin \alpha)$ should be
maximum $\frac{d}{d \alpha}(\cos \alpha+\mu \sin \alpha)=0$
$\frac{d^{2}}{d \alpha^{2}}(\cos \alpha+\mu \sin \alpha)=-\mathrm{ve}$
$\frac{d}{d \alpha}(\cos \alpha+\mu \sin \alpha)=-\sin \alpha+m \cos \alpha=0$
$\mu=\tan \alpha \quad \alpha=\tan ^{-1}(\mu)$
It can be shown that $\frac{d^{2}}{d \alpha^{2}}$ is negative.
T will have minimum value when $a=0$ and
$\alpha=\tan ^{-1}(\mu)$. From Eq. (iv)
$\mathrm{T}_{\text {min }}=\frac{\mathrm{mg} \sin \theta+\mu \mathrm{mg} \cos \theta}{\cos \alpha+\mu \sin \alpha}$
$\cos \alpha+\mu \sin \alpha=\cos \alpha+\mu(\mu \cos \alpha)$
$=\cos \alpha+\mu^{2} \cos \alpha=\cos \alpha\left(1+\mu^{2}\right)$
$=\frac{1+\mu^{2}}{\sec \alpha}=\frac{1+\mu^{2}}{\sqrt{1+\tan ^{2} \alpha}}=\frac{1+\mu^{2}}{\sqrt{1+\mu^{2}}}=\sqrt{1+\mu^{2}}$
$\therefore \mathrm{T}_{\min }=\frac{\mathrm{mg} \sin \theta+\mu \mathrm{mg} \cos \theta}{\sqrt{1+\mu^{2}}}$
Example 11: A metal ring of mass m and radius R is placed on a smooth horizontal table and is set rotating about its own axis in such a way that each part of the ring moves with velocity v. Based on the above facts, find the tension in the ring.

Sol: Each small part of the ring
 will experience a centrifugal force radially outwards. So the ring will tend to expand, i.e. the radius and circumference will tend to increase. By virtue of its elasticity the ring will oppose its expansion. So each part of the ring will experience a force of pull or tension from the other part.

Consider a small part ACB of the ring that subtends an angle $\Delta \theta$ at the center as shown in the Figure. Let the tension in the ring be T .
The forces on this elementary portion ACB are:
(i) Tension T by the part of the ring left to A
(ii) Tension T by the part of the ring right to B
(iii) Weight $(\Delta \mathrm{m}) \mathrm{g}$
(iv) Normal force N by the table

As the elementary portion ACB moves in a circle of radius R at constant speed v, its acceleration toward the centre is $\frac{(\Delta m) v^{2}}{R}$ Resolving the forces along the radius
CO
$\mathrm{T} \cos \left(90^{\circ}-\frac{\Delta \theta}{2}\right)+\mathrm{T} \cos \left(90^{\circ}-\frac{\Delta \theta}{2}\right)=\Delta \mathrm{m} \frac{\mathrm{v}^{2}}{\mathrm{R}}$
$2 T \sin \frac{\Delta \theta}{2}=\Delta m \frac{v^{2}}{R}$
Thus the length of the part $A C B=R \Delta \theta$. The mass per unit length of the ring is $\frac{m}{2 \pi R}$
\therefore Mass of this portion $A C B, \Delta m=\frac{R \Delta \theta m}{2 \pi R}=\frac{m \Delta \theta}{2 \pi}$

Putting the value of $\Delta \mathrm{m}$ in (ii)
$2 T \sin \frac{\Delta \theta}{2}=\frac{m \Delta \theta}{2 \pi} \frac{v^{2}}{R}$
$\therefore T=\frac{m v^{2}}{2 \pi R}\left(\frac{\frac{\Delta \theta}{2}}{\left(\sin \left(\frac{\Delta \theta}{2}\right)\right)}\right)$

Since $\left(\frac{\frac{\Delta \theta}{2}}{\left(\sin \left(\frac{\Delta \theta}{2}\right)\right)}\right)$ is equal to $1 ; T=\frac{m v^{2}}{2 \pi R}$

JEE Main/Boards

Exercise 1

Forces and Laws of Motion

Q. 1 What is meant by law of inertia?
Q. 2 State the laws of motion.
Q. 3 A cricket player lowers his hands while catching a ball. Why?
Q. 4 An impulsive force of 100 N acts on a body for 1 s . What is the change in its linear momentum?
Q. 5 A force of 5 N changes the velocity of a body from $10 \mathrm{~ms}^{-1}$ to $20 \mathrm{~ms}^{-1}$ in 5 sec . How much force is required to bring about the same change in 2 sec ?
Q. 6 State and explain Newton's first law of motion.
Q. 7 What are the three types of inertia? Give at least two examples of each type.
Q. 8 State and explain Newton's first law of motion. Hence deduce the relation $F=m a$, where the symbols have their usual meaning.
Q. 9 Define absolute and gravitational units of force. What are the dimensions of force?
Q. 10 Mention some of the consequences of the Newton's second law of motion.
Q. 11 Explain the term 'impulse'. Discuss some of the applications of this concept.
Q. 12 State and explain Newton's third law of motion. Give at least two Illustrations.
Q. 13 Discuss the apparent weight of a man in a lift/ elevator.
Q. 14 Two bodies of masses 11 kg and 11.5 kg are connected by a long light string passing over a smooth pulley. Calculate velocity and height ascended/ descended by each body at the end of 4 s .

Q. 15 A rope of mass 0.5 kg is pulling a block of mass 10 kg under the action of force of 31.5 N . If the block is resting on a smooth horizontal surface, calculate the force of reaction exerted by the block on the rope.
Q. 16 Two bodies of masses 4 kg and 3 kg respectively are connected by a light string passing over a smooth frictionless pulley. Calculate the acceleration of the masses and tension in the string.
Q. 17 Two bodies whose masses are $m_{1}=50 \mathrm{~kg}$ and $m_{2}=50 \mathrm{~kg}$ are tied by a light string and are placed on a frictionless horizontal surface. When m_{1} is pulled by a force F, an acceleration of $5 \mathrm{~ms}^{-2}$ is produced in both the bodies. Calculate the value of F. What is the tension in the string 1 ?
Q.18SeeFigurewherein a mass of 6 kg is suspended by a rope of length 2 m from the ceiling. A force of 50 N in the horizontal direction is applied at midpoint P of the rope, as shown. What is the angle the rope makes with the vertical in equilibrium?
(take $\mathrm{g}=10 \mathrm{~ms}^{-2}$) Neglect mass of the rope.

(a)

(b)
Q. 19 A body builder exerts a force of 150 N against a bull worker and compresses it by 20 cm . Calculate the spring constant of the spring in the bull worker.
Q. 20 A lift of mass 2000 kg is supported by thick steel ropes. If maximum upward acceleration of the lift be $1.2 \mathrm{~m} / \mathrm{s}^{2}$, and the breaking stress for the ropes be $2.8 \times 10^{8} \mathrm{Nm}^{-2}$, what would be the minimum diameter of the rope?
Q. 21 A car of mass one metric ton travelling at $32 \mathrm{~m} / \mathrm{s}$ dashes into rear of a truck of mass 8000 kg moving in the same direction with the velocity of $4 \mathrm{~m} / \mathrm{s}$. After the collision, the car bounces backward with the velocity 8 m / s. What is the velocity of the truck after the impact?
Q. 22 The force on a particle of mass 10 g is $(10 \mathrm{i}+5 \mathrm{j}) \mathrm{N}$. If it starts from rest, what would be its position at time $\mathrm{t}=5 \mathrm{~s}$?
Q. 23 A projectile is fired vertically from the earth's surface with an initial velocity of $10 \mathrm{~km} / \mathrm{s}$. Neglecting atmospheric retardation, how far above the surface of the earth would it go? Take the earth's radius as 6400 km .
Q. 24 Two balls of mass m each are hung side by side two long threads, each of length I. If the distance between the upper end is r then find the distance r^{\prime} between the centres of the ball in terms of g, r, l and m.

Circular Motion

Q. 25 Calculate the centripetal acceleration of a point on the equator of earth due to the rotation of earth about its own axis.

Radius of earth $=6400 \mathrm{~km}$.
Q. 26 A cyclist is riding with a speed of $27 \mathrm{kmh}^{-1}$. As he approaches a circular turn on the road of radius 80.0 m , he applies brakes and reduces his speed at a constant rate of $0.5 \mathrm{~ms}^{-1}$ per second. Find the magnitude of the net acceleration of the cyclist.
Q. 27 A particle moves in a circle of radius 4.0 cm clockwise at constant seed of $2 \mathrm{cms}^{-1}$. If \bar{x} and \hat{y} are unit acceleration vectors along X -axis and Y -axis, respectively, find the acceleration of the particle at the instant half-way between P and Q in the Figure.
Q. 28 A cyclist is riding with a speed of $36 \mathrm{kmh}^{-1}$. As he approaches a circular turn on the road of radius 140 m , he applies brakes and reduces his speed at the constant rate of $1 \mathrm{~ms}^{-2}$. What is the magnitude and direction of the net acceleration of the cyclist on the circular turn?

Exercise 2

Forces and Laws of Motion

Single Correct Question

Q. 1 A block of mass 10 kg is suspended through two light spring balances as shown in given Figure.

(A) Both the scales will read 10 kg
(B) Both the scales will read 5 kg .
(C) The upper scales will read 10 kg and the lower zero.
(D) The readings may be anything but their sum will be 10 kg
Q. 2 A block is kept on the floor of an elevator at rest. The elevator starts descending with an acceleration of $12 \mathrm{~m} / \mathrm{s}^{2}$. Find the displacement of the block during the first 0.2 s after the start. Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.
(A) 10 cm
(B) 20 cm
(C) 30 cm
(D) 40 cm
Q. 3 A body of mass m is kept on a rough horizontal surface (friction coefficient $=\mu$). A person is trying to pull the body by applying a horizontal force but the body is not moving. The force by the surface on the body is F where
(A) $F=m g$
(B) $\mathrm{F}=\mu \mathrm{mg}$
(C) $\mathrm{mg} \leq \mathrm{F} \leq \mathrm{mg} \sqrt{1+\mu^{2}}$
(D) $m g \geq F \geq m g \sqrt{1-\mu^{2}}$
Q. 4 Which of the following case correctly represents the applied force on a string under tension. End of string is represented with dot.
(A)

(C)
(B)

(D)

Q. 5 A balloon is descending at a constant acceleration a. The mass of the balloon is M .

When a mass m is released from the balloon it starts rising with acceleration a. Assuming that volume does not change when the mass is released, what is the value of m ? [Assume same upward buoyant force]
(A) $\frac{2 a}{(a+g)} M$
(B) $\left(\frac{a+g}{2 a}\right) M$
(C) $\frac{2 a}{(a+g) M}$
(D) $\frac{\mathrm{Ma}}{\mathrm{a}+\mathrm{g}}$
Q. 6 A small cart with a sphere suspended from ceiling by a string is moving up an inclined plane at a speed V . The direction of string supporting the sphere is
(A) Vertical
(B) Horizontal
(C) Perpendicular to the inclined plane
(D) None of these
Q. 7 The pulleys and strings shown in the figure are smooth and of negligible mass. For the system of remain in equilibrium, the angle θ should be

(A) 0°
(B) 30°
(C) 45°
(D) 60°
Q. 8 While walking on ice, one should take small steps to avoid slipping. This is because smaller steps ensure
(A) Larger friction
(B) Smaller friction
(C) Larger normal force
(D) Smaller normal force
Q. 9 Two masses m and m^{\prime} are tied with a thread passing over a pulley. M^{\prime} is on a frictionless horizontal surface and m is hanging freely. If acceleration due to gravity is g, the acceleration of m^{\prime} in this arrangement will be
(A) g
(B) $m g /\left(m+m^{\prime}\right)$
(C) $\mathrm{mg} / \mathrm{m}^{\prime}$
(D) $\mathrm{mg} /\left(\mathrm{m}-\mathrm{m}^{\prime}\right)$
Q. 10 A body of mass 60 kg is dragged with just enough force to start moving on a rough surface with coefficients of static and kinetic frictions 0.5 and 0.4 respectively. On continuing ($g=9.8 \mathrm{~m} / \mathrm{s}^{2}$) the same force what is the acceleration:
(A) $0.98 \mathrm{~m} / \mathrm{s}^{2}$
(B) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(C) $0.54 \mathrm{~m} / \mathrm{s}^{2}$
(D) $5.292 \mathrm{~m} / \mathrm{s}^{2}$
Q. 11 Which of the following represents $2^{\text {nd }}$ law of motion most correctly.
(A) $\vec{F}=m \vec{a}$
(B) $\vec{F}=m \frac{d \vec{v}}{d t}$
(C) $\vec{F}=\frac{d \vec{p}}{d t}$
(D) $\vec{F}=m \vec{v}$
Q. 12 Two objects A and B are thrown upward simultaneously with the same speed. The mass of A is greater than the mass of B. Suppose the air exerts a constant and equal force of resistance on the two bodies.
(A) The two bodies will reach the same height.
(B) A will go higher than B
(C) B will go higher than A
(D) Any of the above three may happen depending on the speed with which the objects are thrown.
Q. 13 A heavy uniform chain party lies on a horizontal table. If the coefficient of friction between the chain and the table surface is 0.25 , then the maximum fraction of the length of the chain that can hang over edge of the table is
(A) 20%
(B) 25%
(C) 33%
(D) 15%.
Q. 14 An insect crawls up hemispherical surface very slowly as shown in Figure. The coefficient of friction between insect and surface is $1 / 3$. If the line joining the centre of the hemispherical surface to the insect makes an angle α with the vertical,
 the max. Possible value of α is given by
(A) $\cot \alpha=3$
(B) $\sec \alpha=3$
(C) $\operatorname{cosec} \alpha=3$
(D) None
Q. 15 When a bird of weight W alights on a stretched wire, the tension T in the wire may be:
(A) $>\mathrm{W} / 2$
$(B)=W$
(C) $<\mathrm{W}$
(D) None of these.
Q. 16 A block of mass 3 kg is at rest on a rough inclined plane as shown in the Figure. The magnitude of net force exerted by the surface on the block will be

(A) 26 N
(B) 19.5 N
(C) 10 N
(D) 30 N
Q. 17 With what minimum acceleration can a fireman slides down a rope whose breaking strength is two third of his weight?
(A) $g / 2$
(B) $2 \mathrm{~g} / 3$
(C) $\mathrm{g} / 3$
(D) $3 \mathrm{~g} / 4$
Q. 18 Forces of $30 \mathrm{~N}, 40 \mathrm{~N}$ and 50 N act along the sides $\overrightarrow{A B}, \overrightarrow{B C}$ and $\overrightarrow{C A}$ of an equilateral triangle $A B C$. The triangle is of mass 0.5 kg and kept in a vertical plane as shown in the Figure. With the side $A B$ vertical. The net vertical force acting on the triangle will be ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

(A) 125 N upwards
(B) 5 N downwards
(C) 10 N upwards
(D) 25 N downwards
Q. 19 A trolley is being pulled up an incline plane by a man sitting on it (as shown in Figure). He applies a force of 250 N . If the combined mass of the man and trolley is 100 kg , the acceleration of trolley will be $\left[\sin 15^{\circ}=0.26\right.$]

(A) $2.4 \mathrm{~m} / \mathrm{s}^{2}$
(B) $9.4 \mathrm{~m} / \mathrm{s}^{2}$
(C) $6.9 \mathrm{~m} / \mathrm{s}^{2}$
(D) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
Q. 20 A body is placed on a rough inclined plane of inclination. As the angle θ is increased from 0° to 90°, the contact force between the block and plane
(A) Remains constant
(B) First remains constant then decreases
(C) First decreases then increases
(D) First increases then decreases
Q. 21 A uniform chain of length ℓ is placed on a rough table with length $n \ell$ hanging over the edge ($\mathrm{n}<\ell$). If the chain just begins to slide off the table by itself from this position, the coefficient of friction between chain and table is
(A) $\frac{1}{\mathrm{n}}$
(B) $\frac{n}{1-n}$
(C) $\frac{1}{n+1}$
(D) $\frac{1-n}{1+n}$

Circular Dynamics

Single Correct Question

Q. 22 A particle moves in a circle of radius R with a constant speed under a centripetal force F. The work done F in completing a full circle is:
(A) $\left(M v^{2} / R\right) 2 \pi R$
(B) $\pi R^{2} F$
(C) $2 \pi R F$
(D) zero
Q. 23 When a particle is rotated in a vertical plane with constant angular velocity magnitude of centripetal force is:
(A) Maximum at highest point
(B) Maximum at lowest point
(C) Same at all points
(D) Zero
Q. 24 In uniform circular motion, the quantity that remains constant is:
(A) Linear velocity
(B) Centripetal force
(C) Acceleration
(D) Speed
Q. 25 Two particles of equal masses are revolving in circular paths of radii r_{1} and r_{2} respectively with the same speed. The ratio of their centripetal forces is:
(A) $\frac{r_{2}}{r_{1}}$
(B) $\sqrt{\frac{r_{2}}{r_{1}}}$
(C) $\left(\frac{r_{1}}{r_{2}}\right)^{2}$
(D) $\left(\frac{r_{2}}{r_{1}}\right)^{2}$
Q. 26 A 500kg car takes a round turn of radius 50 m with a velocity of $36 \mathrm{~km} / \mathrm{hr}$. The centripetal force is:
(A) 250 N
(B) 750 N
(C) 1000 N
(D) 1200 N
Q. 27 A body of mass 5 kg is moving in a circle of radius 1 m with an angular velocity of 2 radian $/ \mathrm{sec}$. The centripetal force is:
(A) 10 N
(B) 20 N
(C) 30 N
(D) 40 N
Q. 28 A motorcycle is going on an overbridge of radius R. The driver maintains a constant speed. As the motorcycles is ascending on the overbridge, the normal force on it:
(A) Increase
(B) Decreases
(C) Remains constant
(D) First increases then decreases.
Q. 29 If a particle of mass m is moving in a horizontal circle of radius r with a centripetal force $\left(-k / r^{2}\right)$, the total energy of the particle is:
(A) $-\frac{k}{2 r}$
(B) $-\frac{k}{r}$
(C) $-\frac{2 \mathrm{k}}{\mathrm{r}}$
(D) $-\frac{4 \mathrm{k}}{\mathrm{r}}$
Q. 30 A person with his hands in his pocket is skating on ice at the rate of $10 \mathrm{~m} / \mathrm{s}$ and describes a circle of radius 50 m . What is his inclination to the vertical:
(A) $\tan ^{-1}(1 / 2)$
(B) $\tan ^{-1}(1 / 5)$
(C) $\tan ^{-1}(3 / 5)$
(D) $\tan ^{-1}(1 / 10)$
Q. 31 A ball tied to a string (in vertical plane) is swinging in a vertical circle. Which of the following remains constant during the motion?
(A) Tension in the string
(B) Speed of the ball
(C) Centripetal force
(D) Gravitational force on the ball
Q. 32 A heavy particle hanging vertically from a point by a light inextensible string of length I is started so as to make a complete revolution in a vertical plane. The sum of the tension at the ends of any diameter:
(A) First increase then decreases
(B) Is constant
(C) First decrease then increases
(D) Decreases continuously
Q. 33 In a circus, stuntman rides a motorbike in a circular track of radius R in the vertical plane. The minimum speed at highest point of track will be:
(A) $\sqrt{2 g R}$
(B) 2 gR
(C) $\sqrt{3 g R}$
(D) $\sqrt{g R}$

Previous Years' Questions

Forces and Laws of Motion

Q. 1 A ship of mass $3 \times 10^{7} \mathrm{~kg}$ initially at rest, is pulled by a force of $5 \times 10^{4} \mathrm{~N}$ through a distance of 3 m . Assuming that the resistance due to water is negligible, the speed of the ship is
(1980)
(A) $1.5 \mathrm{~m} / \mathrm{s}$
(B) $60 \mathrm{~m} / \mathrm{s}$
(C) $0.1 \mathrm{~m} / \mathrm{s}$
(D) $5 \mathrm{~m} / \mathrm{s}$
Q. 2 A block of mass 2 kg rests on a rough inclined plane making an angle of with the horizontal. The coefficient of static friction between the block and the plane is 0.7. The frictional force on the block is
(1980)
(A) 9.8 N
(B) $0.7 \times 9.8 \times \sqrt{3} \mathrm{~N}$
(C) $9.8 \times \sqrt{3} \mathrm{~N}$
(D) $0.7 \times 9.8 \mathrm{~N}$
Q. 3 A car is moving in a circular horizontal track of radius 10 m with a constant speed of $10 \mathrm{~m} / \mathrm{s}$. A plumb bob is suspended from the roof of the car by a light rigid rod. The angle made by the rod with vertical is (Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
(1992)
(A) Zero
(B) 30°
(C) 45°
(D) 60°
Q. 4 A block of mass 0.1 kg is held against a wall applying a horizontal force of 5 N on the block. If the coefficient of friction between the block and wall is 0.5 , the magnitude of the frictional force acting on the block is
(1994)
(A) 2.5 N
(B) 0.98 N
(C) 4.9 N
(D) 0.49 N
Q. 5 A long horizontal rod has a bead which can slide along its length and initially placed at a distance L from one end A of the rod. The rod is set in angular motion about A with a constant angular acceleration α. If the coefficient of friction between the rod and bead is μ, and gravity is neglected, then the time after which the bead starts slipping is
(2000)
(A) $\sqrt{\frac{\mu}{a}}$
(B) $\frac{\mu}{\sqrt{\mathrm{a}}}$
(C) $\frac{1}{\sqrt{\mu \mathrm{a}}}$
(D) infinitesimal
Q. 6 A small block is shot into each of the four tracks as shown below. Each of the tracks rises to the same height. The speed with which the block enters the track is the same in all the cases. At the highest point of track, the normal reaction is maximum in
(2001)

Q. 7 An insect crawls up a hemispherical surface very slowly (see the Figure). The coefficient of friction between the surface and insect is $1 / 3$. If the line joining the center of the hemispherical surface to the insect makes an angle α with the vertical, the maximum possible value of α is given
(2001)

(A) $\cot \alpha=3$
(B) $\tan \alpha=3$
(C) $\sec \alpha=3$
(D) $\operatorname{cosec} \alpha=3$
Q. 8 A string of negligible mass going over a clamped pulley of mass m supports a block of mass M as shown in the Figure. The force on the pulley by the clamp is given by
(2001)

(A) $\sqrt{2} \mathrm{Mg}$
(B) $\sqrt{2} \mathrm{mg}$
(C) $\sqrt{(M+m)^{2}+m^{2} g}$
(D) $\left(\sqrt{(M+m)^{2}+M^{2}}\right) g$
Q. 9 The pulleys and strings shown in the Figure. are smooth and of negligible mass. For the system to remain in equilibrium, the angle θ should be
(2001)
(A) Zero
(B) 30°
(C) 45°
(D) 60°
Q. 10 What is the maximum value of force F such that the block shown in the arrangement. does not move?
(2003)

(A) 20 N
(B) 10 N
(C) 12 N
(D) 15 N
Q. 11 A block of mass m is at rest under the action of force F against a wall as shown in Figure. Which of the following statement is incorrect?
(2005)

(A) $f=m g$ (where f is the frictional force)
(B) $\mathrm{F}=\mathrm{N}$ (where N is the normal force)
(C) F will not produce torque
(D) N will not produce torque
Q. 12 System shown in Figure is in equilibrium and at rest. The spring and string are massless. Now the string is cut. The acceleration of mass 2 m and m just after the string is cut will be
(2006)
(A) $\mathrm{g} / 2$ upwards, g downwards
(B) g upwards, $\mathrm{g} / 2$ downwards

(C) g upwards, 2 g downwards
(D) 2 g upwards, g downwards
Q. 13 A piece of wire is bent in the shape of a parabola (y-axis vertical) with a bead of mass m on it. The bead can slide on the wire without friction. It stays at the lowest point of the parabola when the wire is at rest. The wire is now accelerated parallel to the x-axis with a constant acceleration a. The distance of the new equilibrium position of the bead, where the bead can stay at rest with respect to the wire, from the y-axis is
(2009)
(A) $\frac{a}{g k}$
(B) $\frac{a}{2 g k}$
(C) $\frac{2 \mathrm{a}}{\mathrm{gk}}$
(D) $\frac{\mathrm{a}}{4 \mathrm{gk}}$
Q. 14 A block of mass m is on an inclined plane of angle θ. The coefficient of friction between the block and plane is μ and $\tan \theta>\mu$. The block is held stationary by applying a force P parallel to the plane. The direction of force pointing up the plane is taken to the positive. As P is varied from

$P_{1}=m g(\sin \theta-\mu \cos \theta)$ to $P_{2}=m g(\sin \theta+\mu \cos \theta)$ the
frictional force f versus P graph look like
(2010)
(A)

(B)

(C)

(D)

Q. 15 A reference frame attached to the earth
(1986)
(A) Is an inertial frame by definition.
(B) Cannot be an inertial frame because the earth is revolving round the sun.
(C) Is an inertial frame because Newton's law are applicable in this frame.
(D) Cannot be an inertial frame because the earth is rotating about its own axis

Circular Dynamics

Q. 16 A car is moving in a circular horizontal track of radius 10 m with a constant speed of $10 \mathrm{~m} / \mathrm{s}$. A plumb bob is suspended from the roof of the car by a light rigid rod. The angle made by the rod with the vertical is
(Take $\mathrm{g}=10 / \mathrm{s}^{2}$)
(1992)
(A) Zero
(B) 30°
(C) 45°
(D) 60°
Q. 17 A ball of mass (m) 0.5 kg is attached to the end of a string having length (L) 0.5 m . The ball is rotated on a horizontal circular path about vertical axis. The maximum tension that the string can bear is 324 N . The maximum possible value of angular velocity of ball (in rad/s) $3 \mathrm{~kg}-\mathrm{ms}^{-1}$

(2011)
(A) 9
(B) 18
(C) 27
(D) 36
Q. 18 A particle of mass m is at rest at the origin at time t $=0$. It is subjected to a force $F(t)=F_{0} e^{-b t}$ in the x direction. Its speed $\mathrm{v}(\mathrm{t})$ is depicted by which of the following curves?
(2012)
(A)

(B)

(C)

(D)

Q.19 A block of mass m is placed on a surface with a vertical cross section given by $y=x^{3} / 6$. If the coefficient of friction is 0.5 , the maximum height above the ground at which the block can be placed without slipping is:
(2014)
(A) $\frac{1}{3} \mathrm{~m}$
(B) $\frac{1}{2} \mathrm{~m}$
(C) $\frac{1}{6} \mathrm{~m}$
(D) $\frac{2}{3} \mathrm{~m}$
Q. 20 Given in the figure are two blocks A and B of weight 20 N and 100 N respectively. These are being pressed against a wall by a force F as shown. If the coefficient of friction between the blocks is 0.1 and between block B and the wall is 0.15 , the frictional force applied by the wall on block B is
(2015)
(A) 80 N
(B) 120 N
(C) 150 N
(D) 100 N
Q. 21 A point particle of mass m, moves along the uniformly rough track PQR as shown in the figure. The coefficient of friction, between the particle and the rough track equals μ. The particle is released, from rest, from the point P and it comes to rest at a point R. The energies, lost by the ball, over the parts, PQ and QR , of the track, are equal to each other, and no energy is lost when particle changes direction from $P Q$ to $Q R$. (2016)
The values of the coefficient of friction μ and the distance $x(=Q R)$, are, respectively close to :
(A) 0.2 and 3.5 m
(B) 0.29 and 3.5 m
(C) 0.29 and 6.5 m
(D) 0

JEE Advanced/Boards

Exercise 1

Forces and Laws of Motion

Q. 1 A man of mass 70 kg stands on weighting scale in a lift which is moving
(a) Upwards with a uniform speed of $10 \mathrm{~ms}^{-1}$.
(b) Downwards with a uniform acceleration of $5 \mathrm{~ms}^{-2}$.
(c) Upwards with a uniform acceleration of $5 \mathrm{~ms}^{-2}$.
(d) What would be the reading if the lift mechanism failed and it hurtled down freely under gravity?
What would be the readings on the scale in each case?

Q. 2 A block of mass 25 kg is raised by a 50 kg man in two different ways as shown in Figure. What is the action on the floor by the man in the two cases? If the floor yields to a normal force of 700 N , which mode should man adopt to lift the block without the floor yielding?

Q. 3 A monkey of mass 40 kg climbs on a rope which can stand a maximum tension of 600 N . In which of the following cases will the rope break: the monkey
(a) Climbs up with an acceleration of $6 \mathrm{~ms}^{-2}$
(b) Climbs down with an acceleration of $4 \mathrm{~ms}^{-2}$
(c) Climbs up with a uniform speed of $5 \mathrm{~ms}^{-2}$
(d) Falls down the rope nearly freely under gravity.
Q. 4 The rear side of a truck is open and a box of 40 kg mass is placed 5 m away from the open end as shown in Figure. The co-efficient of friction between the box and the surface below it is 0.15 . On a straight road, the truck starts from rest and accelerates with $2 \mathrm{~ms}^{-2}$ At what distance from the starting point does the box fall of the truck? (Ignore the size of the box).

Q. 5 A helicopter of mass 1000 kg rises with a vertical acceleration of $15 \mathrm{~ms}^{-2}$. The crew and the passenger weigh 300 kg . Give the magnitude and direction of the
(a) Force on the floor by the crew and passengers.
(b) Action of the rotor of the helicopter on the surrounding air.
(c) Force on the helicopter due to the surrounding air.
Q. 6 A block of mass 15 kg is placed on a long trolley. The co-efficient of static friction between the block and trolley is 0.18 . The trolley accelerates from rest with $0.5 \mathrm{~ms}^{-2}$ for 20 s and then moves with uniform velocity. Discuss the motion of the block viewed by (a) a stationary observer on the ground. (b) an observer moving with the trolley.
Q. 7 Both the springs shown in the Figure are unstretched. If the block is displaced by a distance x and released, what will be the initial acceleration?

Q. 8 Three equal weights of 2 kg each are hanging over the frictionless pulley. Find the acceleration of the system and tension of the string connecting weights A and B. $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
Q. 9 Find the tension in $O B$ and $A B$ in the given Figure. Also, calculate the tension in $O B$ when just after the string $A B$ is burnt.

Q. 10 A man of mass m has fallen into a ditch of width d and two of his friends are slowly pulling him out using a light rope and two fixed pulleys as shown in Figure. Show that the force (assumed equal for both the friends) exerted by each friend on the rope increases as the man move up. Find the force when the man is at a depth h.

Q. 11 The elevator shown in the Figure is descending with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$. The mass of block A is 0.5 kg . What force es
 exerted by the block A on the block B ?
Q. 12 The force of buoyancy exerted by the atmosphere on a balloon is B in the upward direction and remains constant. The force of air resistance on the balloon acts opposite to the direction of velocity and is proportional to it. The balloon carries a mass M and is found to fall down near the earth's surface with a constant velocity v . How much mass should be removed from the balloon so that it may rise with a constant velocity v ?
Q. 13 Two touching bars 1 and 2 are placed on an inclined plane forming an angle α with the horizontal shown in Figure. The masses of the bars are equal to m_{1} and m_{2} and the coefficients of friction between the inclined plane and the bars are equal to k_{1} and k_{2} respectively, with $k_{1}>k_{2}$.
Find (a) The force of interaction of the bars in the process of motion; (b) The minimum value of the angle α at which the bars start sliding down.

Q. 14 A small body A starts sliding down from the top of fixed wedge (as shown in the Figure) whose base is equal to $\mathrm{I}=2.10 \mathrm{~m}$. The coefficient of friction between the body and the wedge surface is $k=0.140$. At what value of the angle α will the time of sliding be the least?

Q. 15 At the moment $t=0$ the force $F=a t$ is applied to a small body of mass m resting on a smooth horizontal plane (a) is constant). The permanent direction of this force forms as angle α with the horizontal. Find (a) The velocity of the body at the moment of its breaking off the plane; (b) The distance traversed by the body up to this moment.

Q. 16 Two identical block A and B each of mass M are connected through a light inextensible string. Coefficient of friction between blocks and surfaces are μ as shown. Initially string is relaxed in its normal length. Force F is applied on block A as shown. Find the force of friction on blocks and tension in the string.
Q. 17 In the Figure block A is one fourth the length of the block B and there is no friction between block B and surface on which it is placed. The coefficient of sliding friction between A and B. Block C and block A have the same mass and mass of B is four times mass of A. when the system is released, calculate the distance the block B moves when only three fourth of block A is still on the block B.

Q. 18 The inclined plane of forms an angle $\alpha=30^{\circ}$ with the horizontal. The mass ratio. The coefficient of friction between the body and inclined plane is equal to $\mathrm{k}-0.10$. The masses of the pulley and the threads are negligible. Find the magnitude and the direction of acceleration of the body m_{2} when the system of masses starts moving.

Q. 19 As shown in the Figure blocks of masses $\mathrm{M} / 2, \mathrm{M}$ and $M / 2$ are connected through a light string as shown, pulleys are light and smooth. Friction is only between block C and floor. System is released from rest. Find the acceleration of blocks A, B and C and tension in the string.

Q. 20 On a smooth inclined plane of angle α is placed on in such a way that the upper wedge face is horizontal. On this horizontal face is placed a block of mass m . Find the resultant acceleration of the block in subsequent motion.

Q. 21 In the system shown in Figure. $m_{A}=4 \mathrm{~m}, \mathrm{~m}_{\mathrm{B}}=3 \mathrm{~m}$ and $m_{C}=8 \mathrm{~m}$. Friction is absent everywhere. String is light and inextensible. If the system is released from rest find the acceleration of each block.

Q. 22 Find the accelerations of $\operatorname{rod} A$ and wedge B in the arrangement shown in the Figure. If the ratio of the mass of the wedge of that of the rod equals, and the friction between all contact surfaces is negligible.
Q. 23 A particle of mass m is pulled by means of a thread up an inclined plane forming an angle α with the horizontal as shown in the Figure. The coefficient of friction is equal to μ. Find the angle β which the thread must form with the inclined plane for the tension of the thread to be maximum. What is it equal to?

Q. 24 A plank of mass with a block of mass m_{2} placed on it lies on a smooth horizontal plane. A horizontal force growing with time t as $F=a t(a$ is constant) is applied to the plank. Find how the accelerations of the plank and of the bar w_{2} depend on t, if the coefficient of friction between the plank and block is equal to k. Draw approximate plots of these dependences.
Q. 25 A horizontal plane with the coefficient of friction k supports two bodies: a bar and an electric motor with a battery on a block. A thread attached to the bar is wound on the shaft of the electric motor. The distance
between the bar and electric motor is equal to I. When the motor is switched on, the bar, whose mass is twice as great as that of the other body, starts moving with a constant acceleration w. How soon will the bodies collide?
Q. 26 Two particle of equal masses m and m are connected up a light string of length 21 . A constant force F is applied continuously at the middle of the string, always along the perpendicular bisector of the line joining the two particles. Show that when the distance between the particles is $2 x$, the acceleration of approach of particles is $\frac{f x}{m\left(\ell^{2}-x^{2}\right)^{\frac{1}{2}}}$.
Q. 27 Determine the acceleration of bodies A and B and the tension in the cable due to application of the 300 N force. Neglect all friction and the masses of pulleys.
Q. 28 Two blocks A and B having masses $m_{1}=1 \mathrm{~kg}$ and $\mathrm{m}_{2}=4 \mathrm{~kg}$ are arranged as shown in Figure. The pulleys P and Q are light and frictionless. All blocks are resting on the horizontal floor and pulleys are held such that strings remain just taut. At moment $t=0$, a force $F=30 \mathrm{~N}$ starts acting on the pulley P along vertically upward direction as shown in the Figure: Determine
(a) The time when blocks A and B lose contact with ground,
(b) The velocity of A when B loses contact with ground,
(c) The height raised by A till this instant.

Circular Dynamics

Q. 29 An astronaut is rotating in a rotor having vertical axis and radius 4 m . If he can withstand upto acceleration of 10 g . Then what is the maximum number of permissible revolutions per second? 60°
Q. 30 A racing-car of 1000 kg moves round a banked track at a constant speed of $108 \mathrm{~km} \mathrm{~ms}^{-2}$. Assuming the total reaction at the wheels is normal to the track and the horizontal radius of inclination of the track to the horizontal and the reaction at the wheels.
Q. 31 A man whirls a stone around his lead on the end of a string 4 metre long. If the stone has a mass of 0.4 kg and the string will break if the tension in it exceeds 8 N , what is the smallest angle the string can make with the horizontal? What is the speed of the stone? 40°
Q. 32 A boy whirls a stone in a horizontal circle of radius 1.5 m and 2 m above the ground by means of a string. The string breaks and the stone files off horizontally, striking the ground 10 m away. What is the centripetal acceleration during circular motion?
Q. 33 A stone is fastened to one end of a string and is whirled in a vertical circle of radius R. Find the minimum speed the stone can have at the highest point of the circle.
Q. 34 A stone of mass 1 kg is attached to one end of a string of length 1 m and breaking strength 500 N , and is whirled in a horizontal circle on a frictionless table top. The other end of the string is kept fixed. Find the maximum speed the stone can attain without breaking the string.
Q. 35 A circular automobile test track has a radius of 200m. The track is so designed that when a car travels at a speed of 100 kilometer per hour, the force between the automobile and the track is normal to the surface of track. Find the angle of the bank.
Q. 36 A block of mass M is kept on a horizontal ruler. The friction coefficient between the ruler and block is $v=\frac{\mathrm{mg}^{2} \cos \alpha}{2 a \sin ^{2} \alpha}$. The ruler is fixed at one end and the block is at a distance L from the fixed end. The ruler is rotated about the fixed end. Find the maximum angular speed for which block will slip.
Q. 37 A motorcycle has to move with a constant speed on an over bridge which is in the form of a circular are of radius R and has a total length L. Suppose the motorcycle starts from the highest point. (a) What can its maximum velocity be for which contact with road is not broken at the highest point? (b) If the motorcycle goes at speed $\operatorname{gr}^{2}(r-r \phi)=2 \operatorname{lgm}$ times the maximum found in part (a). Where will it lose the contact with the road? (c) What maximum uniform speed can it maintain on the bridge if it does not lose contact anywhere on the bridge?
Q. 38 A simple pendulum is suspended from the ceiling of a car taking a turn of radius 10 m at a speed of $36 \mathrm{~km} / \mathrm{h}$. Find the angle made by the string of the pendulum with the vertical if this angle does not change during the turn. Take kmh^{-2}.
Q. 39 A heavy particle hanging from a fixed point by a light inextensible string of length ms^{-2} is projected horizontally with speed $-(\hat{x}+\hat{y}) / \sqrt{2} \mathrm{~cm} / \mathrm{s}^{2}$, find the
speed of the particle and the inclination of the string to the vertical at the instant of the motion when the tension in the string is equal to the weight of the particle.
Q. 40 A hemispherical bowl of radius R is rotated about its axis of symmetry which is kept vertical. A small block is kept in the bowl at a position where the radius makes angle ms^{-2} with the vertical. The block rotates with the bowl without any shipping. The frictional coefficient between the block and the bowl is $\beta=54^{\circ} 28^{\prime}$. Find the range of angular speed for which the block will not slip.
Q.41 A table with smooth horizontal surface is fixed in a cabin that rotates with a uniform angular velocity $\mathrm{m} / \mathrm{s}^{2}$ in a circular path of radius $\mathrm{R}=700 \mathrm{~m}$. A smooth groove $A B$ of length $L=7 m$ is made on the surface of the table. The groove makes an angle $\frac{\left(k_{1}+k_{2}\right) x}{m}$ with the radius $O A$ of the circle in which the cabin rotates. A small particle if kept at the point A in the groove and is released to move along $A B$. Find the time taken by the particle to reach the point B.
Q. 42 A table with smooth horizontal surface is placed in a cabin which moves in a circle of a large radius R. A smooth pulley of small radius is fastened to the table. Two masses of m and $2 m$ are placed on the table connected through a string going over the pulley. Initially the masses were at rest. Find the magnitude of the initial acceleration of the masses as seen from the cabin and the tension in the string.
Q. 43 A particle of mass m moves along a horizontal circle of radius R such that normal acceleration of particle varies with time as $\mathrm{T}_{\mathrm{ab}}=m g \tan \theta, \mathrm{~T}_{\mathrm{ab}}=\mathrm{mg} / \cos \theta, \mathrm{T}^{\prime}=\mathrm{mg} \cos \theta$. where K is a constant. Calculate
(i) Tangential force on particle at time t
(ii) Total force on particle at time t
(iii) Power developed by total force at time t and
(iv) Average power developed by total force over first t second
Q. 44 A smooth sphere of radius R is made to translate in a straight line with a constant acceleration a. A particle kept on the top of the sphere is released from there at zero velocity with respect to the sphere. Find the speed of the particle with respect to the sphere as a function of the angle $\frac{M g}{4 h} \sqrt{a^{2}+4 h^{2}}$ it slides.
Q. 45 A uniform circular ring of mass per unit length $\frac{2(\mathrm{Mg}-\mathrm{B})}{\mathrm{g}}$ and radius R is rotating with angular velocity
$f=\left(k_{1}-k_{2}\right) \frac{m^{2} \cos \alpha}{m_{1}+m_{2}}$ about its own axis in a gravity free space. Find the tension in the ring.
Q. 46 If a particle is rotating in a circle of radius R with velocity at an instant v and the tangential acceleration is a. Find the net acceleration of the particle.
Q.47 A metal ring of mass m and radius R is placed on a smooth horizontal table and is set rotating about its own axis in such a way that each part of the ring moves with speed v. Find the tension in the ring.
Q. 48 A car goes on a horizontal circular road of radius R the speed is increasing at a constant rate $\cos \alpha_{\text {min }}=\frac{k_{1} m_{1}+k_{2} m_{2}}{m_{1}+m_{2}} a$. The friction coefficient is $\alpha=\frac{1}{2} \tan ^{-1}\left(-\frac{1}{\mu}\right)$. Find the speed at which the car will just skid.

Exercise 2

Forces and Laws of Motion

Single Correct Choice Type

Q. 1 A chain of length L and mass M is hanging by fixing its upper end to rigid support. The tension in the chain at a distance x from the rigid support is

$$
s=\frac{m^{2} g^{3} \cos \alpha}{6 a^{2} \sin ^{3} \alpha}
$$

Q. 2 A block A kept on an inclined surface just begins to slide if the inclination is 30°. The block is replaced by another block B and it is found that it just begins to slide if the inclination is 40°.
(A) Mass of $A>$ mass of B.
(B) Mass of $A<$ mass of B
(C) Mass of $A=$ mass of B
(D) All the three are possible.
Q. 3 The arrangement shown in the Figure, the system of masses m_{1}, m_{2} and m_{3} is being pushed by a force F applied on m_{1} horizontally. In order to prevent the downwards slipping of m_{2} between m_{1} and m_{3}. If coefficient of friction between m_{2} and m_{3} is μ and all the other surfaces are smooth, the minimum value of F (A) $\mathrm{f}_{\mathrm{A}}=\frac{3}{4} \mu \mathrm{Mg}, \mathrm{f}_{\mathrm{B}}=0, \mathrm{~T}=0$
(B) $\mathrm{f}_{\mathrm{A}}=\mu \mathrm{Mg}, \mathrm{f}_{\mathrm{B}}=\frac{\mu \mathrm{Mg}}{2}, \mathrm{~T}=\frac{\mu \mathrm{Mg}}{2}$
(C) $\mathrm{F} \geq\left(\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}\right) \mu \mathrm{g}$
(D) $\mathrm{F} \leq\left(\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}\right) \mu \mathrm{g}$
Q. 4 Blocks A and B in Figure are connected by a bar of negligible weight. If mass of A and M are 170 kg each and $\mu_{\mathrm{A}}=0.2$ and $\mu_{\mathrm{B}}=0.4$, where μ_{A} and μ_{B} are the coefficients of limiting friction between blocks and plane, calculate the force in the bar. $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

(A) 150 N
(B) 75 N
(C) 200 N
(D) 250 N
Q. 5 A person, standing on the floor of an elevator, drops a coin. The coin reaches the floor of the elevator in a time t_{1}. If the elevator is stationary and in time t_{2} if it is moving uniformly. Then
(A) $t_{1}=t_{2}$
(B) $t_{1}<t_{2}$
(C) $t_{1}>t_{2}$
(D) $t_{1}>t_{2}$ or $t_{1}<t_{2}$ depending on whether the
lift is going up or down.
Q. 6 How large must F be in the Figure shown to given the 700 gm block an acceleration of $30 \mathrm{~cm} / \mathrm{s}^{2}$? The coefficient of friction between all surfaces is 0.15 .

(A) 4 N
(B) 2.18 N
(C) 3.18 N
(D) 6 N
Q. 7 If the force which acting parallel to an inclined plane of angle α just sufficient to draw the weight up in n times the force which will just let it be on the point of sliding down, the coefficient of friction will be
(A) $\mu=\frac{(n-1)}{n+1} \tan \alpha$
(B) $\mu=\frac{(n+1)}{n-1} \tan \alpha$
(C) $\mu=n \tan \alpha$
(D) $\mu=(n+1) \tan \alpha$
Q. 8 Two blocks A and B of masses m and M are placed in a platform as shown in the Figure. The friction coefficient between A and B is μ but there is no friction between B and the platform. The whole arrangement is placed inside an elevator which is coming down with an acceleration $\mathrm{a}(\mathrm{a}<\mathrm{g})$. What maximum horizontal force F can be applied to A without disturbing the equilibrium of the system?

(A) $2 \mu \mathrm{mg}$
(B) $2 \mu \mathrm{~m}(\mathrm{~g}-\mathrm{a})$
(C) $2 \mu \mathrm{~m}(\mathrm{~g}+\mathrm{a})$
(D) $2 \mu \mathrm{ma}$
Q. 9 A body of mass m_{1} is placed on a horizontal plank of mass m_{2} which rests on a smooth horizontal table. The coefficient of friction between the mass m_{1} and plank is μ. A gradually increasing force F depending on time t as $\mathrm{F}=$ at where a is constant is applied to the plank. The time t_{0} at which the plank starts sliding under the mass is
(A) $\frac{m_{1} \mu g}{a}$
(B) $\frac{\left(m_{1}+m_{2}\right) \mu g}{a}$
(C) $\frac{m_{2} \mu g}{a}$
(D) $\frac{m_{1} m_{2} \mu g}{a}$
Q. 10 Block A is placed on block B whose mass is greater than that of A. There is friction between blocks while the ground is smooth. A horizontal force P increasing linearly with time begins to act on A . The accelerations a_{1} and a_{2} of A and B respectively are plotted in a graph against time. Which of the following graphs represents the real situation?
(A)

(B)

(D)

Q. 11 Find the least horizontal force P to start motion of any part of the system of the three blocks resting upon one another as shown in Figure. The weight of blocks are $A=300 \mathrm{~N}, \mathrm{~B}=100 \mathrm{~N}, \mathrm{C}=200 \mathrm{~N}$. Between A and $B, \mu=0.3$. Between B and $C, \mu=0.2$. Between C and the ground $\mu=0.1$.

(A) 90 N
(B) 60 N
(C) 80 N
(D) 100 N
Q. 12 A block of mass rests on a rough horizontal plane relative to which the coefficient of friction is μ. A light string attached to the body passes over a light pulley and carries at its other end a mass m_{2}. When the system just
 begins to move, the value of μ is
(A) $\frac{m_{2}}{\sqrt{2} m_{1}-m_{2}}$
(B) $\frac{m_{2}}{\sqrt{2} m_{1}+m_{2}}$
(C) $\frac{m_{2}}{\sqrt{2} m_{2}+m_{1}}$
(D) $\frac{m 2}{\sqrt{2} m_{2}-m_{1}}$

Multiple Correct Choice Type

Q. 14 In the arrangement shown in the Figure pulley is smooth and massless and string is light. Friction coefficient between A and B is μ. Friction is absent between A and plane. Select the correct alternative(s)

(A) acceleration of the system is zero if $\mu \geq \frac{m_{B}-m_{A}}{2 m_{B}} \tan \theta$ and $m_{B}>m_{A}$
(B) Force of friction between A and B is zero if

$$
m_{A}=m_{B}
$$

(C) B moves upwards if $m_{B}<m_{A}$
(D) Tension in the string is $m g(\sin \theta-\mu \cos \theta)$ if
$\mathrm{m}_{\mathrm{A}}=\mathrm{m}_{\mathrm{B}}=\mathrm{m}$
Q. 15 (A, D) Two blocks A and B of mass 10 kg and 20 kg respectively are placed as shown in Figure. Coefficient of friction between all the surfaces is $0.2\left(\mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(A) Tension in the string is 306 N
(B) Tension in the string is 132 N
(C) Acceleration of block B is $2.6 \mathrm{~m} / \mathrm{s}^{2}$
(D) Acceleration of block B is $2.6 \mathrm{~m} / \mathrm{s}^{2}$

Q. 16 In the arrangement shown in the Figure. all surface are smooth. Select the correct alternative(s)

(A) For any value of θ acceleration of A and B are equal
(B) Contact force between the two blocks is zero if $\mathrm{m}_{\mathrm{A}} / \mathrm{m}_{\mathrm{B}}=\tan \theta$
(C) Contact force between the two is zero for any value of m_{A} or m_{B}
(D) Normal reactions exerted by the wedge on the block are equal.
Q. 17 Two blocks A and B of equal mass m are connected through a massless string and arranged as shown in Figure. Friction is absent everywhere. When the system is released from rest.
(A) Tension in string is mg/2
(B) Tension in string is $\mathrm{mg} / 4$
(C) Acceleration in string is $\mathrm{g} / 2$
(D) Acceleration in string is $3 \mathrm{~g} / 2$

Assertion Reasoning Type

Each of the question given below consists of two statements, an assertion and reason. Select the number corresponding to the appropriate alternative as follows
(A) If both assertion and reason are true and reason is the correct explanation of assertion
(B) If both assertion and reason are true but reason is not the correct explanation of assertion
(C) If assertion is true but reason is false
(D) If assertion is false but reason is true.
Q. 18 Assertion: The law of conservation of linear momentum, as applied to a single particle, is equivalent to Newton's first law of motion.

Reason: As Newton's first law states in the absence of external force state of motion of a body does not change.
Q. 19 Assertion: The impulse of a force can be zero even if force is not zero.

Reason: The impulse of a force is equal to change in momentum of a body.
Q. 20 Assertion: If a book is placed on table at rest then force exerted by table on the book and weight of the book formation reaction pairs according to Newton $3{ }^{\text {rd }}$ law of motion

Reason: Since both are equal in magnitude and opposite in directions.
Q. 21 Assertion: The mass of a body can be regarded as a quantitative measure of the resistance of a body to acceleration by a given force.

Reason: The acceleration produced by a given force is inversely proportional to mass being accelerated.
Q. 22 Assertion: While conserving the linear momentum of the system we must specify the reference frame.
Reason: Like velocity, momentum also depends on the reference from of observer.

Comprehension Type

Paragraph 1: A ball of mass m is connected with the string $A B$ and $B C$ respectively as shown in the figure. Now string $A B$ is cut. Answer the following questions

Q. 23 Tension in the string $A B$ and $B C$ respectively the string $A B$ is cut
(A) $m g \cot B, m g \cos B$
(B) $m g \tan B, m g \cos B$
(C) $m g \tan B, m g \sec B$
(D) $m g \cot B, m g \sec B$
Q. 24 Tension in the string $B C$ just after the string $A B$ is cut
(A) $m g \sin B$
(B) $m g \cos B$
(C) $m g \tan B$
(D) $\mathrm{mg} \sec \mathrm{B}$
Q. 25 If string $B C$ is cut instead of $A B$, what is the tension in the string $A B$ just after
(A) $m g \cos B$
(B) $m g \tan B$
(C) $m g \sin B$
(D) zero
Q. 26 If the whole system is placed in an automobile, what is the acceleration required to be given to it so that even after cutting the string $A B$, it remains in the same position
(A) g tanB, right ward
(B) $g \cot$, right ward
(C) $g \operatorname{tanB}$, left ward
(D) $g \cot B$, left ward

Passage 2: A block of mass m slides down a smooth incline of mass M and length I, solely as a result of the force of gravity. The incline is placed on a smooth horizontal table as shown in Figure. Let us denote the coordinate system relative to the table as S_{1} and the coordinate system relative to the incline as S_{ϕ}

Q. 27 The acceleration of m in the S^{\prime} frame is
(A) $\frac{(M+m) g \sin \theta}{M+m \sin ^{2} \theta}$
(B) $\frac{(M+m) g \sin \theta}{m+M \sin ^{2} \theta}$
(C) $\frac{(\mathrm{M}-\mathrm{m}) g \sin \theta}{M+m \sin ^{2} \theta}$
(D) $\frac{(M+m) g \sin \theta}{M+m \sin \theta}$
Q. 28 The acceleration of the incline in the S frame
(A) $\left(\frac{m g \sin \theta \cos \theta}{M+m \sin ^{2} \theta}\right)$
(B) $-\left(\frac{m g \sin \theta \cos \theta}{M+m \sin ^{2} \theta}\right)$
(C) $\left(\frac{M g \sin \theta \cos \theta}{M+m \sin ^{2} \theta}\right)$
(D) $-\left(\frac{M g \sin \theta \cos \theta}{M+m \sin ^{2} \theta}\right)$
Q. 29 The force exerted by the small m on the wedge of mass M
(A) $m g \cos \theta$
(B) $\frac{\mathrm{Mmg}}{\mathrm{M}+\mathrm{msin}^{2} \theta}$
(C) $\frac{\mathrm{mg}}{\cos \theta}$
(D) None
Q. 30 At what acceleration a_{x} (in the S frame) must the incline be accelerated to prevent m from sliding
(A) $-g \tan \theta$
(B) $+g \tan \theta$
(C) $-\frac{g \tan \theta}{2}$
(D) $+\frac{g \tan \theta}{2}$

Passage 3: An arrangement designed to measure the acceleration due to gravity at a place consist of two blocks A and B, of mass m and $2 m$ respectively connected to each other by means of a light inextensible string passing over a light frictionless pulley as shown in the Figure. A light and very rough plank, rigidly held in position, supports the block A. The system, it is observed does not move at all. The portion of the string OA, is initially horizontal. Assume that the acceleration due to gravity, $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

Q. 31 The net force due to plank, acting on the block A, has magnitude
(A) 2 mg
(B) mg
(C) $\sqrt{3} \mathrm{mg}$
(D) $\sqrt{5} \mathrm{mg}$
Q. 32 The magnitude of the force exerted on the pulley by the clamp is, when the system is in equilibrium
(A) 4 mg
(B) $4 \mathrm{mg} / 3$
(C) $\frac{2 \sqrt{2} \mathrm{mg}}{3}$
(D) $2 \sqrt{2} \mathrm{mg}$
Q. 33 The plank is suddenly broken by an impulsive force, acting downwards. The instantaneous accelerations of A and B, just after the plank is removed, are respectively,
(A) $10 \mathrm{~m} / \mathrm{s}^{2}$ and $10 \mathrm{~m} / \mathrm{s}^{2}$
(B) $20 \mathrm{~m} / \mathrm{s}^{2}$ and $3.33 \mathrm{~m} / \mathrm{s}^{2}$
(C) $12 \mathrm{~m} / \mathrm{s}^{2}$ and $6.66 \mathrm{~m} / \mathrm{s}^{2}$
(D) None of the above

Passage 4: A vertical gap 2.2 cm wide of infinite extent contains a fluid of viscosity $2.0 \mathrm{NS} / \mathrm{m}^{2}$ and specific gravity 0.9. A metallic plate $1 \mathrm{~m} \times 1 \mathrm{~m} \times 0.2 \mathrm{~cm}$, which is in the middle of the gap, is to be lifted up with a constant speed $0.15 \mathrm{~m} / \mathrm{sec}$ through the gap. The weight of the plate is 48 N . Assuming pulley is massless and frictionless, string is also massless. $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

Q. 34 Buoyant force acting on the plate
(A) 1800 N
(B) 900 N
(C) 180 N
(D) 18 N
Q. 35 Net frictional force exerted by the liquid on the plate
(A) 30 N
(B) 60 N
(C) 15 N
(D) 120 N
Q. 36 Tension in the string
(A) 90 N
(B) 108 N
(C) 240 N
(D) 120 N
Q. 37 For doing so the kinetic friction between the inclined plane and the block should be equals to
(A) $\frac{\sqrt{3}}{4}$
(B) $\frac{\sqrt{3}}{8}$
(C) $\frac{1}{\sqrt{3}}$
(D) $\frac{1}{2 \sqrt{3}}$
Q. 38 A block of mass m is placed on a plank, which is pivoted at one end. The plank is slowly turned as shown in Figure. The friction coefficient between block and plank is 0.8 . Angle between ground and plank friction force between block and plank at which the block starts sliding is

(A) 20°
(B) 45°
(C) 30°
(D) 35°

Circular Dynamics

Single Correct Choice Type

Q. 39 Two bodies of mass 10 k and 5 kg moving in concentric orbits of radii R and r such that their periods are the same. Then the ratio between their centripetal acceleration is:
(A) R / r
(B) r / R
(C) R^{2} / r^{2}
(D) r^{2} / R^{2}
Q. 40 A string breaks if its tension exceeds 10 newton. A stone of mass 250 mg tied to this string of length 10 cm is rotated in a horizontal circle. The maximum angular velocity of rotation can be:
(A) $20 \mathrm{rad} / \mathrm{s}$
(B) $40 \mathrm{rad} / \mathrm{s}$
(C) $100 \mathrm{rad} / \mathrm{s}$
(D) $200 \mathrm{rad} / \mathrm{s}$
Q.41 A stone of mass of 16 kg is attached to a string 144 m long and is whirled in a horizontal circle. The maximum tension the string can withstand is 16 newton. The maximum speed of revolution of the stone without breaking it, will be:
(A) $20 \mathrm{~ms}^{-1}$
(B) $16 \mathrm{~ms}^{-1}$
(C) $14 \mathrm{~ms}^{-1}$
(D) $12 \mathrm{~ms}^{-1}$
Q. 42 Three identical particles are joined together by a thread as shown in figure. All the three particles are moving on a smooth horizontal plane about point O . If the velocity of the outermost particle is v_{0}, then the ratio of tensions in the three sections of the string is
(A) 3:5:7
(B) $3: 4: 5$
(C) 7:11:6
(D) 3:5:6
Q. 43 The kinetic energy k of a particle moving along a circle of radius R depends on the distance covered s as $\mathrm{k}=\mathrm{as}^{2}$ where a is a constant. The total force acting on the particle is:
(A) $2 a \frac{s^{2}}{R}$
(B) $2 a s\left(\frac{s^{2}}{R^{2}}\right)^{1 / 2}$
(C) 2 as
(D) $2 a s \frac{R^{2}}{s^{2}}$

Multiple Correct Choice Type

Q. 44 A car of mass M is moving on a horizontal circular path of radius r. At an instant its speed is v and is increasing at a rate a-
(A) The acceleration of the car is towards the centre of the path
(B) The magnitude of the frictional force on the car is greater than $m v^{2} / R$
(C) The friction coefficient between the ground and the car is not less than a / g
(D) The friction coefficient between the ground and the car is $\mu=\tan ^{-1} \mathrm{v}^{2} / \mathrm{Rg}$
Q. 45 A circular road of radius r is banked for a speed of $v=40 \mathrm{~km} / \mathrm{h}$. A car of mass m attempts to go on the circular road. The friction coefficient between the tyre and the road is negligible. Then-
(A) The car cannot make a turn without skidding
(B) If the car turn at a speed less than $40 \mathrm{~km} / \mathrm{h}$, it will slip down.
(C) If the car turns at the correct speed of $40 \mathrm{~km} / \mathrm{h}$ the force by the road on the car is equal to $\mathrm{mv}^{2} / \mathrm{r}$
(D) If the car turns at the correct speed of $40 \mathrm{~km} / \mathrm{h}$, the force by the road on the car is greater that mg as well as greater than $\mathrm{mv}^{2} / \mathrm{r}$
Q. 46 Figure shows a rod of length L pivoted near an end and which is made to rotate in a horizontal plane with a constant angular speed.
A ball of mass m is suspended by a string also of length L from the other end of the rod. If θ is the angle made by sting with the vertical, then-

(A) $\mathrm{T} \sin \theta=m \omega^{2} \mathrm{~L}(1+\sin \theta)$
(B) $\mathrm{T} \cos \theta=\mathrm{mg}$
(C) $\tan \theta=\frac{\omega^{2} L(1+\sin \theta)}{9}$
(D) None of above
Q.47 A person applies a constant force \vec{F} on a particle of mass m and finds that the particle move in a circle of radius r with a uniform speed v.
(A) This is not possible
(B) There are other forces also on the particle
(C) The resultant of other forces is $m v^{2} / r$ towards centre
(D) The resultant of the other forces varies in magnitude as well as direction

Assertion Reasoning Type

In each of the following questions, a statement of Assertion (A) is given followed by a corresponding statement of Reason (R) just below it/of the statements, mark the correct answer as
(A) If both assertion and reason are true and reason is the correct explanation of assertion.
(B) If both assertion and reason are true but reason is not the correct explanation of assertion.
(C) If assertion is true but reason is false.
(D) If assertion is false but reason is true.
(E) If both assertion and reason are false.
Q. 48 Assertion: Centripetal and centrifugal forces cancel each other
Reason: This is because they are always equal and opposite.
Q. 49 Assertion: A cyclist bends inwards from his vertical position, while turning to secure the necessary centripetal force.
Reason: Friction between the tyres and road provides him the necessary centripetal force.
Q. 50 Assertion: The tendency of skidding or overturning is quadrupled, when a cyclist double his speed of turning.

Reason: Angle of bending increases as velocity of vehicle increases.
Q. 51 Assertion: On banked curved track, vertical component of normal reaction provide the necessary centripetal force.
Reason: Centripetal force is always required for motion in curved path.
Q. 52 Assertion: A cyclist always bends inwards while negotiating a curve
Reason: By bending he lowers his centre of gravity
Q. 53 Assertion: The tendency of skidding/overturning is quadrupled, when a cyclist doubles his speed of turning.
Reason: $\tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{rg}}$
Q. 54 Assertion: On a banked curved track, vertical component of normal reaction provides the necessary centripetal force.
Reason: Centripetal force is always required for turning.

Comprehension Type Questions

Passage 1: A block of mass moves on a horizontal circle against the wall of a cylindrical room of radius R. The floor of the room on which the block moves is smooth but the friction coefficient between the block and the side wall is μ. The block is given initial velocity v_{0}. Then answer the following questions.
Q. 55 What is the tangential acceleration of the block?
(A) $\mu \mathrm{g}$
(B) $-\mu \mathrm{g}$
(C) $\mu \mathrm{v}^{2} / R$
(D) $-\mu v^{2} / R$
Q. 56 What is the value of velocity v as the function of time t?
(A) $\frac{1}{v}=\frac{1}{v_{0}}+\frac{\mu t}{2 R}$
(B) $\frac{1}{v}=\frac{1}{v_{0}}-\frac{\mu t}{2 R}$
(C) $\frac{1}{v}=\frac{1}{v_{0}}+\frac{\mu t}{R}$
(D) $\frac{1}{v}=\frac{1}{v_{0}}-\frac{\mu t}{R}$
Q. 57 What is the value of velocity v as the function of distance x travelled on the circumference?
(A) $v=v_{o} e^{-\frac{2 \mu}{R}}$
(B) $v=v_{0} e^{-\frac{\mu}{R} x}$
(C) $v=v_{o}\left(1-e^{-\frac{2 \mu}{R} x}\right)$
(D) $v=v_{0}$

Passage 2: In a rotor, a hollow vertical cylindrical structure rotates about its axis and a person rests against the inner wall. At a particular speed of the rotor, the floor below the person is removed and the person hangs resting against the wall without any floor. If the radius of the rotor is 2 m and the coefficient of static friction between the wall and the person is 0.2 . Find the following parameters and relations.
Q. 58 If v is the velocity of rotation of rotor and N be the reaction of wall, then-
(A) $\mathrm{N}=\mathrm{mg}$
(B) $\vec{F}=\vec{F}_{1}+\vec{F}_{2} \Rightarrow|\vec{F}|=\sqrt{10^{2}+5^{2}+2.10 .5 \cos 120^{\circ}}=5 \sqrt{3} \mathrm{~N}$
(C) $\mathrm{N}=\sqrt{(m g)^{2}+\left(\frac{m v^{2}}{r}\right)^{2}}$
(D) None of these
Q. 59 In order to man remain in equilibrium we must have

(A) $\mu \mathrm{mg}=\mathrm{N}$
(B) $\mathrm{f}_{2}=\mu \mathrm{mg}$
(C) $\mu \mathrm{N}=\mathrm{mg}$
(D) None of these
Q. 60 The value of velocity will be given by -

(A) $v=\sqrt{\mu r g}$
(B) $v=\sqrt{\frac{\mathrm{rg}}{\mu}}$
(C) $v=\sqrt{\frac{g}{\mu r}}$
(D) $v=\sqrt{\frac{\mu g}{r}}$

Match the Columns

Q. 61 A particle is suspended from a string of length ' R '. It is given a velocity $u=3 \sqrt{\mathrm{Rg}}$. Match the following

Column I	Column II
(A) Velocity at B	(p) 7 mg
(B) Velocity at C	(q) $\sqrt{5 \mathrm{gR}}$
(C) Tension at B	(r) $\sqrt{7 \mathrm{gR}}$
(D) Tension at C	(s) 4 mg

Q. 62 The bob of a simple pendulum is given a velocity $10 \mathrm{~m} / \mathrm{s}$ at its lowest point. Mass of the bob is 1 kg and string length is 1 m .

Column I	Column II
(A) Minimum tension in string (in Newton)	(p) 50
(B) Magnitude of acceleration of bob when the string is horizontal (in $\mathrm{m} / \mathrm{s}^{2}$)	(q) 60
(C) Minimum magnitude of accelera- tion of bob (in $\mathrm{m} / \mathrm{s}^{2}$)	(r) zero
(D) Tangential acceleration at the highest point (in $\mathrm{m} / \mathrm{s}^{2}$)	(s) $10 \sqrt{65}$

Q.63 A car of mass 500 kg is moving in a circular road of radius $35 / \sqrt{3}$. Angle of the banking of road is 30 . Coefficient of friction between road and tires is $\mu=\frac{1}{2 \sqrt{3}}$. Match the following:

Column I	Column II
(A) Maximum speed (in m / s) of car for safe turning	(p) $5 \sqrt{2}$
(B) Minimum speed (in m / s) of car for safe turning	(q) 12.50
(C) Speed (in m / s) at which friction force between tires and road is zero	(r) $\sqrt{210}$
(D) Friction force (in 10^{2} Newton) between tires and road if speed is $\sqrt{\frac{350}{6}} \mathrm{~m} / \mathrm{s}$	(s) $\sqrt{\frac{350}{3}}$

Previous Years' Questions

Forces and Laws of Motion

Q. 1 In the Figure, the blocks A, B and C have masses 3 $\mathrm{kg}, 4 \mathrm{~kg}$, and 8 kg respectively. The coefficient of sliding friction between any two surfaces is 0.25 . A is held at rest by a massless rigid rod fixed to the wall, while B and C are connected by a light flexible cord passing around a fixed frictionless pulley. Find the force F necessary to drag C along the horizontal surface to the left at a constant speed. Assume that the arrangement shown in the Figure. i.e. B on C and A on B, is maintained throughout. (Take $\mathrm{g}=10 \mathrm{~ms}^{2}$)
(1978)
Q. 2 A uniform rope of length L and mass M lying on a smooth table is pulled by a constant force F . What is the tension in the rope at a distance I from the end where the force is applied?
(1978)
Q. 3 A block of mass 2 kg slides on an inclined plane which makes an angle of with the horizontal. The coefficient of friction between the block and the surface is $\sqrt{3} / \sqrt{2}$. What force along the plane should be applied to the block so that it moves (a) down and (b) up without any acceleration (Take $=10 \mathrm{~m} / \mathrm{s}^{2}$)
(1978)
Q. 4 Two blocks connected by a massless string slides down an inclined plane having an angle of inclination 37°. The masses of the two blocks are $M_{1}=4 \mathrm{~kg}$ and $M_{2}=2 \mathrm{~kg}$ respectively and coefficients of friction of M_{1} and M_{2} with the inclined plane are 0.75 and 0.25 respectively. Assuming the string to be taut, find (a) the common acceleration of two masses and (b) the tension in the string.
$\left(\sin 37^{\circ}=0.6\right.$,

$\left.\cos 37^{\circ}=0.8\right) \quad\left(\right.$ Take $\left.\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
(1979)
Q. 5 Masses M_{1}, M_{2} and M_{3} are connected by strings of negligible mass which passes over massless and frictionless pulleys P_{1} and P_{2} as shown in Figure. The masses move such that portion of the string between P_{1} and P_{2} is parallel to the inclined plane and portion of the string between P_{2} and M_{3} is horizontal. The masses M_{2} and M_{3} are 4.0 kg each and coefficient of kinetic friction between the masses and surfaces is 0.25 . The inclined plane makes an angle of 37° with the horizontal.

Q. 6 A block of mass m rests on a horizontal floor with which it has a coefficient of static friction μ. It is desired to make the body move by applying the minimum possible force F. Find the magnitude of F and direction in which it has to be applied.
(1987)
Q. 7 Two blocks of mass 2.9 kg and 1.9 kg are suspended from a rigid support S by two inextensible wires each of length 1 m . The upper wire has negligible mass and the lower wire has a uniform mass of $0.2 \mathrm{~kg} / \mathrm{m}$. The whole system of blocks, wires and support have an upward
acceleration of $0.2 \mathrm{~m} / \mathrm{s}^{2}$. The acceleration due to gravity is $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

(1989)
Q. 8 A hemispherical bowl of radius $\mathrm{R}=0.1 \mathrm{~m}$ is rotating about its own axis (which is vertical) with an angular velocity ω. A particle of mass $10^{-2} \mathrm{~kg}$ on the frictionless inner surface of the bowl is also rotating with the same ω. The particle is at height h from the bottom of the bowl.
(a) Obtain the relation between h and ω. What is the minimum value of ω needed, in order to have a nonzero value of h ?
(b) It is desired to measure (acceleration due to gravity) using the setup by measuring h accurately. Assuming that R and ω are known precisely and that the least count in the measurement of h is $10^{-4} \mathrm{~m}$, what is minimum possible error Δg in the measured value of g ?
(1993)
Q. 9 A smooth semicircular wire track of radius R is fixed in a vertical plane. One end of a massless spring of natural length $3 R / 4$ is attached to the lowest point O of the wire track. A small ring of mass m which can slide on the track is attached to the other end of the spring. The ring is held stationary at point P such that the spring makes an angle with the vertical. The spring constant $k=m g / R$. Consider the instant when the ring is making an angle 60° with the vertical. The spring is released
 (a) Draw the free body diagram of the ring. (b) Determine the tangential acceleration of the ring and the normal reaction?
(1996)
Q. 10 Two blocks of mass $m_{1}=10 \mathrm{~kg}$ and $m_{2}=5 \mathrm{~kg}$ connected to each other by a massless inextensible string of length 0.3 m are placed along a diameter of turn table. The coefficient of friction between the table and m_{1} is 0.5 while there is no friction between m_{2} and the table. The table is rotating with an angular velocity of $10 \mathrm{rad} / \mathrm{s}$ about the vertical axis passing through centre O . The masses are placed along the diameter of
the table on either side of center O such that the mass m_{1} is at a distance of 0.124 m from O . The masses are observed to be at rest with respect to an observer on the turn of table.
(1997)
(A) Calculate the frictional force on m_{1}.
(B) What should be the minimum angular speed of the turn table, so that the masses will slip from this position?
(C) How should the masses be placed with the string remaining taut so that there is no frictional force acting on the mass m_{2} ?
Q. 11 Block A of mass m and block B of mass $2 m$ are placed on a fixed triangular wedge by means of a massless, inextensible string and a frictionless pulley as shown in Figure. The wedge is inclined at 45° to the horizontal on both the sides. The coefficient of friction between block A and wedge is $2 / 3$ and that between block B and the wedge is $1 / 3$. If the blocks A and B released from rest, find (A) the acceleration A,
(B) Tension in the string and
(C) The magnitude and direction of the force of friction acting on A

Q. 12 Two blocks A and B of equal masses are released from an inclined plane of inclination 45° at $t=0$. Both the blocks are initially at rest. The coefficient of kinetic friction between the block A and inclined plane is 0.2 while it is 0.3 for block B. Initially the block A is $\sqrt{2} \mathrm{~m}$ behind the block B . When and where their front faces will come in a line?
(2004)

Circular Dynamics

Q 13. A long horizontal rod has a bead which can slide along its length and is initially placed at a distance L from one end A of the rod. The rod is set in angular motion about A with a constant angular acceleration ${ }^{\alpha}$. If the coefficient of friction between the rod and bead is μ,
and gravity is neglected, then the time after which the bead starts slipping is
(2000)
(A) $\sqrt{\frac{\mu}{\alpha}}$
(B) $\frac{\mu}{\sqrt{\alpha}}$
(C) $\frac{1}{\sqrt{\mu \alpha}}$
(D) Infinitesimal

Q 14. A small block is shot into each of the four track as shown below. Each of the track rises to the same height. The speed with which the block enters the track is the same in all cases. At the highest point of the track, the normal reaction is maximum in
(2001)

Q. 15 A simple pendulum of length L and mass (bob) M is oscillating in a plane about a vertical line between angular limits $-\phi$ and $+\phi$. For an angular displacement $\theta(|\theta|<\phi)$, the tension in the string and the velocity of the bob are T and v respectively. The following relations hold good under the above conditions.
(1986)
(A) $\mathrm{T} \cos \theta=\mathrm{Mg}$
(B) $\mathrm{T}-\mathrm{Mg} \cos \theta=\frac{\mathrm{Mv}^{2}}{\mathrm{~L}}$
(C) The magnitude of the tangential acceleration of the bob $\left|\alpha_{T}\right|=g \sin \theta$
(D) $\mathrm{T}=\mathrm{Mg} \cos \theta$
Q. 16 A reference frame attached to the earth
(1986)
(A) Is an inertial frame by definition
(B) Cannot be an inertial frame because the earth is revolving round the sun
(C) Is an inertial frame because Newton's laws are applicable in this frame
(D) Cannot be an inertial frame because the earth is rotating about its own axis
Q. 17 A point mass of 1 kg collides elastically with a stationary point mass of 5 kg . After their collision, the 1 kg mass reverses its direction and moves with a speed of $2 \mathrm{~ms}^{-1}$. Which of the following statement(s) is/are correct for the system of these two masses.
(2010)
(A) Total momentum of the system is $3 \mathrm{~kg}-\mathrm{ms}^{-1}$
(B) Momentum of 5 kg mass after collision is $4 \mathrm{~kg}-\mathrm{ms}^{-1}$
(C) Kinetic energy of the centre of mass is 0.75 J
(D) Total kinetic energy of the system is 4 J
Q. 18 A smooth semicircular wire track of radius R is fixed in a vertical plane (Figure). One end of a massless spring of natural length $3 R / 4$ is attached to the lowest point O of the wire track. A small ring of mass m which can slide on the track is attached to the other end of the spring. The ring is held stationery at point P such that the spring makes an angle 60° with the vertical. The spring constant $k=m g / R$. Consider the instant when the ring is making an angle 60° with the vertical. The spring is released (a) Draw the free body diagram of the ring. (b) Determine the tangential acceleration of the ring and the normal reaction.
(1996)

Q. 19 A small block of mass of 0.1 kg lies on a fixed inclined plane PQ which makes an angle q with the horizontal. A horizontal force of 1 N acts on the block through its centre of mass as shown in the figure. The block remains stationary if (take $g=10 \mathrm{~m} / \mathrm{s}^{2}$) (2012)

(A) $\theta=45^{\circ}$
(B) $\theta>45^{\circ}$ and a frictional force acts on the block towards P.
(C) $\theta>45^{\circ}$ and a frictional force acts on the block towards Q.
(D) $\theta<45^{\circ}$ and a frictional force acts on the block towards Q .
Q. 20 A wire, which passes through the hole in a small bead, is bent in the form of quarter of a circle. The wire is fixed vertically on ground as shown in the figure. The bead is
 released from near the top of the wire and it slides along the wire without friction. As the bead moves from A to B, the force it applies on the wire is
(2014)
(C) Radially outwards initially and radially inwards later.
(D) Radially inwards initially and radially outwards later.
Q. 21 A block of mass $m_{1}=1 \mathrm{~kg}$ another mass $m_{2}=2 \mathrm{~kg}$, are placed together (see figure) on an inclined plane with angle of inclination θ. Various values of θ are given in List I. The coefficient of friction between the block m_{1} and the plane is always zero. The coefficient of static and dynamic friction between the block m_{2} and the plane are equal to $\mu=0.3$. In List II expressions for the friction on the block m_{2} are given. Match the correct expression of the friction in List II with the angles given in List I, and choose the correct option. The acceleration due to gravity
 is denoted by g .
[Useful information: $\tan \left(5.5^{\circ}\right) \approx 0.1 ; \tan \left(11.5^{\circ}\right) \approx 0.2$; $\tan \left(16.5^{\circ}\right) \approx 0.3$]
(2014)

	List I		List II
(P)	$\theta=5^{\circ}$	(1)	$m_{2} g \sin \theta$
(Q)	$\theta=10^{\circ}$	(2)	$\left(m_{1}+m_{2}\right) g \sin \theta$
(R)	$\theta=15^{\circ}$	(3)	$m_{2} g \cos \theta$
(S)	$\theta=20^{\circ}$	(4)	$\mu\left(m_{1}+m_{2}\right) g \cos \theta$

Code:
(A) $(\mathrm{P}) \rightarrow(1),(\mathrm{Q}) \rightarrow(1),(\mathrm{R}) \rightarrow(1),(\mathrm{S}) \rightarrow(1)$
(B) (P) \rightarrow (2), (Q) $\rightarrow(2),(\mathrm{R}) \rightarrow(2),(\mathrm{S}) \rightarrow(3)$
(C) $(\mathrm{P}) \rightarrow(2),(\mathrm{Q}) \rightarrow(2),(\mathrm{R}) \rightarrow(2),(\mathrm{S}) \rightarrow(4)$
(D) (P) $\rightarrow(2),(\mathrm{Q}) \rightarrow(2),(\mathrm{R}) \rightarrow(3),(\mathrm{S}) \rightarrow(3)$
Q. 22 The net reaction of the disc on the block is
(2016)
(A) $-m \omega^{2} R \cos \omega \hat{j}-m g \hat{k}$
(B) $\frac{1}{2} m \omega^{2} R\left(e^{2 \omega t}-e^{-2 \omega t}\right) \hat{j}-m g \hat{k}$
(C) $m \omega^{2} R \sin \omega t \hat{j}-m g \hat{k}$
(D) $\frac{1}{2} m \omega^{2} R\left(e^{2 \omega t}-e^{-\omega t}\right) \hat{j}-m g \hat{k}$
(A) Always radially outwards.
(B) Always radially inwards.

MASTERJEE Essential Questions

JEE Main/Boards

Exercise 1

Q. 18
Q. 21
Q. 26
Q. 27
Q. 28

Exercise 2
Q. 5
Q. 14
Q. 18

Previous Years' Questions
Q. 51
Q. 59

JEE Advanced/Boards

Exercise 1

Q. 1	Q. 4	Q. 13	Q. 17
Q. 20	Q. 29	Q. 38	Q. 43

Exercise 2

Q. 3	Q. 6	Q. 8	Q. 11
Q. 14	Q. 15	Q. 16	Q. 17
Q. 44	Q. 45		

Previous Years' Questions

Q. 12
Q. 14
Q. 17

Answer Key

JEE Main/Boards

Exercise 1

Forces and Laws of Motion
Q. 4100 Ns
Q. 512.5 N
Q. $140.872 \mathrm{~m} / \mathrm{s}, 1.744 \mathrm{~m}$
Q. 15 30N
Q. $161.4 \mathrm{~ms}^{-2}, 33.6 \mathrm{~N}$
Q. 171000 N, 750 N
Q. 1840°
Q. 19750 N/m
Q. 201 cm
Q. $219 \mathrm{~m} / \mathrm{s}$.
Q. $22 \overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}} 12500+\hat{\mathrm{j}} 6250) \mathrm{m}$
Q. $232.5 \times 10^{4} \mathrm{~km}$
Q. $24 \operatorname{grt}^{2}(r-r \phi)=2 \operatorname{lgm}$

Circular Dynamics
Q. $250.03 \mathrm{~m} / \mathrm{s}^{2}$
Q. $260.86 \mathrm{~ms}^{-2}$
Q. $27-(\hat{x}+\hat{y}) / \sqrt{2} \mathrm{~cm} / \mathrm{s}^{2}$
Q. $281.22 \mathrm{~m} / \mathrm{s}^{2} ; \beta=\tan ^{-1}\left(\frac{10}{7}\right)$

Exercise 2

Forces and Laws of Motion

Single Correct Choice Type

Q. 1 A	Q. 2 B	Q. 3 C	Q. 4 C	Q. 5 A	Q. 6 A	Q. 7 C
Q. 8 B	Q. 9 B	Q. 10 A	Q. 11 C	Q. 12 B	Q. 13 A	Q. 14 A
Q. 15 A	Q. 16 D	Q. 17 C	Q. 18 C	Q. 19 D	Q. 20 B	Q. 21 B

Circular Dynamics

Single Correct Choice Type

Q. 22 D	Q. 23 C	Q. 24 D	Q. 25 A	Q. 26 C	Q. 27 B	Q. 28 A
Q. 29 A	Q. 30 B	Q. 31 D	Q. 32 B	Q. 33 D		

Previous Years' Questions

Forces and Laws of Motion

Q. 1 C	Q. 2 A	Q. 3 C	Q. 4 A	Q. 5 A	Q. 6 A	Q. 7 A
Q. 8 D	Q. 9 C	Q. 10 A	Q. 11 D	Q. 12 A	Q. 13 B	Q. 14 A
Q. $15 \mathrm{~B}, \mathrm{D}$						

Circular Dynamics

Q. 16 C
Q. 17 D
Q. 18 C
Q. 19 C
Q. 20 B
Q. 21 B

JEE Advanced/Boards

Exercise 1

Forces and Laws of Motion

Q. 1 (a) 70 kg , (b) 35 kg , (c) 105 kg , (d) zero
Q. 2 (a) 750 N, (b) 250 N, Mode (b) should not be adopted
Q. 3 (a) $\mathrm{T}=640 \mathrm{~N}$, (b) $\mathrm{T}=240 \mathrm{~N}$, (c) $\mathrm{T}=400 \mathrm{~N}$, (d) $\mathrm{T}=0$, Rope will break in case (a).
Q. 415 m
Q. 5 (a) 7500 N downwards, (b) 32500 N downwards, (c) 32500 N upward
Q. 6 (a) accelerated with acceleration $0.5 \mathrm{~m} / \mathrm{s}^{2}$, (b) at rest.
Q. $7 \frac{\left(k_{1}+k_{2}\right) x}{m}$
Q. $8 \mathrm{~g} / 3,2 \mathrm{~g} / 3$
Q. $9 \mathrm{~T}_{\mathrm{ab}}=\mathrm{mg} \tan \theta, \mathrm{T}_{\mathrm{ob}}=\mathrm{mg} / \cos \theta, \mathrm{T}^{\prime}=\mathrm{mg} \cos \theta$
Q. $10 \frac{\mathrm{mg}}{4 \mathrm{~h}} \sqrt{\mathrm{a}^{2}+4 \mathrm{~h}^{2}}$

Q. 11 4N

Q. $12 \frac{2(\mathrm{Mg}-\mathrm{B})}{\mathrm{g}}$
Q. 13 (a) $f=\left(k_{1}-k_{2}\right) \frac{m g^{2} \cos \alpha}{m_{1}+m_{2}}$,
(b) $\cos \alpha_{\text {min }}=\frac{k_{1} m_{1}+k_{2} m_{2}}{m_{1}+m_{2}}$
Q. $14 \alpha=\frac{1}{2} \tan ^{-1}\left(-\frac{1}{\mu}\right)$
Q. 15 (a) $v=\frac{m g^{2} \cos \alpha}{2 a \sin ^{2} \alpha}$, (b) $s=\frac{m^{2} g^{3} \cos \alpha}{6 a^{2} \sin ^{3} \alpha}$
Q. 16 (a) $f_{A}=\frac{3}{4} \mu M g, f_{B}=0, T=0$
(b) $\mathrm{f}_{\mathrm{A}}=\mu \mathrm{Mg}, \mathrm{f}_{\mathrm{B}}=\frac{\mu \mathrm{Mg}}{2}$, $\mathrm{T}=\frac{\mu \mathrm{Mg}}{2}$
Q. $17 \frac{13 \mu \ell}{16(2-3 \mu)}$
Q. $18 w_{2}=\frac{g(\eta-\sin \alpha-\cos \alpha)}{\eta+1}=0.5 \mathrm{~g}$
Q. $19 a_{A}=a_{C}=\frac{3}{4} g \sin \theta, a_{B}=g \sin \theta, T=\frac{M g \sin \theta}{8}$
Q. $20 f=\frac{(M+m) g \sin ^{2} \alpha}{M+m \sin ^{2} \alpha}$
Q. 21 Acceleration of block A is $\mathrm{g} / 8$ in horizontal direction and $5 \mathrm{~g} / 8$ in vertical direction. Acceleration of block B is $\mathrm{g} / 2$ leftwards. Acceleration of block C is $\mathrm{g} / 8$ rightwards

$$
\text { Q. } 22 \mathrm{a}_{\mathrm{A}}=\frac{\mathrm{g}}{1+\eta \cot ^{2} \alpha}, \mathrm{a}_{\mathrm{B}}=\frac{\mathrm{g}}{\tan \alpha+\eta \cot \alpha}
$$

Q. $23 \tan B=\mu, T_{\text {min }}=\frac{m g(\sin \alpha+\mu \cos \alpha)}{\sqrt{1+\mu^{2}}}$
Q. 24 acceleration

When $\quad t \leq t_{0}\left(\right.$ where $\left.t_{0}=\frac{\mu\left(m_{1}+m_{2}\right) g}{a}\right) w_{1}=w_{2}=k g$
$\mathrm{t}>\mathrm{t}_{0} \mathrm{w}_{1}=\mathrm{at} / \mathrm{m}_{1}-\mathrm{km} \mathrm{m}_{2} \mathrm{~g} / \mathrm{m}_{1}, \mathrm{w}_{2}=\mathrm{kg}$
Q. $25 t=\sqrt{\frac{2 l}{(3 w+k g)}}$
Q. $27 \mathrm{a}_{\mathrm{A}}=2.34 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{a}_{\mathrm{B}}=1.558 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~T}=81.8 \mathrm{~N}$
Q. 28 (a) $t_{A}=1 \mathrm{sec}, \mathrm{tB}=2 \mathrm{sec}, \quad$ (b) $\mathrm{v}_{\mathrm{A}}=5 \mathrm{~m} / \mathrm{s}$ (c) $\frac{5}{3} \mathrm{~m}$

Circular Dynamics

Q. $29 \mathrm{f}_{\text {max }}=\frac{5}{2 \pi} \mathrm{rev} / \mathrm{sec}$
Q. $3045^{\circ}, ~ \sqrt{2} \times 10^{4} \mathrm{~N}$
Q. $31 \theta=30^{\circ}, v=7.7 \mathrm{~m} / \mathrm{s}$
Q. $32163.3 \mathrm{~m} / \mathrm{s}^{2}$
Q. $33 \sqrt{\mathrm{Rg}}$
Q. $3422.36 \mathrm{~m} / \mathrm{s}$
Q. 35 21 $^{\circ} 29^{\prime}$
Q. $36 \sqrt{\frac{\mu \mathrm{~g}}{\mathrm{~L}}}$
Q. 37 (a) $\sqrt{\mathrm{Rg}}$
(b) a distance $\frac{\pi R}{3}$ along the bridge from the
highest point
(c) $\sqrt{\mathrm{gR} \cos (\mathrm{L} / 2 \mathrm{R})}$
Q. 3845°
Q. $39 v=\sqrt{\frac{\ell \mathrm{g}}{3}}$
Q. $40\left(\frac{g(\sin \theta-\mu \cos \theta)}{R \sin \theta(\cos \theta+\mu \sin \theta)}\right)^{1 / 2}$ to $\left(\frac{g(\sin \theta+\mu \cos \theta)}{R \sin \theta(\cos \theta-\mu \sin \theta)}\right)^{1 / 2}$
Q. $44[2 R(a \sin \theta+g-g \cos \theta)]^{1 / 2}$
Q. $45 \lambda R^{2} \omega^{2}$
Q. $41 \sqrt{\frac{2 L}{\omega^{2} R \cos \theta}}$
Q. $46 \sqrt{a^{2}+\left(\frac{v^{2}}{R}\right)^{2}}$
Q. $42 \frac{\omega^{2} R}{3}, \frac{4}{3} m \omega^{2} R$
Q. 43 (i) $m \sqrt{K R}$ (ii) $m \sqrt{K\left(R+K t^{4}\right)}$
Q. $47 \frac{m v^{2}}{2 \pi R}$
(iii) mKRt
(iv) $\frac{1}{2} m K R t$
Q. $48\left[\left(\mu^{2} g^{2}-a^{2}\right) R^{2}\right]^{1 / 4}$

Exercise 2

Forces and Laws of Motion

Single Correct Choice Type

Q. 1 C
Q. 2 A
Q. 3 A
Q. 4 A
Q. 5 A
Q. 6 B
Q. 7 A
Q. 8 B
Q. 9 B
Q. 10 C
Q. 11 B
Q. 12 A

Multiple Correct Choice Type
Q. 14 A, B Q. 15 A, D Q. 16 A, C Q. 17 B, D

Assertion Reasoning Type

Q. 18 A
Q. 19 D
Q. 20 D
Q. 21 A
Q. 22 A

Comprehension Type

Q. 23 C	Q. 24 B	Q. 25 D	Q. 26 A	Q. 27 A	Q. 28 B	Q. 29 B
Q. 30 B	Q. 31 D	Q. 32 D	Q. 33 C	Q. 34 D	Q. 35 B	Q. 36 A

Q. 37 A

Match the Columns
Q38 A \rightarrow; B $\rightarrow r ; C \rightarrow r ; D$

Circular Dynamics

Single Correct Choice Type

$\begin{array}{llllllllll}\text { Q. } 39 & \text { A } & \text { Q. } 40 & \text { A } & \text { Q. } 41 & \text { D } & \text { Q. } 42 & \text { D } & \text { Q. } 43 & \text { B }\end{array}$

Multiple Correct Choice Type

Q. 44
B, C
Q. 45
B, D
Q. 46 A, B, C
Q. 47
B, D

Assertion Reasoning Type

Q. 48 D
Q. 49 C
Q. 50 B
Q. 51 E
Q. 52 B
Q. 53 A
Q. 54 D

Comprehension Type					
Q. 55 D	Q. 56 C	Q. 57 B	Q. 58 B	Q. 59 C	Q. 60 B

Match the Columns
Q. $61 \mathrm{~A} \rightarrow \mathrm{r} ; \mathrm{B} \rightarrow \mathrm{q} ; \mathrm{C} \rightarrow \mathrm{p} ; \mathrm{D} \rightarrow \mathrm{s}$
Q. $62 \mathrm{~A} \rightarrow \mathrm{p} ; \mathrm{B} \rightarrow \mathrm{s} ; \mathrm{C} \rightarrow \mathrm{q} ; \mathrm{D} \rightarrow \mathrm{r}$
Q. $63 \mathrm{~A} \rightarrow \mathrm{r} ; \mathrm{B} \rightarrow \mathrm{p} ; \mathrm{C} \rightarrow \mathrm{s} ; \mathrm{D} \rightarrow \mathrm{q}$

Previous Years Questions

Forces and Laws of Motion

Q. 137.5 N
Q. 2 F(1-I/L)
Q. $3 \mathrm{a}=11.21 \mathrm{~N}, \mathrm{~b}=31.21 \mathrm{~N}$
Q. $4 \mathrm{a}=1.5 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~T}=5.2 \mathrm{~N}$
Q. 5 (a) 4.2 kg , (b) 9.8 N
Q. $6 \mathrm{mg} \sin \theta$
Q. 7 (a) 20 N ,
(b) 50 N
Q. 8 (a) $9.89 \mathrm{rad} / \mathrm{sec}$, (b) $9.8 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$
Q. 9 (a) $\mathrm{mg} / 4$, (b) $\mathrm{a}_{\mathrm{tan}}=5 \sqrt{3} \mathrm{~g} / 8, \mathrm{~N}=3 \mathrm{mg} / 8$
Q. 10 (a) $\mathrm{f}=36 \mathrm{~N}$ inwards, (b) $11.67 \mathrm{rad} / \mathrm{sec}$, (c) m 2 at 0.2 m and m 1 at 0.1 m from O
Q. 11 (a) 0 , (b) $\mathrm{T}=2 \sqrt{2} \mathrm{mg} / 3$ (c) $\mathrm{f}=\mathrm{mg} / 3 \sqrt{2}$ (down the plane)
Q. 12 After A travel a distance of $8 \sqrt{2} \mathrm{~m}$ down the plane

Circular Dynamics

Q. 13 A	Q. 14 A	Q. $15 \mathrm{~B}, \mathrm{C}$	Q. $16 \mathrm{~B}, \mathrm{D}$	Q. $17 \mathrm{~A}, \mathrm{C}$	Q. $18 \mathrm{~B} \frac{5 \sqrt{3}}{8} \mathrm{~g}, \frac{3 \mathrm{mg}}{8}$
Q. $19 \mathrm{~A}, \mathrm{C}$	Q. 20 D	Q. 21 D	Q. 22 C		

Solutions

JEE Main/Boards

Exercise 1

Forces and Laws of Motion

Sol 1: A body will preserve its velocity and direction as long as no force acts on it in its motion. Inertia is in fact the resistance of any physical object to any change in its motion.

Sol 2:

Now
Forces are Unbalanced

There is an acceleration

Sol 3: While taking a catch, a cricket player moves his hands backwards. He has to apply retarding force to stop the moving ball in his hands. If he catches the ball abruptly, then he has to apply a large retarding force for a short time. So he gets hurt. On the other hand if he moves his hands backwards then the player applies force for longer time to bring the ball at rest. In this case he has to apply less retarding force.

Sol 4: $\quad \Delta p=F \Delta t$

$$
\begin{aligned}
& \Delta p=100.1 \mathrm{Ns} \\
& \Delta p=100 \mathrm{Ns} .
\end{aligned}
$$

Sol 5: $\mathrm{F}=$ ma and $\mathrm{a}=\frac{\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}}{\mathrm{t}} \Rightarrow \frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}$

In case (i) $\frac{\Delta v}{\Delta t}=\frac{20-10}{5}=\frac{10}{5}=2 \mathrm{~m} / \mathrm{s}$
$\therefore \mathrm{F}=\mathrm{ma} \Rightarrow 5=\mathrm{m}(2)$
Now further, we want this $\Delta \mathrm{V}$ in in 2 s .

$$
\begin{align*}
& \mathrm{a}_{\text {new }}=\frac{\Delta \mathrm{V}}{\Delta \mathrm{t}_{\text {new }}}=\frac{20-10}{2}=\frac{10}{2}=5 \mathrm{~m} / \mathrm{s}^{2} \\
& \therefore \mathrm{~F}_{\text {new }}=\mathrm{m}(5) \tag{ii}
\end{align*}
$$

Dividing equation (i) by (ii)
$\Rightarrow \frac{5}{F_{\text {new }}}=\frac{m(2)}{m(5)}$
$\mathrm{F}_{\text {new }}=\frac{25}{2} \mathrm{~N}$
$\Rightarrow \mathrm{F}_{\text {new }} \equiv 12.5 \mathrm{~N}$.

Sol 6: Conceptual. Refer to the reading manual.
Sol 7: 1. Linear inertia: In an isolated system, a body at rest will remain at rest and a body moving with constant velocity will continue to do so, unless disturbed by an external force.
2. Gyroscopic Inertia: A body that is set spinning has a tendency to keep spinning in its original orientation if no external force is applied.
3. Rotational Inertia: An object resists any change in its state of rotation. If no external force is applied.

Sol 8: Conceptual, Refer to reading manual.
Sol 9: Absolute unit of weight is Newton (N)
Gravitational unit is kg-weight.
$1 \mathrm{~N}=9.8 \mathrm{~kg} . \mathrm{wt}$
Sol 10: $\vec{F} \propto \frac{d \vec{p}}{d t} ; \quad \vec{F} \propto m \frac{d \vec{v}}{d t}$
$\vec{F}=K m a, K=1$
$\therefore F=m a$

Consequences

1. No force is required to move a body uniformly in a straight line.
2. Accelerated motion is always due to an external force.

Sol 11: Impulse is defined as the product of the average force and change in time.

$$
\begin{array}{ll}
J=F_{a v g}\left(t_{2}-t_{1}\right) ; J=\int_{t_{1}}^{t_{2}} F d t \\
F=\frac{d p}{d t} ; & J=\int_{t_{1}}^{t_{2}} \frac{d p}{d t} d t \\
J=\int_{p_{1}}^{p_{2}} d p ; & J=P_{2}-P_{1}=\Delta P .
\end{array}
$$

Sol 12: Every action has an equal and opposite reaction.
Example (1)

Sol 13: Lift moving uniformly

Then $\mathrm{N}-\mathrm{mg}=0$
$\therefore \mathrm{N} \equiv \mathrm{w}=\mathrm{mg}$.
Lift acceleration upward

$\mathrm{N} \equiv \mathrm{w}=\mathrm{m}(\mathrm{g}+\mathrm{a})$
\therefore weight Increases
Lift accelerating downwards:

$\therefore \mathrm{N} \equiv \mathrm{w}=\mathrm{m}(\mathrm{g}-\mathrm{a})$
Hence weight decreases.

Sol 14: writing down the equations of motion

$\mathrm{m}_{1} \mathrm{~g}-\mathrm{T}=\mathrm{m}_{1} \mathrm{a}$

$T-m_{2} g=m_{2} a$

Adding (i) and (ii)
$\left(m_{1}-m_{2}\right) g=\left(m_{1}+m_{2}\right) a$
$a=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) g$
Here $m_{1}=11.5 \mathrm{~kg}, \mathrm{~m}_{2}=11 \mathrm{~kg}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}$
Now m_{1} will descend down by height ' h ' and m_{2} moves up by the same height h;
$H=u t+\frac{1}{2} a t^{2}$
$\Rightarrow \quad \mathrm{h}=0 . \mathrm{t}+\frac{1}{2} \times(0.2)(4)^{2}=1.6 \mathrm{~m}$.
And for velocity
$v=u+a t$
$v=0+(0.2)(4)$
$v=0.8 \mathrm{~m} / \mathrm{s}$.

Sol 15:

Let us say the whole system moves forward with an acceleration ' a '.
Then $\mathrm{a}=\left(\frac{31.5}{10+0.5}\right) \mathrm{m} / \mathrm{s}$

$$
a=3 \mathrm{~m} / \mathrm{s}^{2}
$$

Now let us consider the string.

Now, $31.5-\mathrm{N}=\mathrm{ma}$
$\Rightarrow 31.5-\mathrm{ma}=\mathrm{N}$
$\mathrm{N}=31.5-(0.5)(3)$
$\mathrm{N}=30$ Newton.
Sol 16: Constraint Equation:

$a_{m_{1}}+a_{m_{2}}=0$. $\because \because$ length of string is constant $]$
Let us say m_{1} moves down with an acceleration 'a', then m_{2} will move up by an acceleration ' a '.

$m_{1} g-T=m_{1} a$

$T-m_{2} g=m_{2} a$
(i) + (ii) $\Rightarrow\left(m_{1}-m_{2}\right) g=\left(m_{1}+m_{2}\right) a$
$a=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) g=\left(\frac{4-3}{4+3}\right) 10=\frac{10}{7}=1.4 \mathrm{~ms}^{-2}$
And using this value, find the value of T in equation (i) or equation (ii)
$m_{1} g-m_{1} a=T \Rightarrow T=m_{1}(g-a)$
now put $m_{1}=4 \mathrm{~kg} \mathrm{~m}_{2}=3 \mathrm{~kg}$
to get the numerical, after putting values of m_{1}, m_{2} and $\mathrm{a} \Rightarrow \mathrm{T}=\mathrm{m}_{1}(\mathrm{~g}-\mathrm{a})=33.6 \mathrm{~N}$

Sol 17:

The total external Horizontal force applied on the system is F .
\therefore Acceleration 'a' of the system $=\frac{\mathrm{F}}{\mathrm{m}_{1}+\mathrm{m}_{2}} \mathrm{~m} / \mathrm{s}^{2}$
Given $a=5 \mathrm{~m} / \mathrm{s}^{2}$
$\therefore 5=\frac{\mathrm{F}}{50+150} \mathrm{~m} / \mathrm{s}^{2} \quad \therefore \mathrm{~F}=200 \times 5 \mathrm{~N}$
$\mathrm{F}=1000 \mathrm{~N}$
Now for finding the tension;
Consider m_{2}
(pseudo force)

$\mathrm{T}-\mathrm{m}_{2} \mathrm{a}=0$
$\because \quad \mathrm{T}=\mathrm{m}_{2} \mathrm{a}$.
$\mathrm{T}=150 \times 5$
$\mathrm{T}=750 \mathrm{~N}$.

Sol 18:

At point P
For equilibrium;
$\mathrm{T}_{1} \sin \theta=50$
$\mathrm{T}_{1} \cos \theta=\mathrm{T}_{2}$
And for the mass;
$\mathrm{T}_{2}=60 \mathrm{~N}$
From (i) and (ii) $\tan \theta=\frac{50}{\mathrm{~T}_{2}}$
$\tan \theta=\frac{50}{60}$
$\theta=\tan ^{-1}(5 / 6)=40^{\circ}$
Sol 19: $\mathrm{F}=\mathrm{kx}$.
$\mathrm{x}=20 \mathrm{~cm}=0.2 \mathrm{~m}$
$150=k(0.2)$
$k=\frac{150}{0.2}=\frac{15}{2} \times 10^{2} \mathrm{~N} / \mathrm{m}=7.5 \times 10^{2} \mathrm{~N} / \mathrm{m}$.

Sol 20:

Now for $a_{\max ^{\prime}}$ we have $T_{\text {max }}$
$\mathrm{T}_{\text {max }}-\mathrm{mg}=\mathrm{ma}$
$\mathrm{T}_{\max }=\mathrm{m}(\mathrm{g}+\mathrm{a}) \mathrm{N}=\mathrm{m}(9.8+1.2) \mathrm{N}=2000$

$$
\mathrm{T}_{\max }=22 \times 10^{3} \mathrm{~N}
$$

Now $T_{\text {max }}=($ Breaking stress) Area
$\therefore 22 \times 10^{3}=\left(2.8 \times 10^{8}\right)\left(\mathrm{pR}^{2}\right)$
$R=\sqrt{\frac{22 \times 10^{3}}{28 \times 10^{7} \pi}}$
$R=\sqrt{25 \times 10^{-6}} \mathrm{~m}$
$R=5 \times 10^{-3} \mathrm{~m}$
Diameter $=2 \mathrm{R} \equiv 10 \times 10^{-3} \mathrm{~m} \equiv 10^{-2} \mathrm{~m}$.

Sol 21: Before collision

After collision,
$\stackrel{1000}{8 \mathrm{~m} / \mathrm{s}}$

In the whole process, linear momentum along the x-direction is conserved.
\therefore Initial momentum $=10^{3} \times 32+8 \times 10^{3} \times 4$
$P_{i}=64 \times 10^{3} \mathrm{~kg} \mathrm{~m} / \mathrm{s}(\mathrm{i})$
Now in the final state
Momentum of car $=10^{3} \times(-8)=-8 \times 10^{3}(\mathrm{i})$
Momentum of truck $=8 \times 10^{3}(\mathrm{v} \hat{\mathrm{i}})$
$=8 \mathrm{v} \times 10^{3} \mathrm{i}$
$\mathrm{P}_{\text {final }}=(-8+8 \mathrm{v}) \times 10^{3}(\mathrm{i})$
$P_{\text {initial }}=p_{\text {final }}$
$\Rightarrow 64 \times 10^{3}=(-8+8 \mathrm{v}) \times 10^{3}$
$\therefore v=\frac{64+8}{8} \mathrm{~m} / \mathrm{s} ; \quad v=9 \mathrm{~m} / \mathrm{sec}$
Sol 22: $\vec{F}=m \vec{a}$
$\vec{a}=\frac{\vec{F}}{m} ; m=10 \mathrm{~g}=10 \times 10^{-3} \mathrm{~kg}=10^{-2} \mathrm{~kg}$
$\therefore \vec{a}=\frac{(10 \hat{\mathrm{i}}+5 \hat{\mathrm{j}})}{10^{-2}}$
$\vec{a}=10^{3} \hat{i}+5 \times 10^{2} \hat{j}$
$\vec{r}=\vec{u} t+\frac{1}{2} \vec{a} t^{2}$
Since $\vec{u}=0, \quad \vec{r}=\frac{1}{2} \vec{a} t^{2}$
$\vec{u}=\frac{10^{3} \times 25}{2} \hat{i}+\frac{500 \times 25}{2} \hat{j}$
Sol 23: This is just an energy conservation problem on surface of earth;
$E_{i}=\frac{1}{2} m v_{0}^{2}+U_{i} ; \quad U_{i}=-\frac{G m}{R}$
$\therefore \mathrm{E}_{\mathrm{i}}=\frac{1}{2} \mathrm{mv}_{0}^{2}-\frac{\mathrm{Gm}}{\mathrm{R}}$
Now finally;
$V=0$
$E_{f}=0+\left(-\frac{G m}{R+h}\right)$
And $E_{f}=E_{i}$
$\therefore \frac{1}{2} m v_{0}^{2}-\frac{G m}{R}=-\frac{G m}{R+h}$
$\Rightarrow \frac{\mathrm{v}_{0}^{2}}{2}-\frac{\mathrm{G}}{\mathrm{R}}=\frac{-\mathrm{G}}{\mathrm{R}+\mathrm{h}}$
$\Rightarrow \frac{1}{R+h}=\frac{1}{R}-\frac{v_{0}^{2}}{2 G}$
$\Rightarrow R+h=\frac{1}{\left(\frac{1}{R}-\frac{v_{0}^{2}}{2 G}\right)}$
$h=\frac{1}{\left(\frac{1}{R}-\frac{v_{0}^{2}}{2 G}\right)}-R$
$\mathrm{G}=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
$R=64 \times 10^{5} \mathrm{~m}$.
$v_{0}=10^{4} \mathrm{~m} / \mathrm{s}$
After putting above values we get, $\mathrm{h}=2.5 \times 10^{4} \mathrm{~km}$
Sol 24: $m_{1}=m_{2}=m$

FBD of m_{1};

$\mathrm{T} \sin \theta=\mathrm{F}$
$\mathrm{T} \cos \theta=\mathrm{mg}$
(i)/(ii) $\Rightarrow \operatorname{Tan} \theta=\frac{\mathrm{Gm}^{2}}{\left(\mathrm{r}^{\prime}\right)^{2} \mathrm{mg}}$
$\tan \theta=\frac{\mathrm{Gm}}{\left(\mathrm{r}^{\prime}\right)^{2} g}$
$\tan \theta=\frac{r-r^{\prime}}{2 \ell}$

$$
\frac{r-r^{1}}{2}
$$

$\therefore \frac{r-r^{\prime}}{2 \ell}=\frac{G m}{\left(r^{\prime}\right)^{2} g}$
Solving for r^{\prime}, We get the value of r^{\prime}.

Circular Motion

Sol 25:

Earth completes 1 rotation in 1 day
i. e. , $\omega=1$. $\frac{\text { rotation }}{\text { day }}$
$\omega=1 . \frac{2 \pi}{24 \times 60 \times 60} \mathrm{rad} / \mathrm{s}$
$\omega=\frac{\pi}{432} \times 10^{-2} \mathrm{rad} / \mathrm{s}$
and now acceleration at point A;
$a=r \omega^{2}$
$r=6400 \mathrm{~km}=6400 \times 10^{3} \mathrm{~m} ; \quad \mathrm{r}=64 \times 10^{5} \mathrm{~m}$
$\therefore \mathrm{a}=64 \times 10^{5} \times \frac{\pi^{2}}{(432)^{2}} \times 10^{-4} \mathrm{~m} / \mathrm{s}^{2}$
$a=0.03 \mathrm{~m} / \mathrm{s}^{2}$

Sol 26: $v=27 \mathrm{~km} / \mathrm{h}=27 \times \frac{5}{18} \mathrm{~m} / \mathrm{s}$
$v=\frac{15}{2} \mathrm{~m} / \mathrm{s}$
$\vec{a}_{r}=\frac{v^{2}}{R}=\frac{(15)^{2}}{4 \times 80}=0.7$
$\vec{a}_{\mathrm{t}}=0.5 \mathrm{~m} / \mathrm{s}^{2}=\frac{1}{2} \mathrm{~m} / \mathrm{s}^{2}$
$\overrightarrow{a_{\text {net }}}=\vec{a}_{r}+\vec{a}_{t}=\sqrt{(0.7)^{2}+(0.5)^{2}}$
$a_{n e t}=0.86 \mathrm{~m} / \mathrm{s}^{2}$

Sol 27:

At point the acceleration will be centripetal acceleration which is radially directed towards point O. i.e.
Physically: $\vec{a}=\frac{v^{2}}{r}\left(-\hat{e}_{r}\right)$
Remember \hat{e}_{r} and \hat{e}_{t} are the unit vectors along radial and tangential directions respectively.

Refer to the figure.
So in this case also $\vec{a}_{A}=\frac{v^{2}}{r}\left(-\hat{e}_{r}\right)$

Now, since the point is in between the points P and Q

angle between $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OP}}$ will be $\frac{\pi}{4}$
Now let us resolve ($-\hat{e}_{\mathrm{r}}$) into \hat{i} and \hat{j}.
$\left(-\hat{e}_{r}\right)=\left|-\hat{e}_{r}\right| \cdot \cos \frac{\pi}{4}(-\hat{i})+\left|-\hat{e}_{r}\right| \sin \frac{\pi}{4}(-\hat{j})$
But since \hat{e}_{r} and \hat{e}_{t} are unit vectors

$$
\left|\hat{e}_{r}\right|=\left|\hat{e}_{t}\right|=1
$$

$\because\left(-\hat{e}_{r}\right)=-\frac{1}{\sqrt{2}} \hat{i}-\frac{1}{\sqrt{2}} \hat{j}=\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
Now $\overrightarrow{\mathrm{a}}_{\mathrm{A}}=\frac{\mathrm{v}^{2}}{r}\left(-\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}+\hat{\mathrm{j}})\right)$

$$
\vec{a}_{A}=-\frac{v^{2}}{r \sqrt{2}}(\hat{i}+\hat{j})
$$

Put $v=2 \mathrm{~cm} / \mathrm{s}$ and $r=4 \mathrm{~cm}$, to find \vec{a}_{A}.
After putting above valuesweget, $\overrightarrow{a_{A}}=-(\hat{x}+\hat{y}) / \sqrt{2} \mathrm{~cm} / \mathrm{s}^{2}$

Sol 28:

Let us say the circular turn is of the shape $A B$.
Now at the starting point of the track i. e. C;
$\vec{a}=\vec{a}_{r}+\vec{a}_{t}$
$\vec{a}_{r}=$ centripetal acceleration $=\frac{v^{2}}{R}\left(-\hat{e}_{r}\right)$
$v=36 \mathrm{~km} / \mathrm{h}=36 \times \frac{5}{18} \mathrm{~m} / \mathrm{s}=10 \mathrm{~m} / \mathrm{s}$
$R=140 \mathrm{~m}$
$\vec{a}_{r}=\frac{(10)^{2}}{140}=\frac{5}{7} \mathrm{~m} / \mathrm{s}^{2}\left(-\hat{e}_{r}\right)$
and given that $\frac{d v}{d t}=1 \mathrm{~m} / \mathrm{s}$
$\therefore \vec{a}_{t}=\frac{d v}{d t}\left(\hat{e}_{t}\right) ; \quad \vec{a}_{t}=1 \mathrm{~m} / \mathrm{s}^{2}\left(\hat{e}_{t}\right)$
Now $\vec{a}=\vec{a}_{r}+\vec{a}_{t}$
$\left.\vec{a}=\left(0.7\left(-\hat{e}_{r}\right)\right)+1 \hat{e}_{t}\right) \mathrm{m} / \mathrm{s}^{2}$
$|\mathrm{a}|=\sqrt{(0.7)^{2}+1}=\sqrt{0.49+1}=\sqrt{1.49} \mathrm{~m} / \mathrm{s}^{2}=1.22 \mathrm{~m} / \mathrm{s}^{2}$
and $\tan \beta=\left(\frac{1}{0.7}\right) \Rightarrow \beta=\tan ^{-1}\left(\frac{10}{7}\right)$

Exercise 2

Forces and Laws of Motion

Single Correct Choice Type

Sol 1: (A) At point A;

At point B;

$$
\mathrm{mg}=\mathrm{T}_{2}
$$

$$
\mathrm{T}_{2}=10 \mathrm{~g} \equiv \mathrm{~T}_{1}
$$

\therefore Both the spring show a reading of 10 kg

Sol 2: (B) Here acceleration of the lift is $12 \mathrm{~m} / \mathrm{s}^{2}$ which is greater than ' g '.

The body will undergo a free fall condition. Actually the body loses the contact with the floor of the lift.
$\therefore \quad s=\frac{1}{2} \mathrm{~g} \mathrm{t}^{2}=\frac{1}{2} \times 10(0.2)^{2} \mathrm{~m}$

$$
S=20 \mathrm{~cm}
$$

Sol 3: (C) Here we need to understand the concept of friction

We are given that the body is not moving. Hence balancing the forces in both the directions;
$\mathrm{N}-\mathrm{mg}=0$
$F_{1}-f=0$
$\Rightarrow \mathrm{N}=\mathrm{mg}$ and $\mathrm{f}=\mathrm{F}_{1}$.
Now we don't know anything about F_{1}.
But we know that the force F_{1} must be less than maximum static friction i.e. $\mu \mathrm{mg}$ for the body to be at rest.
$\therefore \mathrm{f}=\mathrm{F}_{1} \leq \mu \mathrm{mg}$. And minimum F_{1} can be zero.
$\therefore 0 \leq \mathrm{f} \leq \mu \mathrm{mg}$
Now we know that contact force on the body is
$F=\sqrt{N^{2}+f^{2}}$

Using (i) and (iii) here,
$\sqrt{0+(\mathrm{mg})^{2}} \leq \mathrm{F} \leq \sqrt{(\mathrm{mg})^{2}+(\mu \mathrm{mg})^{2}}$
$m g \leq \mathrm{F} \leq \mathrm{mg} \sqrt{1+\mu^{2}}$
Sol 4: (C) Tension will always act along the length of the string and opposing the applied force.

In option B,

Tension has to act opposite to the applied force, but there is no string after the end point. Hence the string collapses.

In option C,

The tension in the string acts towards the body, thus making the string tough. Hence this is the correct representation.

Now when the mass ' m ' is released,
Balloon starts rising upwards with an acceleration ' a '.

(M-m)a
$F-(M-m) g=(M-m) a$
Solving (i) and (ii); we get
$m=\left(\frac{2 a}{a+g}\right) M$

Sol 6: (A) Let us assume that the string makes an angle of ' θ_{1} ' with the normal of the plane.

The only external force acting on the sphere is 'mg' which is vertically downward. Hence the string also becomes vertical so as to balance the force mg .

Sol 7: (C) F. B. D of (1)

(1)
(2)
(3)
$2 T \cos \theta-m \sqrt{2} g=0$
From (i) and (ii): $2(\mathrm{mg}) \cos \theta=m \sqrt{2} g$
$\operatorname{Cos} \theta=\frac{1}{\sqrt{2}} \Rightarrow \theta=\frac{\pi}{4}$

Sol 8: (B) The reason for small steps is that the lateral forces are decreased. Imagine taking a large step on concrete. When you put your foot down well in front of you, it will be pushing forwards on the concrete. And at the end of that step, when that foot is well behind you, it will be pushing backward on the concrete. The larger the step, the larger there forward and backward forces.

Our shoes on Ice can only provide or sustain small forward/backward forces, before they slip. Hence we try to reduce the friction.

Sol 9: (B) FBD of A;

$$
\mathrm{mg}-\mathrm{T}=\mathrm{ma}
$$

FBD of B;

Using (i) and (iii)
$\mathrm{mg}=\mathrm{ma}+\mathrm{m}{ }^{\prime} \mathrm{a}[(\mathrm{i})+(\mathrm{iii})]$
$a=\left(\frac{m}{m+m^{\prime}}\right) g$

Sol 10: (A) Now, the force required to just start the motion would be the static friction $\left(f_{s}\right)$

$\therefore \mathrm{F}=\mathrm{f}_{\mathrm{s}}=\mu_{\sigma} \mathrm{mg}$
i.e. after this point the body starts moving.

When the body is moving, kinetic friction acts on the body (i. e $\mu_{\mathrm{k}} \mathrm{mg}$)

FBD of the body;

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{k}} \leadsto \mathrm{~F} \quad \mathrm{~F}-\mathrm{f}_{\mathrm{k}}=\mathrm{ma} \\
& \rightarrow \mathrm{a} \quad \mu_{\mathrm{s}} \mathrm{mg}-\mu_{\mathrm{k}} \mathrm{mg}=\mathrm{ma} \\
& \Rightarrow\left(\mu_{\mathrm{s}}-\mu_{\mathrm{k}}\right) \mathrm{mg}=\mathrm{ma} \Rightarrow \mathrm{a}=\left(\mu_{\mathrm{s}}-\mu_{\mathrm{k}}\right) \mathrm{g} \\
& \mathrm{a}=0.98 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Sol 11: (C) Newton's second law states that the net force on an object is equal to the rate of change of its linear momentum.
$\Rightarrow \vec{F}=\frac{d \vec{p}}{d t}=\frac{d(m \vec{v})}{d t}$
if m is constant, then
\ldots (i) $\equiv m \cdot \frac{d \vec{v}}{d t} \equiv m \vec{a}$

Sol 12: (B) FBD of the body;

$m g+F=m a$
$a=g+\frac{F}{m}$; which is downwards. (i. e opposite) to the direction of displacement (till it reaches maximum height)

Since $m_{A}>m_{B^{\prime}} a_{A}<a_{B}$
i.e. Body ' A ' has less downward acceleration when composed to Body ' B '. Hence A will go higher than B.

Sol 13: (A) Let ' x ' be the maximum length that can hang hand from the table.

Now say f_{s} be the static friction

$f_{s}=\left(\frac{M}{L}\right) \cdot x \cdot g$
[\because Condition for Equilibrium]
And also we know that $\mathrm{f}_{\mathrm{s}}=\mu \mathrm{N}$.
$N=\frac{M}{L}(L-x) g$
$f_{s}=\frac{\mu M}{L}(L-x) g$
from (i) and (ii)
$\frac{M x}{L} g=\mu \frac{M}{L}(L-x) g$
$\Rightarrow \frac{\mathrm{x}}{\mathrm{L}}=\left(\frac{\mu}{1+\mu}\right)$
$\left(\frac{x}{L} \times 100\right)=\left(\frac{\mu}{1+\mu} \times 100\right)=\frac{1 / 4}{5 / 4} \times 100=20 \%$

Sol 14: (A)

Given that insect moves very lowly;
$\therefore \mathrm{V}=0$; Acceleration of the body is also zero.
$f=M g \cos \alpha$
$N=M g \sin \alpha$
Now for the maximum case;
$f=f_{s}=m N$.
$\therefore \mathrm{mN}=\mathrm{Mg} \cos \alpha$
$\mu(M g \sin \alpha)=M g \cos \alpha$
$\tan \alpha=\frac{1}{\mu} \Rightarrow \tan \alpha=3$
But we want to express in terms of θ;
$\alpha+\theta=90^{\circ}, \rightarrow \alpha=90^{\circ}-\theta$
$\tan \alpha=\tan \left(90^{\circ}-\theta\right)$
$3=\cot \theta$

Sol 15: (A)

When the bird alights on the wire; the wire makes a curve of small angle.
$2 \mathrm{~T} \sin \theta=\mathrm{w}$
$\sin \theta=\left(\frac{\mathrm{w}}{2 \mathrm{~T}}\right)$
we know that $\sin \theta \leq 1$
$\Rightarrow \frac{\mathrm{W}}{2 \mathrm{~T}}<1 \Rightarrow\left(\mathrm{~T}>\frac{\mathrm{W}}{2}\right)$

Sol 16: (D) Now Balancing the forces parallel and perpendicular to the incline surface;
$f=m g \sin \theta$
$\mathrm{N}=\mathrm{mg} \cos \theta$
And Net force by surface $=\sqrt{f^{2}+\mathrm{N}^{2}}$
$=\sqrt{(m g \sin \theta)^{2}+(m g \cos \theta)^{2}}=m g=30 \mathrm{~N}$.

Sol 17: (C) While descending down;
The fireman tries to pull the rope down and so there will be a tension ' T ' upwards.

$$
\begin{aligned}
& \mathrm{mg}-\mathrm{T}=\mathrm{ma} ; \quad \mathrm{mg}-\mathrm{ma}=\mathrm{T} \\
& \text { Now given } \mathrm{T}_{\max }=\frac{2 \mathrm{mg}}{3} \\
& \therefore \mathrm{a}_{\min }=\mathrm{mg}-\frac{2 \mathrm{mg}}{3} / \mathrm{m} \quad \therefore \mathrm{a}_{\min }=\mathrm{g} / 3
\end{aligned}
$$

Sol 18: (C)

$F_{\text {net }}=90 \sin 30^{\circ}-(30+5)=45-35$
$\mathrm{F}_{\text {net }}=10 \mathrm{~N}$ upwards
Sol 19: (D)

$3 F-m g \sin \alpha=m a$
$a=\left(\frac{3 F}{m}-g \sin \alpha\right)$
$a=\frac{250 \times 3}{100}-10(0.26)=7.5-2.6 \mathrm{~m} / \mathrm{s}^{2}=4.9 \mathrm{~m} / \mathrm{s}^{2}$

Sol 20: (B) Here in the problem, two cases arises;
(i) when the body is at rest
(ii) when the body just starts sliding and slides down For case I;

As long as body doesn't slide;
$F=m g \sin \theta ;$
$N=m g \cos \theta$
$\therefore F=\sqrt{f^{2}+N^{2}}=\mathrm{mg}$
\therefore It remains constant till a particular ' θ^{\prime}.
For case II;
When the body is sliding down,
$\mathrm{f}=\mathrm{mN}$
$N=m g \cos \theta$
$\therefore \mathrm{F}=\sqrt{(\mu \mathrm{N})^{2}+\mathrm{N}^{2}}=\mathrm{N}\left(\sqrt{\mu^{2}+1}\right)$
$=m g \cos \theta\left(\sqrt{\mu^{2}+1}\right)$
As θ increases; $\cos \theta$ decreases.
Hence F decreases.

Sol 21: (B)

λ (mass per unit length) $=\left(\frac{\mathrm{m}}{\mathrm{L}}\right)$
Now mass of the part which is hanging $=(n L)\left(\frac{m}{L}\right)=n m$
And mass of the part which is on the table $=(1-n) m$
Now total downward force $=(n m) g \equiv n m g$.
This force has to be balanced by the frictional force which is $\mu N \equiv \mu[(1-n) \mathrm{mg}]$
$\therefore \mu(1-\mathrm{n}) \mathrm{mg}=\mathrm{nmg}$
$\mu=\left(\frac{\mathrm{n}}{1-\mathrm{n}}\right)$

Circular Dynamics

Sol 22: (D) Force acting on the particle at any instant is $m R \omega^{2}$ towards the center.

i.e. $\vec{F}=m R \omega^{2} \hat{e}_{r}$ [Radial dire ction]

And the displacement of the particle will be 'ds' along tangential direction.
i.e. $d \vec{s}=d s \hat{e}_{t}$

Now work $=\vec{F} \cdot \mathrm{~d} \overrightarrow{\mathrm{~s}}$
$W=m r \omega^{2} d s\left(\hat{e}_{r} \cdot \hat{e}_{t}\right)$
$W=$ Zero (As \hat{e}_{r}, \hat{e}_{t} are perpendicular to each other)
Hence the work done by the Centripetal force is zero.

Sol 23: $\mathbf{(C)}$ Centripetal force $=m R \omega^{2}$

Now at any point in the circle this value remains the same. Its only that the direction keeps changing.

Sol 24: (D) In uniform circular motion, ω is constant Now in the options, A, B, C the quantities are constant in magnitude but keep changing in direction.

And since they are vector Quantities, we can't say they are constant. For speed, its only magnitude that matters. Since it's a Scalar Quantity.

And Speed $=R \omega \quad \because$ Constant
Hence option D.

Sol 25: (A) $m_{1}=m_{2}=m ; \quad v_{1}=v_{2}=v$
Now $F_{1}=\frac{m_{1} v_{1}^{2}}{r_{1}}=\frac{m v^{2}}{r_{1}}$
$F_{2}=\frac{m_{2} v_{2}^{2}}{r_{2}}=\frac{m v^{2}}{r_{2}}$
$\frac{F_{1}}{F_{2}}=\left(\frac{r_{2}}{r_{1}}\right)$

Sol 26: (C) Centripetal force $=\frac{m v^{2}}{R}$
$v=36 \mathrm{~km} / \mathrm{hr}=36\left[\frac{1000}{3600} \mathrm{~m} / \mathrm{s}\right]=36 \frac{5}{18} \mathrm{~m} / \mathrm{s}$
$\mathrm{v}=10 \mathrm{~m} / \mathrm{s}$
$F=\frac{(500)(10)^{2}}{50}$
$\mathrm{F}=1000 \mathrm{~N}$

Sol 27: (B) Use $F=m r \omega^{2}$

Sol 28: (A)

$N=m g \cos \theta-\frac{m v^{2}}{R}$
As one goes from A to P; θ decreases, so $\cos \theta$ increase.
$\therefore \mathrm{N}$ increases

Sol 29: (A) Centripetal force $=-\frac{k}{r^{2}}$
$\Rightarrow \frac{m v^{2}}{r}=-\frac{k}{r^{2}}$
$\Rightarrow m v^{2}=-\frac{k}{r}$
$\Rightarrow \frac{1}{2} m v^{2}=-\frac{k}{2 r}$
\Rightarrow kinetic energy $K=-\frac{k}{2 r}$
And since the motion is horizontal motion; let us assume the potential energy same as that of ground i.e. zero
\therefore total energy $=\mathrm{K}+\underset{\mathrm{k}}{\mathrm{U}}=-\frac{\mathrm{k}}{2 \mathrm{r}}+0$

$$
E=-\frac{k}{2 r}
$$

Sol 30: (B)

$N \sin \theta=\frac{m v^{2}}{R}$
$\mathrm{N} \cos \theta=\mathrm{mg}$
$\tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{Rg}}$
$\theta=\tan ^{-1}=\tan ^{-1}=\tan ^{-1}\left(\frac{1}{5}\right)$
Sol 31: (D)

In a vertical motion, the speed of ball doesn't remain constant and as we discussed earlier, centripetal force can't be constant in direction itself, so its ruled out.
And for tension, consider two points A, B
$\vec{T}_{A}=\left(m g+\frac{m v_{A}^{2}}{R}\right)(-\hat{j})$ and $\quad \vec{T}_{B}=\frac{m v_{B}^{2}}{R}(\hat{i})$
Hence tension is also not constant. Now gravitational force on the ball is (mg) at any point on the circle.

Sol 32: (B) At point A

$$
T_{A}+m g \cos \theta=\frac{m v_{A}^{2}}{R}
$$

$T_{A}=\frac{m v_{A}^{2}}{R}-m g \cos \theta$
and for point B,

$T_{B}=m g \cos \theta+\frac{m v_{B}^{2}}{R}$
Now $T_{A}-T_{B}=\frac{m v_{A}^{2}}{R}-\frac{m v_{B}^{2}}{R}$
$T_{A}-T_{B}=\frac{m}{R}\left(v_{A}^{2}-v_{B}^{2}\right)$
Now using conservation of energy theorem;
At point $A ; E_{A}=\frac{1}{2} m v_{A}^{2}+U_{A}$
At point $B ; E_{B}=\frac{1}{2} m v_{B}^{2}+U_{B}$
$E_{A}=E_{B}$
$\frac{1}{2} m\left(v_{A}^{2}-v_{B}^{2}\right)=U_{B}-U_{A}$
But we can observe that both points A and B are at same heights from the center.
$\therefore U_{A}=-U_{B} \because T_{A}-T_{B}=\frac{m}{R} \cdot \frac{2}{m}\left(U_{B}-U_{A}\right)=\frac{2}{R}\left(U_{B}-U_{A}\right)$ \therefore is constant

Sol 33: (D)

$m g+N=\frac{m v^{2}}{R}$
$v=\sqrt{\frac{R}{m}(m g+N)}$
Now for minimum case; let us say he just loses contact i.e. $N=0$
$\therefore \mathrm{v}=\sqrt{\mathrm{gR}}$. This is the minimum speed.

Previous Years' Questions

Forces and Laws of Motion

Sol 1: (C) $a=\frac{F}{m}=\frac{5 \times 10^{4}}{3 \times 10^{7}}=\frac{5}{3} \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$
$v=\sqrt{2 \mathrm{as}}=\sqrt{2 \times \frac{5}{3} \times 10^{-3} \times 3}=0.01 \mathrm{~m} / \mathrm{s}$

Sol 2: (A) Since, $m g \cos \theta>m g \sin \theta$
\therefore force of friction is $\mathrm{f}=\mathrm{mg} \sin \theta$
Sol 3: (C)

FBD of bob is $T \sin \theta=\frac{m v^{2}}{R}$ and $\mathrm{T} \cos \theta=\mathrm{mg}$
$\therefore \tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{Rg}}=\frac{(10)^{2}}{(10)(10)}$
$\tan \theta=1$ or $\theta=45^{\circ}$
Sol 4: (A) $N=5 \mathrm{~N}$
$(f)_{\max }=\mu \mathrm{N}=(0.5)(5)=2.5 \mathrm{~N}$

For vertical equilibrium of the block
$\mathrm{F}=\mathrm{mg}=0.98 \mathrm{~N}<(\mathrm{f})_{\text {max }}$
Sol 5: (A) Tangential force $\left(F_{t}\right)$ of the bead will be given by the normal reaction (N), while centripetal force (F_{c}) is provided by friction (f_{r}). The bead starts sliding when the centripetal force is just equal to the limiting friction.

Therefore,
$F_{t}=m a=m \alpha L=N$
\therefore Limiting value of friction
$\left(f_{r}\right)_{\text {max }}=\mu N=\mu m \alpha L$
Angular velocity at time t is $\omega=\alpha \mathrm{t}$
\therefore Centripetal force at time t will be
$F_{c}=m L \omega^{2}=m L \alpha^{2} t^{2}$
Equating equation (i) and (ii), we get
$t=\sqrt{\frac{\mu}{\alpha}}$
For $t>\sqrt{\frac{\mu}{\alpha}}, F_{c}>\left(f_{r}\right)_{\text {max }}$ i.e., the bead starts sliding.
In the figure F_{t} is perpendicular to the paper inwards.
Sol 6: (A) Since, the block rises to the same heights in all the four cases, from conservation of energy, speed of the block at highest point will be same in all four cases. Say it is v_{0}.

Equation of motion will be
$N+m g=\frac{m v_{0}^{2}}{R}$ or $N=\frac{m v_{0}^{2}}{R}-m g$
R (The radius of curvature) in first case is minimum. Therefore, normal reaction N will be maximum in first case.
Note in the question it should be mentioned that all the four tracks are frictionless. Otherwise, v_{0} will be different in different tracks.

Sol 7: (A) Equilibrium of insect give
$\mathrm{N}=\mathrm{mg} \cos \alpha$
$\mu \mathrm{N}=\mathrm{mg} \sin \alpha$

From Equation (i) and (ii). We get
$\cot \alpha=1 / \mu=3$

Sol 8: (D)

$\stackrel{\mathrm{T}=\mathrm{Mg}}{ }$

Free body diagram of pulley is shown in figure. Pulley is in equilibrium under four forces. Three forces as shown in figure and the fourth, which is equal and opposite to the resultant of these three forces, is the force applied by the clamp on the pulley (say F).

Resultant R of these three forces is
$R=\left(\sqrt{(M+m)^{2}+M^{2}}\right) g$
Therefore, the force F is equal and opposite to R as shown in figure.
$\therefore \mathrm{F}=\left(\sqrt{(\mathrm{M}+\mathrm{m})^{2}+\mathrm{M}^{2}}\right) \mathrm{g}$

Sol 9: (C) Free body diagram of m is

$\mathrm{T}=\mathrm{mg}$
Free body diagram of mass $\sqrt{2} \mathrm{~m}$ is

2T $\cos \theta=\sqrt{2} \mathrm{mg}$
Dividing Eq. (ii) by Eq. (i) we get
$\cos \theta=\frac{1}{\sqrt{2}}$ or $\theta=45^{\circ}$

Sol 10: (A) Free body diagram (FBD) of the block (shown by a dot) is shown in figure.

For vertical equilibrium of the block
$N=\mu \mathrm{g}+\mathrm{F} \sin 60^{\circ}=\sqrt{3} \mathrm{~g}+\sqrt{3} \frac{\mathrm{~F}}{2}$
For no motion, force of friction
$\mathrm{f} \geq \mathrm{F} \cos 60^{\circ}$
or $\mu \mathrm{N} \geq \mathrm{F} \cos 60^{\circ}$
or $\frac{1}{2 \sqrt{3}}\left(\sqrt{3} g+\frac{\sqrt{3 F}}{2}\right) \geq \frac{F}{2}$
or $g \geq \frac{F}{2}$ or $\mathrm{F} \leq 2 g$ or 20 N
Therefore, maximum value of F is 20 N .

Sol 11: (D) This is the equilibrium of coplanar forces. Hence,

$$
\begin{aligned}
& \quad \sum F_{\mathrm{x}}=0 \\
& \therefore \quad \mathrm{~F}=\mathrm{N} \\
& \therefore \quad \quad \quad \mathrm{~F}_{\mathrm{y}}=0, \mathrm{f}=\mathrm{mg} \\
& \text { St }{ }_{c}=0 \quad \therefore \overrightarrow{\tau_{\mathrm{N}}}+\overrightarrow{\tau_{\mathrm{f}}}=0 \\
& \therefore \text { Since, } \quad \overrightarrow{\tau_{\mathrm{f}}} \neq 0 \\
& \therefore
\end{aligned} \quad \overrightarrow{\tau_{\mathrm{N}}} \neq 0 .
$$

Sol 12: (A) Initially under equilibrium of mass m

$$
\mathrm{T}=\mathrm{mg}
$$

Now, the string is cut. Therefore, $T=m g$ force is decreased on mass m upwards and downwards on mass 2 m .

$$
\begin{aligned}
\therefore \quad a_{m} & =\frac{m g}{m}=g \text { (downwards) and } \\
& a_{2 m}=\frac{m g}{2 m}=\frac{g}{2} \text { (upwards) }
\end{aligned}
$$

Sol 13: (B)

$N \sin \theta=m g$
$N \cos \theta=m a$
$\tan \theta=\frac{g}{a}$
$\cot \theta=\frac{a}{g}=\tan \left(90^{\circ}-\theta\right)=\frac{d y}{d x}=2 k x$
$\therefore \mathrm{x}=\frac{\mathrm{a}}{2 \mathrm{~kg}}$

Sol 14: (A) When

$$
\begin{aligned}
& P=m g(\sin \theta-\mu \cos \theta) \\
& F=\mu m g \cos \theta \text { (upwards) }
\end{aligned}
$$

when

$$
\begin{aligned}
& P=m g \sin \theta \\
& f=0
\end{aligned}
$$

and when $P=m g(\sin \theta+\mu \cos \theta)$
$\mathrm{f}=\mu \mathrm{mg} \cos \theta \quad$ (downwards)
Hence friction is first positive, then zero and then negative.
\therefore Correct option is (A).

Sol 15: (B, D) A rotating/revolving frame is acceleration and hence non-inertial. Therefore, correct options are (B) and (D).

Circular Dynamics

Sol 16: (C)

and $T \cos \theta=m g$
$\therefore \tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{Rg}}=\frac{(10)^{2}}{(10)(10)}$
$\tan \theta=1$ or $\theta=45^{\circ}$

Sol 17: (D)

$\mathrm{R}=\ell \sin \theta$
T $\cos \theta$ component will cancel mg .
T $\sin \theta$ component will provide necessary centripetal force to the ball towards centre C.
$\therefore \mathrm{T} \sin \theta=\mathrm{mr} \omega^{2}=\mathrm{m}(\ell \sin \theta) \omega^{2}$
or $\quad \mathrm{T}=\mathrm{ml} \omega^{2}$
$\therefore \quad \omega=\sqrt{\frac{\mathrm{T}}{\mathrm{m} \ell}}$
or $\quad \omega_{\max }=\sqrt{\frac{T_{\max }}{\mathrm{m} \ell}}=\sqrt{\frac{324}{0.5 \times 0.5}}=36 \mathrm{rad} / \mathrm{s}$

Sol 18: (C) $F=F_{0} e^{-b t}$
$\Rightarrow \quad a=\frac{F}{m}=\frac{F_{0}}{m} e^{-b t}$
$\Rightarrow \quad \frac{d v}{d t}=\frac{F_{0}}{m} e^{-b t}$
$\Rightarrow \quad \int \mathrm{dv}=\int_{0}^{\mathrm{t}} \frac{\mathrm{F}}{\mathrm{m}} \mathrm{e}^{-\mathrm{bt}} \mathrm{dt}$
$\Rightarrow \quad v=\frac{\mathrm{F}}{\mathrm{m}}\left[\frac{-1}{\mathrm{~b}}\right]\left[\mathrm{e}^{-\mathrm{bt}}\right]_{0}^{1}$
$\Rightarrow \quad v=\frac{F}{m b}\left[e^{-b t}\right]$

FBD of bob is $T \sin \theta=\frac{m v^{2}}{R}$
$v=0$ at $t=0$
and $\quad v \rightarrow \frac{\mathrm{~F}}{\mathrm{mb}}$ as $\mathrm{t} \rightarrow \infty$
So, velocity increases continuously and attains a maximum value of $v=\frac{F}{m b}$ as $t \rightarrow \infty$

Sol 19: (C) $\mathrm{mg} \sin \theta=\mu \mathrm{mg} \cos \theta$
$\tan \theta=\mu$
$\Rightarrow \frac{d y}{d x}=\tan \theta=\mu=\frac{1}{2}$
$\Rightarrow \frac{x^{2}}{2}=\frac{1}{2}, x= \pm 1 \quad \Rightarrow y=\frac{1}{6} m$

Sol 20: (B) Normal force on block A due to B and between B and wall will be F.

Friction on A due to $B=20 \mathrm{~N}$
\therefore Friction on B due to wall $=100+20=120 \mathrm{~N}$

Sol 21: (B) Since work done by friction on parts PQ and QR are equal
$-\mu \mathrm{mg} \times \frac{\sqrt{3}}{2} \times 4=-\mu \mathrm{mg} x$
($\mathrm{QR}=\mathrm{x}$)
$\Rightarrow x=2 \sqrt{3} m \approx 3.5 \mathrm{~m}$
Applying work energy theorem from P to R
$m g \sin 30^{\circ} \times 4-\mu \mathrm{mg} \frac{\sqrt{3}}{2} \times 4-\mu \mathrm{mgx}=0$
$\Rightarrow \mu=\frac{1}{2 \sqrt{3}} \approx 0.29$

JEE Advanced/Boards

Exercise 1

Forces and Laws of Motion

Sol 1: The reading shown by the weighting scale is the normal reaction between the man and the weighing scale.

Now, in Case (I)

In this case,

$\mathrm{N}-\mathrm{mg}=0 \Rightarrow \mathrm{~N}=\mathrm{mg}=70 \times 10=700$ Newton.
\Rightarrow reading by the scale $=70 \mathrm{~kg}$

Case (II)

In the frame of the lift;

$\Rightarrow \mathrm{N}+\mathrm{ma}=\mathrm{mg}$
$\Rightarrow \mathrm{N}=\mathrm{m}(\mathrm{g}-\mathrm{a})$
$\Rightarrow \mathrm{N}=70(10-5)$
$\Rightarrow \mathrm{N}=70 \times 5 \mathrm{~N}$
N = 350 Newton
\Rightarrow Reading by the scale $=35 \mathrm{~kg}$

Case (III)

$\mathrm{N}=\mathrm{mg}+\mathrm{ma}$
$\Rightarrow \mathrm{N}=\mathrm{m}(\mathrm{a}+\mathrm{g})$
$\Rightarrow \mathrm{N}=70(10+5)$
$\Rightarrow \mathrm{N}=70$ (15)
$\mathrm{N}=1050$ Newton
\Rightarrow reading by the scale $=105 \mathrm{~kg}$
Now In this case $\mathrm{a}=\mathrm{g}$ downward,
\therefore from case (b);
$\Rightarrow \mathrm{N}=\mathrm{m}(\mathrm{g}-\mathrm{a})$
$\Rightarrow \mathrm{N}=\mathrm{m}(\mathrm{g}-\mathrm{g})$
$\mathrm{N}=0$
i. e the man is in free fall.

Sol 2:

Here rope tries to pull the man down.

$\Rightarrow \mathrm{N}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{g}$
In case II;
Now rope pulls the man up

$\mathrm{T}+\mathrm{N}=\mathrm{m}_{2} \mathrm{~g}$
$\Rightarrow \mathrm{N}=\mathrm{m}_{2} \mathrm{~g}-\mathrm{T}$
$\Rightarrow N=m_{2} g-m_{1} g$
$\Rightarrow N=\left(m_{2}-m_{1}\right) g$
Hence normal force is less in second case.

Sol 3: In climbing the rope, monkey tries to pull down the rope, and the rope pulls the monkey upwards.
$\overline{O_{m}=40 \mathrm{~kg}}$
\therefore On monkey;

$\mathrm{T}-\mathrm{mg}=\mathrm{ma}$
$T=m(g+a)$
$T=40(10+6)$
$\mathrm{T}=640 \mathrm{~N}$
But $T_{\max }=600 \mathrm{~N}$, hence the string breaks.

Case b:

$\mathrm{mg}-\mathrm{T}=\mathrm{ma}$
$\mathrm{T}=\mathrm{m}(\mathrm{g}-\mathrm{a})$
$\mathrm{T}=40(10-4)$
$\mathrm{T}=40 \times 6$
$\mathrm{T}=240 \mathrm{~N}$
$\mathrm{T}<\mathrm{T}_{\text {max }}$

Case c:

$\mathrm{u}=5 \mathrm{~m} / \mathrm{s}$ uniformly i.e. $\mathrm{a}=0$
$\mathrm{T}=\mathrm{mg}=40$ (10)
$\mathrm{T}=400 \mathrm{~N}$
$\mathrm{T} \leq \mathrm{T}_{\text {max }}$

Case d:

In this case;
Put $\mathrm{a}=\mathrm{g}$ in case (b)
We get $\mathrm{t}=\mathrm{m}(\mathrm{g}-\mathrm{a})$
$\mathrm{T}=\mathrm{m}(\mathrm{g}-\mathrm{g})$
$\mathrm{T}=0$

Sol 4: Now with respect to the truck; forces on the mass 'm' are

Now in Case (a)

$m a-f=m a^{\prime}$
$\mathrm{N}=\mathrm{mg}$
And $\mathrm{f}=\mu \mathrm{N}=\mu \mathrm{mg}$
$\mathrm{ma}-\mu \mathrm{mg}=\mathrm{ma}{ }^{\prime}$
$a^{\prime}=a-\mu g$
$a^{\prime}=2-(0.15)(10)$
$\mathrm{A}^{\prime}=2-1.5$
$\mathrm{A}^{\prime}=0.5 \mathrm{~m} / \mathrm{s}^{2}$
Now this fairly a relative motion problem
Box has to cover a distance of 5 m to fall off from the truck;
$s=0 t+\frac{1}{2} a t^{2} \Rightarrow 5=\frac{1}{2}(0.5) t^{2}$
$\mathrm{T}=\sqrt{20} \mathrm{~s}$
Now in the meantime, distance traveled by the truck in
$s=\frac{1}{2}(2)(20)=20 m$
\therefore Distance from the starting point where the box lands is 15 m .

Sol 5:

F is the force on helicopter due to the surrounding air
$\therefore F-(M+m) g=(M+m) a$
$\Rightarrow F=(M+m) g+(M+m) a$
$\Rightarrow \mathrm{F}=(\mathrm{M}+\mathrm{m})(\mathrm{g}+\mathrm{a})$
$\Rightarrow F=(1300)(25) N=32500 \mathrm{~N}$ upwards
Now using newton's third law, force by helicopter on surrounding air is F downward, i.e. 32500 downwards.

Now if we consider the crew,

\therefore Force on the floor by the crew is 7500 N downwards.

Sol 6:

For an observer on ground, this is how he depicts the FBD of mass,

$$
\mathrm{f}=\mathrm{ma}
$$

Now let us check for any sliding.

$$
f \leq f_{s} \ldots \text { (i) [Condition for no sliding] }
$$

$\mathrm{f}_{\mathrm{s}}=\mu \mathrm{mg}=(0.18)(15 \times 10)=27 \mathrm{~N}$.
and $\mathrm{f}=\mathrm{ma} \equiv 15(0.5)=7.5 \mathrm{~N}$.
hence no sliding.
The observer will find the body to move with acceleration of $0.5 \mathrm{~m} / \mathrm{s}$.
Now since there is no sliding, there is no relative motion w. r. t. the trolley.

Hence observer on trolley will find the mass to be at rest.

Sol 7:

$k_{1} x+k_{2} x=m a$
$a=\frac{\left(k_{1}+k_{2}\right) x}{m}$
$\Rightarrow \mathrm{N}=\mathrm{m}(\mathrm{a}+\mathrm{g})=300$
$\mathrm{N}=7500 \mathrm{~N}$ upwards.

Sol 8:

$\mathrm{T}_{1}-\mathrm{mg}=\mathrm{ma}$

$T_{2}+m g-T_{1}=m a$

$\mathrm{mg}-\mathrm{T}_{2}=\mathrm{ma}$
now, (i) + (ii)
gives $\mathrm{T}_{2}=2 \mathrm{ma}$
Now using this is equation (iii)

$$
\mathrm{a}=\frac{\mathrm{g}}{3} \text { and } \mathrm{T}_{2}=\frac{2 \mathrm{~g}}{3}
$$

Sol 9:

$\mathrm{T}_{2} \cos \theta=\mathrm{mg}$
$\mathrm{T}_{2} \sin \theta=\mathrm{T}_{1}$
$\mathrm{T}_{2}=\mathrm{mg} \sec \theta$
From (ii) \& (i) $\Rightarrow \tan \theta=\frac{\mathrm{T}_{1}}{\mathrm{mg}}$
$\Rightarrow \mathrm{T}=\mathrm{mg} \tan \theta$
Now just after the string $A B$ is burnt,
$\mathrm{T}_{2}=\mathrm{mg} \cos \theta$

Sol 10:

2T $\cos \theta=m g$
$\mathrm{T}=\frac{\mathrm{mg}}{2} \sec \theta$
$\sec \theta=\frac{\sqrt{h^{2}+\left(\frac{d}{2}\right)^{2}}}{h}$
$\therefore \mathrm{T}=\frac{\mathrm{mg}}{2} \cdot \frac{\sqrt{\mathrm{~h}^{2}+(\mathrm{d} / 2)^{2}}}{\mathrm{~h}}$
\therefore We can see that when h decreases, T increases.

Sol 11: FBD of A;

$\mathrm{mg}=\mathrm{N}+\mathrm{ma}$
$\Rightarrow \mathrm{N}=\mathrm{m}(\mathrm{g}-\mathrm{a})$
$\Rightarrow \mathrm{N}=0.5(10-2)$
$\Rightarrow N=\frac{1}{2}(8)=4$ newton.
Sol 12: Initially,
$F_{B}+F_{A}=m g$

Let us say mass ' m ' is removed to achieve case b; finally;

$(M-m) g+F_{A}=F_{B}$
From equation (i) and (ii), eliminating $F_{A^{\prime}}$;
We get $m=\frac{2(M g-B)}{g}$

Sol 13:

$m_{1} g \sin \alpha+N-f_{1}=m_{1} a$
$N_{1}=m g \cos \alpha$
$f_{1}=\mu_{1} N_{1}=k_{1} N_{1}$
$N_{2}=m g \cos a$
$m_{2} g \sin \alpha-N-f_{2}=m_{2} a$
$\mathrm{f}_{2}=\mathrm{k}_{2} \mathrm{~N}_{2}$
Now (i)/(v)
$g \sin \alpha+\frac{N}{m_{1}}-\frac{f_{1}}{m_{1}}=g \sin \alpha-\frac{N}{m_{2}},-\frac{f_{2}}{m_{2}}$
Solving; $f_{1}=k_{1} m_{1} g \cos a$
$f_{2}=k_{2} m_{2} g \cos \alpha$
$\therefore \quad N=\frac{g \cos \alpha\left(k_{1}-k_{2}\right) m_{1} m_{2}}{\left(m_{1}+m_{2}\right)}$
Adding (i) + (v)
$\left(m_{1}+m_{2}\right) g \sin \alpha-\left(f_{1}+f_{2}\right)=\left(m_{1}+m_{2}\right) a$
But for just sliding case, $a=0$

$$
\left(m_{1}+m_{2}\right) g \sin \alpha=f_{1}+f_{2}
$$

$\mathrm{f}_{1}=\mathrm{k}_{1} \mathrm{~N}_{1} ; \quad \mathrm{f}_{2}=\mathrm{k}_{2} \mathrm{~N}_{2}$
$\therefore\left(m_{1}+m_{2} g \sin \alpha=k_{1} m_{1} g \cos \alpha+k_{2} m_{2} g \cos \alpha\right.$
$\tan \alpha=\frac{k_{1} m_{1}+k_{2} m_{2}}{m_{1}+m_{2}}$

Sol 14: $m g \sin \alpha-f=m a$
$\mathrm{f}=\mu \mathrm{mg} \cos \alpha[\because \mu \mathrm{N}]$

$m g \sin a-\mu m g \cos \alpha=m a$
$\therefore a=g \sin \alpha-m g \cos \alpha$
$a=g(\sin \alpha-\mu \cos \alpha)$
Now time taken by the block to reach point O;
$\mathrm{s}=\mathrm{ot}+\frac{1}{2} \mathrm{at}^{2} \quad \therefore \mathrm{~s}=\ell \cos \alpha$
$\ell \cos \alpha=\frac{1}{2} g(\sin \alpha-\mu \cos \alpha) t^{2}$
$t=\sqrt{\frac{2 \ell \cos \alpha}{g(\sin \alpha-\mu \cos \alpha)}}$
for minimum t;
$\frac{d t}{d \alpha}=0$.

We get $\alpha=\frac{1}{2} \tan ^{-1}\left(\frac{-1}{\mu}\right)$

Sol 15: $\mathrm{f} \cos \alpha=\mathrm{ma}$
$f \sin \alpha+N=m g$

Now at the moment, contact is lost;
$\mathrm{N}=0$
$\mathrm{F} \sin \alpha=\mathrm{mg}$
at $_{0} \sin \alpha=\mathrm{mg}$
$\mathrm{t}_{0}=\left(\frac{\mathrm{mg}}{\mathrm{a} \sin \alpha}\right)$
now $F \cos \alpha=m a \equiv m \frac{d v}{d t}$
\therefore at $\cos \alpha=m \frac{d v}{d t}$
Integrating on both sides
$\int_{0}^{t_{0}}(a \cos \alpha) t d t=m \int_{0}^{v} d v$
$\frac{\operatorname{acos} \alpha}{2} \cdot \frac{t_{0}{ }^{2}}{2}=v m$
$\Rightarrow v=\frac{a \cos \alpha}{2 m} \cdot \frac{m^{2} g^{2}}{a^{2} \sin ^{2} \alpha} \Rightarrow v=\frac{m^{2} \cos \alpha}{2 a \sin ^{2} \alpha}$
We see that in equation (i)
$\Rightarrow \mathrm{v}=\frac{\mathrm{a} \cos \alpha}{2 \mathrm{~m}} \mathrm{t}^{2}$
$v=\frac{d x}{d t}=\frac{a \cos \alpha}{2 m} t^{2}$
$d x=\frac{a \cos \alpha}{2 m} t^{2} d t$
Integrating on both sides;

$$
\begin{aligned}
& \Rightarrow \int_{0}^{x} d x=\int_{0}^{t_{0}} \frac{a \cos \alpha}{2 m} t^{2} d t \Rightarrow x=\left.\frac{a \cos \alpha}{2 m} \frac{t^{3}}{3}\right|_{0} ^{t_{0}} \\
& x=\left(\frac{a \cos \alpha}{6 m}\right)\left(\frac{m g}{a \sin \alpha}\right)^{3}
\end{aligned}
$$

Sol 16: First let us calculate the limiting friction on blocks 'A' and 'B'.

$\mathrm{f}_{\mathrm{sA}}=\mu \mathrm{mg}$
$\mathrm{f}_{\mathrm{sB}}=\mu \mathrm{mg}$
Now when a force of $\frac{3}{4} \mu \mathrm{mg}$ acts on the block A; it doesn't cause any motion in A .
Hence; $F=f_{A}=\frac{3}{4} \mu \mathrm{mg}$
And string is left unaltered. Hence tension is zero. And hence $f_{B}=T=$ zero
(b) Now when force of $\frac{3}{2} \mu \mathrm{mg}$ is applied,

Body A will tend to move forward. ($F \geq f_{s}$)
Let us assume that the whole system moves with on acceleration 'a'.

On body A;

$F-T-f_{A}=m a$
$\mathrm{mg}=\mathrm{N}$
$\mathrm{f}_{\mathrm{A}}=\mu \mathrm{mg}$
On body B;

$T-f_{B}=m a$
$\mathrm{f}_{\mathrm{B}}=\mu \mathrm{mg}$
Adding (i) and (iv);
$F-\left(f_{A}+f_{B}\right)=2 m a$
$\frac{3}{2} \mu \mathrm{mg}-(2 \mu \mathrm{mg})=2 \mathrm{ma}$
a is negative
It means that our assumption that both the bodies move is false.

$F-T-f_{A}=0$
$\mathrm{T}=\mathrm{F}-\mathrm{f}_{\mathrm{A}}=\frac{3}{2} \mu \mathrm{mg}-\mu \mathrm{mg}$
$T=\mu \frac{\mathrm{mg}}{2}$
Now we can see that

$T=f_{B}=\frac{\mu \mathrm{mg}}{2} \leq \mathrm{f}_{\mathrm{s}} \equiv \mu \mathrm{mg}$
\therefore Block B cannot move. Since they both are connected to each other, even A can't move.

Sol 17: Length of block $A=\frac{\ell}{4}$
\Rightarrow Distance travelled by A relative to B
$=\frac{3 \ell}{4}+\frac{1}{4}\left(\frac{\ell}{4}\right)$
$l_{0}=\frac{13 \ell}{16}$
Let mass of A be $m_{A}=m$
$m_{c}=m_{;} \quad m_{B}=4 m$
friction force $=\mu m_{A} g$
Acceleration of $B a_{B}=\frac{f}{m_{b}}=\frac{\mu m_{A} g}{m_{B}}=\frac{\mu g}{4}$
Acceleration of $A a_{A}=\frac{m_{c} g-\mu m_{A} g}{m_{c}+m_{A}}$
$=\frac{m g(1-\mu)}{2 m}=g \frac{(1-\mu)}{2}$
Relative acceleration $a=a_{A}-a_{B}$
$=\frac{g(1-\mu)}{2}-\frac{\mu g}{4}=\frac{g}{4}(2-3 \mu)$
$\frac{1}{2} a t^{2}=1$
$\therefore \frac{1}{2} \frac{\mathrm{~g}}{4}(2-3 \mu) \mathrm{t}^{2}=\frac{13 \ell}{16}$
$\Rightarrow t^{2}=\frac{13 \ell}{2(2-3 \mu) g}$
Distance travelled by $B=\frac{1}{2} a_{B} t^{2}$
$=\frac{1}{2} \times \frac{\mu \mathrm{g}}{4} \cdot \frac{13 \ell}{2(2-3 \mu) g}=\frac{13 \mu \ell}{16(2-3 \mu)}$

Sol 18: mass $\mathrm{m}_{2}=\mathrm{hm}_{1}$
Friction force on $m_{1} f=k m_{1} g \cos a$
Gravitational force on $m_{1}, f_{1}=m_{1} g \sin \alpha$
acceleration $\mathrm{a}=\frac{\mathrm{m}_{2} \mathrm{~g}-\mathrm{f}-\mathrm{f}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$
$=\frac{\eta m_{1} g-k m_{1} g \cos \alpha-m_{1} g \sin \alpha}{m_{1}+\eta m_{1}}$
$a=\frac{g(\eta-k \cos \alpha-\sin \alpha)}{(n+1)}$

Sol 19: By constrains of string,
Acceleration of A equals to B
$\Rightarrow \mathrm{a}_{\mathrm{A}}=\mathrm{a}_{\mathrm{c}}=\mathrm{a}$
$\Rightarrow\left(m_{A}+m_{C}\right) a=\left(m_{A}+m_{C}\right) g \sin \theta-\mu\left(m_{C}\right) g \cos \theta$
$\Rightarrow 2 \mathrm{ma}=2 \mathrm{mg} \sin \theta-\mu \mathrm{mg} \cos \theta$
$a=\frac{1}{2}(2 g \sin \theta-\tan \theta g \cos \theta)=\frac{3}{4} g \sin \theta$
$\therefore a_{A}=a_{C}=\frac{3}{4} g \sin \theta$
Now for B, tensions of string cancel each other and no friction exists.

Hence the only acceleration is due to gravity
$\therefore a_{B}=g \sin \theta$

Sol 20: m will have acceleration vertically downword. Let call it a_{m}.
M will have acceleration along inclined plane lets call is a_{M}
$\because \mathrm{m}, \mathrm{M}$ have no relative acceleration vertically downward,
$\mathrm{a}_{\mathrm{M}} \sin \alpha=\mathrm{a}_{\mathrm{m}}$
Let normal force on block be N ,
$\mathrm{mg}-\mathrm{N}=\mathrm{m} \mathrm{a}_{\mathrm{m}}$
$N=m\left(g-a_{m}\right)$

From free body diagram of wedge
$M g \sin \alpha+N \sin \alpha=M a_{m}$
$\therefore m g \sin \alpha+m\left(g-a_{m}\right) \sin \alpha=M a_{m}$
$m g \sin \alpha+\left(m\left(g-a_{M} \sin \alpha\right) \sin \alpha=M a_{m} \quad M g \sin \alpha\right.$
$\Rightarrow a_{m}=\frac{(m+M) g \sin \alpha}{M+m \sin ^{2} \alpha}$
$\Rightarrow a_{m}=\frac{(m+M) g \sin ^{2} \alpha}{M+m \sin ^{2} \alpha} \quad\left(a_{m}=a_{M} \sin \alpha\right)$

Sol 22: Let mass of $A=m$
Mass of $B=\eta m$
Let normal reaction between surfaces be N
$a_{B}=\frac{N \sin \alpha}{m_{B}}=\frac{N \sin \alpha}{\eta m}$
$a_{A}=\frac{m g-N \cos \alpha}{m}$
$\mathrm{a}_{\mathrm{A}}=\mathrm{a}_{\mathrm{B}} \tan \alpha$
$\Rightarrow \mathrm{g}-\frac{\mathrm{N}}{\mathrm{m}} \cos \alpha=\frac{\mathrm{N} \sin \alpha \tan \alpha}{\eta \mathrm{m}}$
$\Rightarrow \mathrm{g}=\frac{\mathrm{N}}{\mathrm{m}}\left(\cos \alpha+\frac{\sin \alpha \tan \alpha}{\eta}\right)$
$\Rightarrow \frac{\mathrm{N}}{\eta \mathrm{m}}=\frac{\mathrm{g}}{\eta \cos \alpha+\sin \alpha \tan \alpha}$
$a_{B}=\frac{N}{\eta m} \sin \alpha=\frac{g}{\eta \cot \alpha+\tan \alpha}$
$a_{A}=a_{B} \tan \alpha=\frac{g}{\eta \cot ^{2} \alpha+1}$

Sol 23: Let tension in string be T
Net force perpendicular to plane
$N=m g \cos \alpha-T \sin B$
For minimum tension acceleration is zero
$\therefore \mathrm{mg} \sin \alpha=\mathrm{T} \cos \beta-\mu \mathrm{N}$
$\mathrm{mg} \sin \alpha=\mathrm{T} \cos \beta-\mu \mathrm{mg} \cos \alpha+\mu \mathrm{T} \sin \beta$
$\mathrm{T}=\frac{\mathrm{mg}(\sin \alpha+\mu \cos \alpha)}{\cos \beta+\mu \sin \beta}$
$\frac{d T}{d \beta}=\frac{m g(\sin \alpha+\mu \cos \alpha)}{-(\cos \beta+\mu \sin \beta)^{2}} \frac{d}{d \beta}(\cos \beta+\mu \sin \beta)$
For minimum $T, \frac{d T}{d \beta}=0$
$\Rightarrow \mu=\tan \beta$
$\Rightarrow \beta=\tan ^{-1} \mu \Rightarrow \cos \beta=\frac{1}{\sqrt{\mu^{2}+1}}$ and $\sin \beta=\frac{\mu}{\sqrt{\mu^{2}+1}}$
$\underline{m g(\sin \alpha+\mu \cos \alpha)}$
$T=\frac{1}{\sqrt{\mu^{2}+1}}+\frac{\mu^{2}}{\sqrt{\mu^{2}+1}}=\frac{m g(\sin \alpha+\mu \cos \alpha)}{\sqrt{\mu^{2}+1}}$

Sol 24: frictional force $\mathrm{f}=\mathrm{km}_{2} \mathrm{~g}$
$a_{1}=\frac{F-f}{m_{1}} \quad(F>f)$
$a_{1}=\frac{a t-k m_{2} g}{m_{1}}$
$a_{1}=\frac{a t-k m_{2} g}{m_{1}} \quad\left(t>t_{0}\right)$
$a_{2}=\frac{k m_{2} g}{m_{2}}=k g \quad\left(t>t_{0}\right)$
for $t<t_{o}$, f acts as internal force as there is no sliding
$\therefore \mathrm{a}_{1}=\mathrm{a}_{2}=\frac{\text { at }}{\mathrm{m}_{1}+\mathrm{m}_{2}} \quad\left(\mathrm{t}<\mathrm{t}_{0}\right)$

Till time t_{0}, the bodies move together.
at $\mathrm{t}=\mathrm{t}_{0^{\prime}} \mathrm{f}=\mathrm{k} \mathrm{m}_{2} \mathrm{~g}$
$k m_{2} g=m_{2} a_{2}$
$\mathrm{kg}=\mathrm{a}_{2}=\mathrm{a}_{1}$

$\mathrm{at}_{\mathrm{o}}-\mathrm{km} \mathrm{m}_{2} \mathrm{~g}=\mathrm{m}_{1} \mathrm{a}_{1}$
$a t_{0}=k m_{2} g+m_{1} a_{1}$

$\mathrm{t}_{\mathrm{o}}=\frac{\mathrm{k}\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{g}}{\mathrm{a}}$

Sol 25: Let mass of motor $=m$
mass of bar $=2 \mathrm{~m}$
$2 \mathrm{~m} w=\mathrm{T}-2 \mathrm{mg} \mathrm{k}$
$\Rightarrow \mathrm{T}=2 \mathrm{~m}(\mathrm{w}+\mathrm{kg})$
Let acceleration or motor be a_{m}
$m \mathrm{a}_{\mathrm{m}}=\mathrm{T}-\mathrm{mgK}$
$\Rightarrow a_{m}=\frac{1}{m}[2 m w+2 m k g-m k g]$
$\Rightarrow \mathrm{a}_{\mathrm{m}}=2 \mathrm{w}+\mathrm{kg}$
Relative accelerator $\mathrm{a}=\mathrm{a}_{\mathrm{m}}+\mathrm{w}=3 \mathrm{w}+\mathrm{kg}$ $\frac{1}{2} a t^{2}=1$
$\mathrm{t}=\sqrt{\frac{2 \ell}{\mathrm{a}}}=\sqrt{\frac{2 \ell}{3 \mathrm{w}+\mathrm{kg}}}$

Sol 26:

$2 \mathrm{~T} \cos \theta=\mathrm{F}$
$\Rightarrow \mathrm{T}=\frac{\mathrm{F}}{2 \cos \theta}$
Horizontal acceleration $\mathrm{a}_{\mathrm{x}}=\frac{\mathrm{T} \sin \theta}{\mathrm{m}}$
$=\frac{F}{2 \cos \theta} \frac{\sin \theta}{m}=\frac{F \tan \theta}{2 m}=\frac{F}{2 m} \cdot \frac{x}{\sqrt{(\ell)^{2}-(x)^{2}}}$
$a_{x}=\frac{F x}{2 m\left(\ell^{2}-x^{2}\right)^{\frac{1}{2}}}$
Acceleration of approach $=2 \mathrm{a}_{\mathrm{x}}=\frac{\mathrm{fx}}{\mathrm{m}\left(\ell^{2}-\mathrm{x}^{2}\right)^{\frac{1}{2}}}$

Sol 27: Let tension in thread $=T$
$F-3 T=35 a_{B}$
$2 \mathrm{~T}=70 \mathrm{a}_{\mathrm{A}}$
$\Rightarrow \mathrm{F}=35\left(\mathrm{a}_{\mathrm{B}}+3 \mathrm{a}_{\mathrm{A}}\right)$
Constrain equation X_{B}

$2\left(x_{B}-x_{A}\right)+\left(x_{B}-x_{C}\right)=$ Constant
$\Rightarrow 3 a_{B}-2 a_{A}=0 \quad \Rightarrow a_{A}=\frac{3}{2} a_{B}$
$\Rightarrow F=35\left(\frac{11}{2}\right) a_{B}$
$\Rightarrow a_{B}=\frac{300 \times 2}{385}=1.558 \mathrm{~ms}^{-2}$

$$
a_{A}=\frac{3}{2} a_{B}=2.338 \mathrm{~ms}^{2}
$$

$\mathrm{T}=81.8 \mathrm{~N}$

Sol 28: $\mathrm{F}=30 \mathrm{t} N$
$\Rightarrow \mathrm{T}=10 \mathrm{t}$
$w t$. of $A=10 m_{1}=10 \mathrm{~N}$
(a) Block A loses contact when $\mathrm{T}=$ weight

$$
\begin{aligned}
& 10 \mathrm{t}=10 \\
& \mathrm{t}=1 \mathrm{~s}
\end{aligned}
$$

Similarly $2 T=10 m_{2}$ when B loses contact

$$
20 t=10(4)
$$

$$
t=2 \mathrm{~s}
$$

(b) Net force on $\mathrm{AF}_{\mathrm{A}}=10 \mathrm{t}-10(\mathrm{t}>1)$
$a_{A}=\frac{1}{m_{1}}(10 t-10)$
$a_{A}=(10 t-10)$
$\frac{d v_{A}}{d t}=10 t-10$
$v_{A}=\int_{1}^{2}(10 t-10) \cdot d t=5 t^{2}-\left.10 t\right|_{1} ^{2}$
$v=5 \mathrm{~ms}^{-1}$
(c) $v_{A}=\int_{1}^{t}(10 t-10) d t=5 t^{2}-\left.10 t\right|_{1} ^{t}$

$$
\begin{aligned}
& v_{A}=5 t^{2}-10 t+5 \\
& \quad \frac{d h}{d t}=5 t^{2}-10 t+5 \\
& H=\int d h=\int_{1}^{2}\left(5 t^{2}-10 t+5\right) d t=\frac{5}{3} t^{3}-5 t^{2}+\left.5 t\right|_{1} ^{2}=\frac{5}{3} m .
\end{aligned}
$$

Circular Dynamics

Sol 29: Acceleration inside a rotor $=R \omega^{2}$
$\overrightarrow{\mathrm{a}}=R \omega^{2}$
Now for $\overrightarrow{\mathrm{a}}_{\text {max }}$
$\mathrm{a}_{\text {max }}=\mathrm{R} \mathrm{w}_{\text {max }}^{2}$
Given $\mathrm{a}_{\max }=10 \mathrm{~g}=100 \mathrm{~m} / \mathrm{s}^{2}$
$\omega_{\text {max }}=\sqrt{\frac{100}{4}}=\frac{10}{2} \mathrm{rad} / \mathrm{s}=5 \mathrm{rad} / \mathrm{s}$
we know that 1 rad $=\frac{1}{2 \pi}$ rev
$\therefore \omega_{\mathrm{m}}=\frac{5}{2 \pi} \mathrm{Rev} / \mathrm{s}$

Sol 30:

$N \sin \theta=\frac{m v^{2}}{R}$
$\mathrm{N} \cos \theta=\mathrm{mg}$
Dividing (i) and (ii)
$\Rightarrow \tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{Rg}}$
$\Rightarrow v=108 \mathrm{~km} / \mathrm{h}=108 \times \frac{5}{18} \mathrm{~m} / \mathrm{s}$
$\mathrm{v}=30 \mathrm{~m} / \mathrm{s}$
$R=90 \mathrm{~m}$
$\therefore \tan \theta=\frac{30.30}{90.10}=1$
$\Rightarrow \theta=\frac{\pi}{4}$
Squaring (i) and (ii) and adding them

$$
\begin{aligned}
& \Rightarrow N^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=\left(\frac{m v^{2}}{R}\right)^{2}+(m g)^{2} \\
& \Rightarrow N=\sqrt{(m g)^{2}+\left(\frac{m v^{2}}{R}\right)^{2}} \\
& \Rightarrow N=m \sqrt{(10)^{2}+(10)^{2}}=10 \sqrt{2} \mathrm{~m} \text { Newton } \\
& \Rightarrow N=10^{4} \cdot \sqrt{2} \mathrm{~N} .
\end{aligned}
$$

Sol 31:

$\mathrm{T} \cos \theta=\mathrm{mg}$
$T \sin \theta=\frac{m v^{2}}{R}$
Now the component $T \cos \theta$ has to balance the weight of the body
$\therefore \mathrm{T}_{\text {max }} \cos \theta=\mathrm{mg} \Rightarrow 8 \cos \theta=0.4 \times 10$
$\cos \theta=\frac{1}{2} \Rightarrow \theta=60^{\circ}$
\therefore Angle with the horizontal is $\left(90^{\circ}-\theta\right)=30^{\circ}$
and $T \sin \theta=\frac{m v^{2}}{R}$
8. $\frac{\sqrt{3}}{2}=\frac{0.4 \times v^{2}}{4}$
$v=\sqrt{40(\sqrt{3})} \mathrm{m} / \mathrm{s}$
$v=8.3 \mathrm{~m} / \mathrm{s}$

Sol 32: Speed of the particle just before the string breaks is v. Now after the string is broken; the path of the stone will be;

Writing the equations of motion;
along $\mathrm{y}: 2=\frac{1}{2} \mathrm{gt}^{2}$
along x : $10=v t$
Solving for v; we get
$\mathrm{v}=15.8 \mathrm{~m} / \mathrm{s}$
and centripetal acceleration $=\frac{\mathrm{v}^{2}}{\mathrm{R}}$
$a=\frac{(15.8)^{2}}{1.5}=168.3 \mathrm{~m} / \mathrm{s}^{2}$

Sol 33:

Writing down the equation of motions at point A and B; At B:

$$
T_{B}=\frac{m v^{2}}{R}-m g
$$

At A:- $T_{A}=\frac{m u^{2}}{R}+m g$
Now for completing the circle;
Tension at the highest point has to be non-zero; or else the particle will fall down.

So for the minimum case, $T \approx 0$
$\therefore \mathrm{T}_{\mathrm{B}}=0$
$\Rightarrow \frac{m v^{2}}{R}=m g$
$v=\sqrt{R g}$

Sol 34:

$T=\frac{m v^{2}}{R}$
Now for $\mathrm{V}_{\text {max }}$
we have $T_{\max }=500 \mathrm{~N}$
$\Rightarrow 500=\frac{1 \mathrm{v}^{2}}{1}$
$v=\sqrt{500}=10 \sqrt{5} \mathrm{~m} / \mathrm{s}$
$v=22.36 \mathrm{~m} / \mathrm{s}$

$N=\frac{m v^{2}}{R} \sin \theta+m g \cos \theta$
$f=\frac{m v^{2}}{R} \cos \theta-m g \sin \theta$
Contact force is $\mathrm{N}+\mathrm{f}$
And the angle with which the force and the surface of the contact lie is
$\tan ^{-1}\left(\frac{\mathrm{f}}{\mathrm{N}}\right)$
But here given that the force is normal to the surface
\Rightarrow Friction force $=0$
$\therefore \frac{m v^{2}}{R} \cos \theta-m g \sin \theta=0$
$\Rightarrow \tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{Rg}} \quad \Rightarrow \theta=\tan ^{-1}\left(\frac{\mathrm{v}^{2}}{\mathrm{Rg}}\right)$
$v=100 \mathrm{~km} / \mathrm{h}=100 . \frac{5}{18}=\frac{250}{9} \mathrm{~m} / \mathrm{s}$
Find θ now!

Sol 36: FBD of M;

$f=M L \omega^{2} ; N=M g$
and for static conditions;
$\mathrm{f}=\mu \mathrm{N}=\mu \mathrm{Mg} \quad \Rightarrow \mu \mathrm{Mg}=\mathrm{ML} \omega^{2}$
$\omega=\sqrt{\frac{\mu \mathrm{g}}{\mathrm{L}}}$

Sol 37: Let u be the speed at the highest point of the bridge

$\frac{m u^{2}}{R}+N=m g$
$N=m g-\frac{m u^{2}}{R}$
Now for maximum speed where contact is broken;
$\mathrm{N}=0$
$\therefore \mathrm{mg}=\frac{\mathrm{mu}^{2}}{\mathrm{R}}$
$\mathrm{u}=\sqrt{\mathrm{Rg}}$

Sol 38:

$\mathrm{T} \sin \theta=\frac{\mathrm{mv}}{} \mathrm{R}^{2}$
$\mathrm{T} \cos \theta=\mathrm{mg}$

$$
\begin{align*}
& \frac{\text { (i) }}{\text { (ii) }}=\tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{Rg}} \tag{ii}\\
& v=36 \mathrm{~km} / \mathrm{h}=36 \frac{5}{18}=10 \mathrm{~m} / \mathrm{s} \\
& \tan \theta=\frac{10 \times 10}{10 \times 10} ; \tan \theta=1 \\
& \Rightarrow \theta=\frac{\pi}{4}
\end{align*}
$$

Sol 39:

Let us call the point where tension is equal to the weight of the particle as ' P '.
Now at point P,
$T=\frac{m v^{2}}{R}+m g \cos \theta$
Given that $\mathrm{T}=\mathrm{mg}$
$m g=\frac{m v^{2}}{R}+m g \cos \theta$
$m g(1-\cos \theta)=\frac{m v^{2}}{R}$
Now Total energy at point O
$0=\frac{1}{2} m(\sqrt{g L})^{2}+0$
$E_{0}=\frac{m g L}{2}$
Total energy at point $P=\frac{1}{2} m\left(v^{2}\right)+m g L(1-\cos \theta)$
$E_{0}=E_{p}$
$\therefore \frac{\mathrm{mgL}}{2}=\frac{m v^{2}}{2}+m g L(1-\cos \theta)$
$-\frac{m g L}{2}+m g L \cos \theta=\frac{m v^{2}}{2}$
$\frac{m v^{2}}{2}=2 m g \cos \theta-m g$
Now using this value of $\frac{\mathrm{mv}^{2}}{\mathrm{~L}}$ in eq^{n} (ii)
$2 \mathrm{mg} \cos \theta-\mathrm{mg}=\mathrm{mg}(1-\cos \theta)$
$3 \mathrm{mg} \cos \theta=2 \mathrm{mg}$
$\cos \theta=\frac{2}{3} \quad \Rightarrow \theta=\cos ^{-1}\left(\frac{2}{3}\right)$
Considering eq ${ }^{n}-3$

$$
\begin{aligned}
& \frac{m v^{2}}{L}=2 m g\left(\frac{2}{3}\right)-m g \\
& \frac{m v^{2}}{L}=\frac{m g}{3} \\
& v=\sqrt{\frac{g \ell}{3}}
\end{aligned}
$$

Sol 40:

FBD of body:
(a) For minimum ω;

Body tends to slip down
\therefore friction acts upwards

$N=m g \cos \theta+m r \omega^{2} \sin \theta$
$F=m g \sin \theta-m r \omega^{2} \cos \theta$
We know that $f=\mu N$
$\Rightarrow m g \sin \theta-m r \omega^{2} \cos \theta=\mu\left[m g \cos \theta+m r \omega^{2} \sin \theta\right]$
Separating all ω^{2} terms to one side;
$(\mu r \sin \theta+r \cos \theta) \omega^{2}=g \sin \theta-\mu g \cos \theta$
$\omega=\sqrt{\frac{g(\sin \theta-\mu \cos \theta)}{R \sin \theta(\mu \sin \theta+\cos \theta)}}$
Now for maximum limit case;
Solve exactly as above

Sol 41:

Now $m R \omega^{2} \cos \theta=m a$
$\therefore \mathrm{a}=\mathrm{R} \omega^{2} \cos \theta$
Now $s=u t+\frac{1}{2} a t^{2}$
$\mathrm{L}=0+\frac{1}{2} R \omega^{2} \cos \theta t^{2}$
$t=\sqrt{\frac{2 L}{R \omega^{2} \cos \theta}}$

Sol 42:

FBD of m_{1};

FBD of m_{2} :
$\stackrel{\leftarrow \mathrm{a}}{\mathrm{M} 2} \rightarrow \mathrm{~F}_{2} \quad \mathrm{~T}-\mathrm{F}_{2}=\mathrm{m}_{2} \mathrm{a}$
Adding equation (i) and (ii)
$F_{1}-F_{2}=\left(m_{1}+m_{2}\right) a$
$F_{1}=m R \omega^{2} \quad F_{2}=2 m R \omega^{2}$
$\therefore-m R \omega^{2}=3 \mathrm{ma}$
$a=-\frac{R \omega^{2}}{3}$
Using equation (i)
$m R \omega^{2}-T=m\left(-\frac{R \omega^{2}}{3}\right)$
$T=m R \omega^{2}+\frac{m R \omega^{2}}{3}$
$\mathrm{T}=\frac{4}{3} \mathrm{mR} \omega^{2}$

Sol 43: Given Normal acceleration $\mathrm{a}_{\mathrm{n}}=\mathrm{Kt}^{2}$
But we know that $m a_{n}=\frac{m v^{2}}{R}$
$\therefore \frac{\mathrm{v}^{2}}{\mathrm{R}}=\mathrm{Kt}^{2}$
$v=\sqrt{K R} t$
$\frac{d v}{d t}=\sqrt{K R}$
Tangential force $=m \cdot \frac{d v}{d t}=(\sqrt{K R}) m=m \sqrt{K R}$
Total force $=m|\vec{a}|$
$\overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{a}}_{\mathrm{n}}+\overrightarrow{\mathrm{a}}_{\mathrm{t}}$
$|\vec{a}|=\sqrt{a_{n}^{2}+a_{t}^{2}}=\sqrt{\left(K t^{2}\right)^{2}+(\sqrt{K R})^{2}}$
Total force $=m .|\vec{a}|=m \sqrt{K\left(R+K t^{4}\right)}$
Now we know that work done by normal force in a circular motion is zero
$\therefore \omega_{\mathrm{N}}=0$
Now only work is done by tangential force
(m. $\sqrt{K R}$)ds

We know that
Power $=\frac{\mathrm{d} \omega}{\mathrm{dt}} \equiv \frac{\mathrm{d} \omega}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}}$
$P=v \cdot \frac{d \omega}{d s}=\sqrt{K R} \times t \times m \sqrt{K R}$
$P=m K R t$
Avg power $=\frac{\int_{0}^{t} m K R t d t}{\int_{0}^{t} d t}$
$\mathrm{P}_{\mathrm{avg}}=\frac{1}{2} \mathrm{mKRt}$
Sol 44:

In this case, there will be a pseudo force acting on the body. Now we use Work-Energy theorem, i.e. work done by all the forces is equal to change in kinetic energy. We know that, work done by normal force and centripetal force is zero

Work done by pseudo force $=$ ma. $(\mathrm{R} \sin \theta)$
$\mathrm{W}_{\mathrm{PF}}=\mathrm{maR} \sin \theta$
Work done by gravitational force $=m g(R-R \cos \theta)$
$W_{m g}=m g R(1-\cos \theta)$
Net work done $=m a R \sin \theta+m g R(1-\cos \theta)$
$\equiv \frac{1}{2} m v^{2}=R m(a \sin \theta+g(1-\cos \theta))$
$v=\sqrt{2 R(a \sin \theta+g(1-\cos \theta))}$

Let us consider the part OAB;

m is the mass of the part $O A B$.
$\Rightarrow 2 \mathrm{~T} \sin \frac{\theta}{2}=\mathrm{mR}^{2} \omega^{2}$
now for small values of $\theta ; \sin \theta=\theta$;
2T. $\left(\frac{\theta}{2}\right)=m R \omega^{2}$
$\mathrm{T} \theta=\mathrm{mRw}{ }^{2}$
Now $m=(\lambda)$ (Length $)=(\lambda)$ R θ
$\therefore \mathrm{T} \theta=(\lambda R \theta) R \omega^{2}$
$\mathrm{T}=\lambda \mathrm{R}^{2} \omega^{2}$

Sol 46: $\vec{a}_{\text {net }}=\vec{a}_{\text {radial }}+\vec{a}_{\text {tangential }}$

$$
\begin{aligned}
& \vec{a}_{r}=\frac{v^{2}}{R} \cdot\left(-\hat{e}_{r}\right) ; \quad \vec{a}_{t}=a\left(\hat{e}_{t}\right) \\
& \left|\vec{a}_{\text {net }}\right|=\sqrt{a^{2}+\left(\frac{v^{2}}{R}\right)^{2}} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Sol 47:

Consider the part OAB;
Let the mass of this strip be ' dm '

$2 \mathrm{~T} \sin \left(\frac{\theta}{2}\right)=\frac{\mathrm{dm} \cdot \mathrm{v}^{2}}{\mathrm{R}}$
For very small values of $\theta ; \sin \theta \approx \theta$
$\therefore 2 \mathrm{~T}\left(\frac{\theta}{2}\right)=\frac{\mathrm{dm} \cdot \mathrm{v}^{2}}{\mathrm{R}} ; \quad \mathrm{T} . \theta=\frac{\mathrm{dm} \cdot \mathrm{v}^{2}}{\mathrm{R}}$
Now $\mathrm{dm}=\frac{\mathrm{m}}{2 \pi \mathrm{R}} \cdot \mathrm{R} \cdot \theta=\left(\frac{\mathrm{m} \theta}{2 \pi}\right) \Rightarrow \mathrm{T} \theta=\frac{\mathrm{m} \theta}{2 \pi} \cdot \frac{\mathrm{v}^{2}}{\mathrm{R}}$
$T=\frac{m v^{2}}{2 \pi R}$

Sol 49:

$\vec{a}_{\text {net }}=\vec{a}_{r}+\vec{a}_{t}$
$\vec{a}_{r}=\frac{v^{2}}{R} ; \quad \vec{a}_{t}=\frac{d v}{d t}=a$
$\vec{a}_{\text {net }}=\frac{v^{2}}{R}\left(-\hat{e}_{r}\right)+a\left(\hat{e}_{t}\right) ; \quad\left|\vec{a}_{\text {net }}\right|=\sqrt{a^{2}+\left(\frac{v^{2}}{R}\right)^{2}}$
$f=m\left|\vec{a}_{\text {net }}\right|$
\therefore Under static conditions
$\mu m g=m \sqrt{a^{2}+\left(\frac{v^{2}}{R}\right)^{2}}$
$v=\left[\left(\mu^{2} g^{2}-a^{2}\right) R^{2}\right]^{1 / 4}$

Exercise 2

Forces and Laws of Motion

Single Correct Choice Type

Sol 1: (C)

λ (linear density) of chain $=\left(\frac{m}{L}\right)$
Now at point A;

The mass of the part $A B$ of chain has to be supported by the rest of the chain.
$T=\frac{m}{L}(L-x) g$

Sol 2: (A) $m g \sin \theta=f$ and $N=m g \cos \theta$

For the condition of just sliding;
$\mathrm{f}=\mu \mathrm{N}$
$\Rightarrow \mathrm{mg} \sin \theta=\mu \mathrm{mg} \cos \theta$
$\Rightarrow \tan \theta=\mu \Rightarrow \theta=\tan ^{-1}(\mu)$.
Hence the angle of inclination has nothing to do with the mass of the body.
Here the angles are different because of the change in ' μ ' from one block to another.

Sol 3: (A)

Now let us say the whole system moves with an acceleration ' a '.
$\therefore F=\left(m_{1}+m_{2}+m_{3}\right) a$
Let as consider Individual masses;
For m_{1};

$$
\begin{align*}
& F-N_{1}=m_{1} ; \tag{ii}\\
& N_{g_{1}}-m_{1} g=0 \tag{iii}
\end{align*}
$$

For m_{2} :

$$
\begin{align*}
& N_{1}-N_{2}=m_{2} a \tag{iv}\\
& m_{2} g-f=0 \tag{v}
\end{align*}
$$

For m_{3};

$N_{2}=m_{3} a ;$

We know that $\mathrm{f}_{\max }=\mu \mathrm{N}_{2}=\mu \mathrm{m}_{3} \mathrm{a}$
$\mathrm{f}=\mathrm{m}_{2} \mathrm{~g} \leq \mathrm{f}_{\text {max }} \equiv \mu \mathrm{m}_{3} \mathrm{a}$
$\Rightarrow \mathrm{a} \geq\left(\frac{\mathrm{m}_{2} \mathrm{~g}}{\mu \mathrm{~m}_{3}}\right)$
$\Rightarrow F \geq\left(m_{1}+m_{2}+m_{3}\right)\left(\frac{m_{2} g}{\mu m_{3}}\right)$ (from (viii) \& (i))

Sol 4: (A)

Here both the particles are constrained to move together. Hence $a_{A}=a_{B}$
Now let us first find the net force down the incline;
i. e $\left(m_{1}+m_{2}\right) g \sin \theta$
$F_{\text {net }}=340 \times 10 \times \frac{8}{17}$
$F_{\text {net }}=1600 \mathrm{~N}$.
Now let us calculate the $f_{s_{1}}+f_{s_{2}}$
$f_{s_{1}}=\mu_{1} \cdot\left(m_{1} g \cos \theta\right)=(0.2)\left(170 \times 10 \times \frac{15}{17}\right)=300 \mathrm{~N}$
$f_{s_{2}}=\mu_{2} \cdot\left(m_{2} g \cos \theta\right)=0.4\left(170 \times 10 \times \frac{15}{17}\right)=600 \mathrm{~N}$
$\therefore \mathrm{f}_{\mathrm{s}_{1}}+\mathrm{f}_{\mathrm{s}_{2}}=900 \mathrm{~N}$.
\therefore Net Acceleration of the system
$=\left(\frac{1600-900}{170+170}\right)=\frac{700}{340} \mathrm{~m} / \mathrm{s}^{2} \quad \therefore a=\frac{35}{17} \mathrm{~m} / \mathrm{s}^{2}$
Now on A;

$m_{1} g \sin \theta+N-f_{s_{1}}=m_{1} a$
$N=m_{1} a-m_{1} g \sin \theta+f_{s_{1}}$
$N=170\left(\frac{35}{17}\right)-800+300$
$\mathrm{N}=-150 \mathrm{~N}$
i.e. force in the bar is 150 N .

Sol 5: (A) Lift moving uniformly means lift is moving without any acceleration.

Hence in both the cases; acceleration of the coin is ' g '.
$\therefore \mathrm{t}_{1}=\mathrm{t}_{2}$.

Sol 6: (B)

Now if m_{1} moves with an acceleration ' a ' towards right; m_{2} will have an acceleration of ' a ' towards left.
$[\because$ string constraint]
FBD of m_{1};

$F-f_{1}-f_{2}-T=m_{1} a$
$m_{1} \mathrm{~g}+\mathrm{N}_{2}=\mathrm{N}_{1}$
FDB of m_{2};

$N_{2}-m_{2} g=0$
$\mathrm{T}-\mathrm{f}_{2}=\mathrm{m}_{2} \mathrm{a}$
$\mathrm{f}_{2}=\mu \mathrm{N}_{2}=\mu \mathrm{m}_{2} \mathrm{~g}$
$\therefore \mathrm{T}=\mathrm{m}_{2} \mathrm{a}+\mu \mathrm{m}_{2} \mathrm{~g}$
$\mathrm{T}=(\mathrm{a}+\mu \mathrm{g}) \mathrm{m}_{2}$
\therefore In equation (i)
$F-\mu g\left(m_{1}+m_{2}\right)-\mu m_{2} g-(a+\mu g) m_{2}=m_{1} a$
$\therefore F=\left(m_{1}+m_{2}\right) a+3 \mu m_{2} g+\mu m_{1} g$
$\Rightarrow F=\left(m_{1}+m_{2}\right) a+\mu g\left(m_{1}+3 m_{2}\right)$
Put $a=0.3 \mathrm{~m} / \mathrm{s}^{2}$ and $m_{1}=0.7 \mathrm{~kg}, \mathrm{~m}_{2}=0.2 \mathrm{~kg}$ to get the value of force.

Hence, we get $\mathrm{F}=2.18 \mathrm{~N}$

Sol 7: (A)

As force F tends to push the mass upwards, friction will tend to oppose it. So, it will act downwards.
$\therefore F=f+m g \sin \alpha$
$\mathrm{f}=\mu \mathrm{N}=\mu \mathrm{mg} \cos \alpha$
$\Rightarrow F_{1}=\mu \mathrm{mg} \cos \alpha+m g \sin \alpha$
Now when pushing downwards, friction will be acting upwards,

$\therefore F_{2}+f=m g \sin \theta$
$F_{2}=m g \sin \theta-f$
$\mathrm{f}=\mu \mathrm{mg} \cos \theta$
$\Rightarrow F_{2}=m g \sin \theta-\mu m g \cos \theta$
Given that $\mathrm{F}_{1}=\mathrm{nF}_{2}$
$\therefore \mu \mathrm{mg} \cos \theta+\mathrm{mg} \sin \theta=\mathrm{n}(\mathrm{mg} \sin \theta-\mu \mathrm{mg} \cos \theta)$
$\Rightarrow \mu=\frac{\mathrm{n}-1}{\mathrm{n}+1} \tan \theta$

Sol 8: (B)

For maximum force, F; the friction on ' M ' will be towards

Right.
\therefore FBD of m;

$F-T-f=0$
$\mathrm{N}+\mathrm{ma}=\mathrm{mg}$
$\Rightarrow \mathrm{F}=\mathrm{f}+\mathrm{T}$
$\mathrm{N}=\mathrm{mg}-\mathrm{ma}$
\therefore FBD of M;

$T-f=0$
$\mathrm{N}_{1}+\mathrm{Ma}=\mathrm{Mg}$
From (i) and (iii);
$\Rightarrow F=\mathrm{f}+\mathrm{f}$
$\Rightarrow F=2 f ; f=\mu N=\mu(m g-m a)$
$\mathrm{F}=\mu \mathrm{m}(\mathrm{g}-\mathrm{a})$
$\Rightarrow F=2 \mu \mathrm{~m}(\mathrm{~g}-\mathrm{a})$.

Sol 9: (B)

Let us say the whole system moves with an acceleration

$$
\begin{align*}
& a_{1} \\
& \therefore a_{1}=\left(\frac{F}{m_{1}+m_{2}}\right) \tag{i}
\end{align*}
$$

Now FBD of m_{1};

$m_{1} a_{1}-f=0$
$\Rightarrow \mathrm{m}_{1} \mathrm{a}_{1}=\mathrm{f}$
FBD of m_{2}

$\mathrm{F}-\mathrm{f}-\mathrm{m}_{2} \mathrm{a}=0$
$\Rightarrow F=m_{2} a+f$
Now when the mass m_{1} just tends to slide;
$f=\mu N=\mu m_{1} g$
$\therefore \mathrm{m}_{1} \mathrm{a}_{1}=\mu \mathrm{m}_{1} \mathrm{~g}$ (from (ii))
$\therefore a_{1}=\mu \mathrm{g}$.
Now from (i)
$F=\left(m_{1}+m_{2}\right) \mu \mathrm{g}$
at $=\left(m_{1}+m_{2}\right) \mu \mathrm{g}$
$\mathrm{t}=\frac{\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mu \mathrm{g}}{\mathrm{a}}$

$$
\begin{equation*}
a_{1}=\frac{k t-\mu m_{1} g}{m_{1}} \tag{ii}
\end{equation*}
$$

Sol 11: (B) Now let us check the limiting frictions between the three surfaces

$\mathrm{f}_{\mathrm{s}_{1}}=\mu_{1}\left(\mathrm{~m}_{\mathrm{A}} \mathrm{g}\right)=90 \mathrm{~N}$
$f_{s_{2}}=\mu_{2}\left(m_{A}+m_{B}\right) g=80 \mathrm{~N}$
$\mathrm{f}_{\mathrm{s}_{3}}=\mu_{3}\left(\mathrm{~m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}+\mathrm{m}_{\mathrm{C}}\right) \mathrm{g}=60 \mathrm{~N}$.
\therefore Now let us assume P would be greater than 60 N and less than 80 N .
For this P ;
$\mathrm{f}_{1}=\mathrm{P}$

$$
\left[\because \mathrm{f}_{1}<\mathrm{f}_{\mathrm{s}_{1}} \equiv 90\right]
$$

$\mathrm{f}_{1}=\mathrm{f}_{2}=\mathrm{P}$

$$
\left[\because f_{2}<f_{s_{2}} \equiv 80\right]
$$

Now $f_{2}-f_{3}=m_{3} a$

\therefore Here f_{2} is greater than the maximum static friction between C and ground. Hence the block C will slide on the ground. There by all the three blocks will slide for a minimum force of 60 N .

Sol 12: (A) $m_{2} g-T=m_{2} a_{1}$

$$
a=\left(\frac{p}{m_{1}+m_{2}}\right)=\left(\frac{k}{m_{1}+m_{2}}\right) t
$$

$\Rightarrow a_{2}=\frac{\mu m_{1} g}{m_{2}}$ which is constant

$$
\begin{aligned}
& \therefore \mathrm{f}=\mathrm{m}_{2} \mathrm{a}_{2} \\
& \mu \mathrm{~m}_{1} \mathrm{~g}=\mathrm{m}_{2} \mathrm{a}_{2}
\end{aligned}
$$

Now for $f=\mu m_{1} g$; this is the maximum frictional force;
$N=m_{1} g$

Now for $\mathrm{f} \leq \mu \mathrm{m}_{1} \mathrm{~g}$;
Both the block will move together;
\therefore Adding (i) and (iii);

$$
\begin{equation*}
P=\left(m_{1}+m_{2}\right) a . \tag{i}
\end{equation*}
$$

$P=\left(m_{1}+m_{2}\right)$ a.

On m_{1};

$N+T \sin \theta=m_{1} g$
$\mathrm{T} \cos \theta-\mathrm{f}=\mathrm{m}_{2} \mathrm{a}_{2}$
Now for just initiating the motion;
$a_{1}=a_{2}=0$
$\therefore \mathrm{m}_{2} \mathrm{~g}-\mathrm{T}=0$
$\mathrm{T} \cos \theta-\mathrm{f}=0$
$m_{2} g \cos \theta=\mathrm{f}$
$\mathrm{f}=\mu \mathrm{N}=\mu\left(\mathrm{m}_{1} \mathrm{~g}-\mathrm{T} \sin \theta\right)=\mu\left(\mathrm{m}_{1} \mathrm{~g}-\mathrm{m}_{2} \mathrm{~g} \sin \theta\right)$
$\Rightarrow m_{2} g \cos \theta=\mu\left(m_{1} g-m_{2} g \sin \theta\right)$
$m=\left(\frac{m_{2} \cos \theta}{m_{1}-m_{2} \sin \theta}\right)$
put $\theta=\pi / 4$.

Multiple Correct Choice Type

Sol 14: (A, B)

FBD of B;

$T-f-m_{B} g \sin \theta=m_{B} a_{B}$
$N_{1}=m_{B} g \cos \theta$
FBD of A;

$m_{A} g \sin \theta-f-T=m_{A} a_{A}$
$N_{2}=m_{A} g \cos \theta$
$a_{A}=a_{B}$ (constraint equation)
By adding (i) and (iii)
$\left(m_{A}-m_{B}\right) g \sin \theta-2 f=\left(m_{A}+m_{B}\right) a$
For limiting condition, $\mathrm{a}=0$.
$\Rightarrow\left(m_{A}-m_{B}\right) g \sin \theta=2 f$
Here $\mathrm{f} \leq \mathrm{f}_{\mathrm{s}}=\mathrm{mN}_{1}=\mu \mathrm{m}_{\mathrm{B}} \mathrm{g} \cos \theta$
$\left(m_{A}-m_{B}\right) g \sin \theta \leq 2 \mu m_{B} g \cos \theta$
$\mu \geq \frac{m_{A}-m_{B}}{2 m_{B}} \tan \theta$
Now in equation (v)
If $m_{1}=m_{2}$;
Tension itself balances both the masses.
So, no necessity for any friction.
C: we cannot explicitly say that. We
need more information on μ.
D : when $m_{A}=m_{B}$;
Put friction $\mathrm{f}=0$ in (i) and (iii)
And subtract them to get Tension ' T '.

Sol 15: (A, D)

Acceleration of block will be zero. Since its constrained.
$\therefore \mathrm{mg}+\mathrm{f}_{1}=\mathrm{T} \sin \theta$
$N_{1}=T \cos \theta$

$M g-f_{1}-f_{2}=M a$
$\mathrm{N}_{1}=\mathrm{N}_{2}=\mathrm{T} \cos \theta$
$\mathrm{f}_{2}=\mu\left(\mathrm{N}_{2}\right)=\mu \mathrm{T} \cos \theta$
$\mathrm{f}_{2}=\mu \mathrm{N}_{1}=\mu \mathrm{T} \cos \theta$
\therefore From equation (i)
$m g+\mu \mathrm{T} \cos \theta=\mathrm{T} \sin \theta$
$\mathrm{mg}=\mathrm{T}(\sin \theta-\mu \cos \theta)$
$\mathrm{T}=\left(\frac{\mathrm{mg}}{\sin \theta-\mu \cos \theta}\right)=\frac{100}{0.5-0.2\left(\frac{\sqrt{3}}{2}\right)}$
$\mathrm{T}=306 \mathrm{~N}$.
Now using equation (iii)
$M g-f_{1}-f_{2}=M a$
$\mathrm{Mg}-2 \mu \mathrm{~T} \cos \theta=\mathrm{Ma}$
$a=g-\frac{2 \mu T \cos \theta}{M}$
$a=4.7 \mathrm{~m} / \mathrm{s}^{2}$

Sol 16: (A, C)

$m_{1} g \sin \theta+N_{3}=m_{1} a_{1}$
$N_{1}=m_{1} g \cos \theta$

$m_{2} g \sin \theta-N_{3}=m_{2} a_{2}$
$N_{2}=m_{2} g \cos \theta$
now let us assume; $a_{1} \neq a_{2^{\prime}}$ then;
Both of them will lose contact
$\therefore \mathrm{N}_{3}=0$.
But we then find $a_{1}=a_{2}=g \sin \theta$.
Hence both of them will have same acceleration.
Now putting $a_{1}=a_{2}=a$

And adding equation (i) and (iii);
$a=\frac{\left(m_{1}+m_{2}\right) g \sin \theta}{\left(m_{1}+m_{2}\right)}$
$a=g \sin \theta$
now using this we can find, N_{3} i
$N_{3}=$ zero, for all m_{1} and m_{2}.
Sol 17: (B, D)

FBD of B;

$\mathrm{mg}-\mathrm{T}=\mathrm{ma}$

FBD of A;

$m g \sin \theta+T=m a$
By adding (i) and (ii)
$m g+m g \sin \theta=2 m a$
$\mathrm{mg}+\frac{\mathrm{mg}}{2}=2 \mathrm{ma}$
$\Rightarrow a=\frac{3 g}{4}$
Now using equation (i)
$\mathrm{mg}-\mathrm{T}=\mathrm{ma}$.
$\mathrm{T}=\mathrm{mg}-\mathrm{ma}=\mathrm{mg}-\frac{3 \mathrm{mg}}{4}$
$T=\frac{m g}{4}$

Assertion Reasoning Type

Sol 18: (A) Conceptual. Conservation of linear momentum for a single particle do mean that the state of the body is conserved or constant unless an external force acts on the body.

Sol 19: (D) Assertion: If the force is non-constant and reverses itself over time, it can give a zero impulse.

For example: spring force would give a zero impulse over one period of oscillation.

Sol 20: (D) Here; weight of the book is because of the Gravitational Attraction Between earth and book. There will also be a gravitational force between book and table, which is very small, hence always neglected.

That Gravitational force between table and book form an Action-Reaction pair.

Sol 21: (A) Both assertion and reason are statements of Newton's laws.

Sol 22: (A) Momentum $=m \vec{u}$.
We have to specify reference frame, because velocities will vary in different frames. So, momentum which implicitly depends on velocity might also very.

Comprehension Type

Paragraph 1:

$$
\begin{array}{ll}
\mathrm{T}_{2} \cos \alpha=\mathrm{mg} ; & \mathrm{T}_{2} \sin \alpha=\mathrm{T}_{1} \\
\Rightarrow \mathrm{~T}_{2}=\mathrm{mg} \sec \alpha ; & \mathrm{T}_{1}=\mathrm{mg} \tan \alpha
\end{array}
$$

Now just after the string AB is cut;
$\mathrm{T}_{2}=\mathrm{mg} \cos \theta$

Now when string $B C$ is cut;
Mass ' m ' will just have force fall. Hence tension in string $A B$ is zero.
Now suppose it is keep in a moving automobile;
In automobile's frame of reference, there is a pseudo force acting on the mass.
The resultant force should be along $B C$.

$\therefore \frac{\mathrm{ma}}{\mathrm{mg}}=\tan \alpha \Rightarrow \mathrm{a}=\mathrm{g} \tan \mathrm{a}$
Since its acting leftwards, the vehicle should move rightwards.

Paragraph 2:

In s^{\prime} frame;
FBD of M.

$N \sin \theta=M a$
$N \cos \theta+M g=N_{1}$
FBD of m;

$N+m a \sin \theta=m g \cos \theta$
$m g \sin \theta+m a \cos \theta=m a^{\prime}$
from (i) and (iii);
$N=m g \cos \theta-m g \sin \theta$
Now in equation (i)
$N \sin \theta=M a$
$(m g \cos \theta-m a \sin \theta) \sin \theta=M a$
$a=\left(\frac{m g \sin \theta \cos \theta}{M+m \sin ^{2} \theta}\right)$
Since its in -ve x direction; we add a '-' sign.
$\therefore a=-\left(\frac{m g \sin \theta \cos \theta}{M+m \sin ^{2} \theta}\right)$
Now using this value of a, solving equation (iv);
We get
$m g \sin \theta+m\left(\frac{m g \sin \theta \cos \theta}{M+m \sin ^{2} \theta}\right) \cos \theta=m a^{\prime}$
$\Rightarrow g \sin \theta+\frac{m g \sin \theta \cos ^{2} \theta}{M+m \sin ^{2} \theta}=a^{\prime}$
$\Rightarrow \frac{M g \sin \theta+m g \sin ^{3} \theta+m g \sin \theta \cos ^{2} \theta}{M+m \sin ^{2} \theta}=a^{\prime}$
$\Rightarrow a^{\prime}=\frac{M g \sin \theta+m g \sin \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}{M+m \sin ^{2} \theta}$
$a^{\prime}=\frac{M g \sin \theta+m g \sin \theta}{M+\sin ^{2} \theta} \quad \therefore a^{\prime}=\frac{(M+m) g \sin \theta}{M+m \sin ^{2} \theta}$
This is the acceleration of the block ' m ' with respect to the incline.

Force exerted by the mass ' m ' on wedge is ' N '.
We can find this by; equation (iii)
$\therefore \mathrm{N}+\mathrm{ma} \sin \theta=\mathrm{mg} \cos \theta$
$\Rightarrow \mathrm{N}=\mathrm{mg} \cos \theta-\mathrm{ma} \sin \theta$
$=m g \cos \theta-m\left(\frac{m g \sin ^{2} \theta \cos \theta}{M+m \sin ^{2} \theta}\right)$
$N=\left(\frac{M m g}{M+m \sin ^{2} \theta}\right)$

Now in this question; the downward component of mg $\sin \theta$ has to be balanced.

$\therefore m a_{x} \cos \theta=m g \sin \theta$
$a_{x}=g \tan \theta$ in positive x direction,

Paragraph 3:

Given that the plank has very rough surface.
$\mu \gg 0$
\therefore FBD of A;

$T-f=0 \ldots$ (i) $\Leftrightarrow T=f$
$\mathrm{mg}-\mathrm{N}=0 \ldots$ (ii) $\Leftrightarrow \mathrm{N}=\mathrm{mg}$
FBD of B;

$\mathrm{T}-2 \mathrm{mg}=0 \ldots$ (iii) $\Leftrightarrow \mathrm{T}=2 \mathrm{mg}$
$\therefore \mathrm{f}=2 \mathrm{mg}$
Net Contact force acting between block A and plank;
is $\sqrt{N^{2}+f^{2}}=\sqrt{(m g)^{2}+(2 m g)^{2}}$
$F=m g \sqrt{5}$
On the pulley;
$\mathrm{N}=\mathrm{T} \sqrt{2}=2 \sqrt{2} \mathrm{mg}$.

Now just after this instant;
Normal reaction becomes zero.

On body A;

$T=m a_{1}$
$\mathrm{mg}=\mathrm{ma}_{2}$.
$\Rightarrow a_{2}=g$
on body B

$2 \mathrm{mg}-\mathrm{T}=2 \mathrm{ma}_{1}$
From (i) and (ii)
$a_{1}=\frac{2 g}{3}=6.66 \mathrm{~m} / \mathrm{s}^{2}$
Now $a_{A}=a_{1}(\hat{i})+a_{2}(-\hat{j})$
$=\frac{-2 g}{3} \hat{i}-g \hat{j}$
$\left|a_{A}\right|=\sqrt{\frac{4 g^{2}}{9}+g^{2}}$
$\left|a_{A}\right|=\frac{\sqrt{13}}{3} g$
$\left|\mathrm{a}_{\mathrm{A}}\right|=12 \mathrm{~m} / \mathrm{s}^{2}$

Paragraph 4:

Buoyant force $=\rho g V_{i m m}=\rho g v$
$\mathrm{F}=(0.9)\left(10^{3}\right) .(10)\left(0.2 \times 1 \times 1 \times \times 10^{-2}\right)$
$\mathrm{F}_{\mathrm{B}}=18 \mathrm{~N}$.
Now $T+F_{B}=W+F_{V}$.
$T=W+F_{v}-F_{B}$
$F_{v}=60 \mathrm{~N}$.
$T=48+60-18$

$\mathrm{T}=90 \mathrm{~N}$.

Now for this the acceleration of the block should be zero.
$m g \sin \theta=f+T$
$120-90=f$
$\mathrm{f}=30 \mathrm{~N}$

$\mu(m g \cos \theta)=30$
$\mu\left(8 \sqrt{3} .10 . \frac{1}{2}\right)=30$
$\mu=\frac{\sqrt{3}}{4}$.

Sol 38: (B)

... (ii) At an angle θ;
$m g \sin \theta-f=0$
$N-m g \cos \theta=0$
Now $f_{\text {max }}=f_{s}=\mu N$.

At this point the block starts sliding.
$\therefore \mathrm{f}_{\text {max }}=\mu \mathrm{mg} \cos \theta$
$\therefore \mathrm{mg} \sin \theta-\mu \mathrm{mg} \cos \theta=0$
$\Rightarrow \tan \theta=\mu$
$\Rightarrow \theta=\tan ^{-1}(0.8)$
$\theta=40^{\circ}$
Now till this angle; $f=m g \sin \theta$
\therefore for $\theta=30^{\circ}$,
$f=m g / 2$
Now for $\theta=45^{\circ}$, let us say body is not sliding $\mathrm{mg} \sin$ $\theta-\mathrm{f}=0$
$N=m g \cos \theta$
$\mathrm{f}_{\mathrm{s}}=\mu \mathrm{mg} \cos \theta=\mu \mathrm{mg} / \sqrt{2}=0.8(\mathrm{mg} / \sqrt{2})$
$f=m g \sin \theta=\left(\frac{m g}{\sqrt{2}}\right)$
But for our assumption;
$\mathrm{f} \leq \mathrm{f}_{\mathrm{s}}$
$\Rightarrow\left(\frac{\mathrm{mg}}{\sqrt{2}}\right) \leq(0.8)\left(\frac{\mathrm{mg}}{\sqrt{2}}\right)$
which is not true.
Hence the body would have started sliding
$\mathrm{f}=\mathrm{f}_{\mathrm{s}}=\mu \mathrm{N}=\mu \mathrm{mg} \cos \theta=\mu \mathrm{mg} / \sqrt{2}$

Circular Dynamics

Sol 39: (A) Centripetal acceleration $=r \omega^{2}\left(\right.$ or $\left.\frac{v^{2}}{r}\right)$
Given that both have same periods.
So $\omega_{1}=\omega_{2}$
$a_{1}=R \omega^{2} \quad a^{2}=r \omega^{2}$
$\frac{a_{1}}{a_{2}}=\frac{R}{r}$

Sol 40: (A) Max Tension the string can sustain
$\mathrm{T}_{\text {max }}=10 \mathrm{~N}$.
Mass of the sta
ne $=250 \mathrm{gm}=\frac{1}{4} \mathrm{~kg}$
Length of string $=10 \mathrm{~cm}=0.1 \mathrm{~m}$
$\mathrm{T}=\mathrm{mr} \omega^{2}$
$T_{\text {max }}=m r \omega_{\text {max }}^{2}$

$\omega_{\text {max }}=\sqrt{\frac{T_{\max }}{\mathrm{mr}}}$
$\omega_{\max }=\sqrt{\frac{10}{\frac{1}{4} \times 0.1}}=\sqrt{400} \mathrm{rad} / \mathrm{s}$
$\mathrm{w}_{\text {max }}=20 \mathrm{rad} / \mathrm{s}$.

Sol 41: (D) Already discussed in Q. 40 So try this yourself

Sol 42: (D) Let the angular speed of the thread is ω.
For particle C

$$
T_{3}=m \omega^{2} 3 l
$$

For particle B

$$
\mathrm{T}_{2} \rightarrow \mathrm{~T}_{3}=\mathrm{m} \omega^{2} 2 l \rightarrow \mathrm{~T}_{2}=\mathrm{m} \omega^{2} 5 l
$$

For particle A

$$
\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}=\mathrm{m} \omega^{2} l \rightarrow \mathrm{~T}_{1}=\mathrm{m} \omega^{2} 6 l
$$

Sol 43: (B) Kinetic energy $k=\frac{1}{2} m v^{2}$
But given that $\mathrm{k}=\mathrm{as}^{2}$
$\therefore \frac{1}{2} \mathrm{mv}^{2}=\mathrm{as}^{2}$
$v=\sqrt{\frac{2 a}{m}} s$
Now $\vec{a}=\vec{a}_{r}+\vec{a}_{t}$
$\vec{a}_{r}=\frac{v^{2}}{R}=\frac{2 a s^{2}}{m R}$
$\vec{a}_{t}=\frac{d v}{d t}=\frac{d v}{d s} \frac{d s}{d t}$
$\vec{a}_{t}=v \cdot \frac{d v}{d s}$
$\frac{d v}{d s}=\sqrt{\frac{2 a}{m}}$
$\Rightarrow \overrightarrow{\mathrm{a}}_{\mathrm{t}}=\frac{2 \mathrm{as}}{\mathrm{m}}$
$\overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{a}}_{\mathrm{r}}+\overrightarrow{\mathrm{a}}_{\mathrm{t}}$
$|a|=\sqrt{a_{r}^{2}+a_{t}^{2}}=\sqrt{\left(\frac{2 a s^{2}}{m R}\right)^{2}+\left(\frac{2 a s}{m}\right)^{2}}$
$|a|=\frac{2 \mathrm{as}}{\mathrm{m}} \sqrt{1+\frac{\mathrm{s}^{2}}{\mathrm{R}^{2}}}$
$|\vec{F}|=m|a|=2 a s \sqrt{1+\frac{s^{2}}{R^{2}}}$

Multiple Correct Choice Type

Sol 44: (B, C)

Given speed $=v$; and $\frac{d v}{d t}=a$
$\vec{a}_{r}=\frac{v^{2}}{r} \hat{e}_{r}$
$\vec{a}_{t}=a \hat{e}_{t}$
$\vec{a}_{\text {net }}=\vec{a}_{r}+\vec{a}_{t}$
$\vec{a}_{\text {net }}=\frac{v^{2}}{r} \hat{e}_{r}+a \hat{e}_{t}$
$\left|\vec{a}_{\text {net }}\right|=\sqrt{\left(\frac{v^{2}}{r}\right)^{2}+a^{2}}$
Now friction force $f=m \vec{a}_{\text {net }}$
$f=m \sqrt{\left(\frac{v^{2}}{r}\right)^{2}+a^{2}}$
$f=\sqrt{\left(\frac{m v^{2}}{r}\right)^{2}+(m a)^{2}} \quad$ and $\quad f=\mu m g$

Resolving into components
$\mathrm{T} \cos \theta=\mathrm{mg}$
$\mathrm{T} \sin \theta=m r \omega^{2} ; r=L+L \sin \theta$
$\Rightarrow \mathrm{T} \sin \theta=\mathrm{m} \omega^{2} \mathrm{~L}(1+\sin \theta)$
$\Rightarrow \frac{\mathrm{T} \sin \theta}{\mathrm{T} \cos \theta}=\frac{\omega^{2} \mathrm{~L}(1+\sin \theta)}{\mathrm{g}}$

Sol 47: (B, D)

Consider the figure, with force F on the particle at different instants of time.

So it is evident that there should be some other forces such that particle will have uniform circular motion
$\therefore \vec{F}+\vec{F}_{2}=m \vec{a}$
Since it's a uniform circular motion
$\vec{a}_{t}=0$
$\therefore \vec{a}=\vec{a}_{r}=\frac{v^{2}}{R}$
$\therefore \vec{F}+\vec{F}_{2}=\left(\frac{m v^{2}}{R}\right)$
Now resultant of both the forces $\vec{F}_{\text {and }} \vec{F}_{2}$ is $\frac{m v^{2}}{r}$ which in turn keeps changing both in direction as well as magnitude.
$\therefore \vec{F}_{2}=\frac{m v^{2}}{R} \hat{e}_{r}-\vec{F}$
Angle between \hat{e}_{r} and \vec{F} keeps varying.

Assertion Reasoning Type

So 48: (D) Concept of centrifugal force comes into picture only in a non-inertial frame. So, both of them cannot co-exist in a same frame.

Although it is true that they are equal and opposite they can't cancel each other because of this.

Sol 49: (C)

$N \sin \theta=\frac{m v^{2}}{R}$
$N \cos \theta=m g$
It is not the friction between the tyres that provide him centripetal force, but it is component of Normal force.

Sol 50: (B) From the above solution;
We can write $N \sin \theta=\frac{m v^{2}}{R}$
$\mathrm{N} \cos \theta=\mathrm{mg}$
Now when v is doubled, $\frac{m(2 v)^{2}}{R}=4 . \frac{m v^{2}}{R}$
\therefore Tendency is quadrupled
And also $\tan \theta=\left(\frac{\mathrm{v}^{2}}{\mathrm{rg}}\right)$ as $v \uparrow \theta \uparrow$
Sol 51: (E)

$N \sin \theta=\frac{m v^{2}}{R}$
Horizontal component of normal force provides the centripetal force. Hence false.

Reason:-

A curved path need not always be circular path. In case of elliptical paths, the force is not necessarily centripetal.

Sol 52: (B)

$N \cos \theta=m g$
$N \sin \theta=\frac{m v^{2}}{R}$
So bending inwards is always essential. He does it so as to get horizontal component of normal force as centripetal force. Although bending lowers his center of gravity, it's not the reason.

Sol 53: (A)

$N \cos \theta=m g$
$N \sin \theta=\frac{m v^{2}}{R}$
$\tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{Rg}}$
when velocity is doubled
$\tan \theta_{\mathrm{f}}=\frac{(2 \mathrm{v})^{2}}{\mathrm{Rg}}=4 \cdot \frac{\mathrm{~V}^{2}}{\mathrm{Rg}}$
Hence skidding tendency is quadrupled.
Sol 54: (D) Assertion is explained in Q. 46 and Reason is true (It is conceptual)

Comprehension Type

Paragraph 1:

At any instant, say speed is v. Normal force against wall,
$N=\frac{m v^{2}}{R}$
Now frictional force, $\mathrm{f}=\mu \mathrm{N}$
$F=\frac{\mu m v^{2}}{R}\left(-\hat{e}_{t}\right)$ [tangential]
And tangential acceleration say $\overrightarrow{\mathrm{a}}_{\mathrm{t}}$
Now $m \vec{a}_{t}=\frac{\mu m v^{2}}{R}\left(-\hat{e}_{t}\right)$
$\vec{a}_{t}=\frac{\mu v^{2}}{R}\left(-\hat{e}_{t}\right)$
and also $\vec{a}_{t}=\frac{d v}{d t}$
$\frac{d v}{d t}=-\frac{\mu v^{2}}{R}$
$\frac{d v}{v^{2}}=-\frac{\mu}{R} . d t$
Integrating both sides

$$
\begin{aligned}
& \int_{v_{0}}^{v} \frac{d v}{v^{2}}=-\frac{\mu}{R} \int_{0}^{t} d t \Rightarrow-\left[\frac{1}{v}\right]_{v_{0}}^{v}=-\frac{\mu t}{R} \\
& \frac{1}{v}=\frac{1}{v_{0}}+\frac{\mu t}{R}
\end{aligned}
$$

Sol 57: (B) $a_{t}=-\frac{\mu v^{2}}{R}$
$a_{t}=\frac{d v}{d t}=\frac{d v}{d x} \cdot \frac{d x}{d t}=v \frac{d v}{d x}$
$\Rightarrow v \frac{d v}{d x}=-\frac{\mu v^{2}}{R}$
$\frac{d v}{v}=-\frac{\mu}{R} d x$
Integrating both sides;
$\int_{v_{0}}^{v} \frac{d v}{v}=-\frac{\mu}{R} \int_{0}^{x} d x$
$\ln \left(\frac{v}{v_{0}}\right)=-\frac{\mu x}{R}$
$v=v_{0} e^{-\frac{\mu x}{R}}$

Paragraph 2:

Top view of the rotor
$N=\frac{m v^{2}}{R} ; f=\mu N=\frac{\mu \cdot m v^{2}}{R}$
For equilibrium;
$\mathrm{f}_{\mathrm{s}}=\mathrm{mg}$
$\mu \mathrm{N}=\mathrm{mg}$
And this is $\frac{\mu \cdot \mathrm{mv}^{2}}{R}=\mathrm{mg}$
$v=\sqrt{\frac{R g}{\mu}}$

Match the Columns

Sol 61:

At point B;
$T_{B}=\frac{m v_{B}^{2}}{R}$
And also total energy at point A;
$E=\frac{1}{2} m(u)^{2}+U_{A}$
Now assume ground at the point A itself
$\therefore U_{A}=0$
$E_{A}=\frac{1}{2} m(9 R g)=\frac{9 m R g}{2}$

And total energy at point B;
$E_{B}=\frac{1}{2} m\left(v_{B}^{2}\right)+m g(R)$

According to conversation of energy
$E_{A}=E_{B}$
$\therefore \frac{1}{2} m v_{B}^{2}+m g R=\frac{9 m g R}{2}$
$\frac{1}{2} m v_{B}^{2}=\frac{7}{2} m g R$
$v_{B}=\sqrt{7 g R}$
and $T_{B}=\frac{m v_{B}^{2}}{R}=7 m g$
for point C;
$T_{c}+m g=\frac{m v_{c}^{2}}{R}$
$T_{c}=\frac{m v_{c}^{2}}{R}-m g$
Total energy at point C is
$E_{c}=\frac{1}{2} m v_{c}^{2}+m g(2 R)$
$E_{c}=\frac{1}{2} m v_{c}^{2}+2 m g R$
$E_{c}=E_{A}$
$\Rightarrow \frac{1}{2} m v_{c}^{2}+2 m g R=\frac{9 m g R}{2}$
$\frac{m v_{c}^{2}}{2}=\frac{5 m g R}{2} \Rightarrow v_{c}=\sqrt{5 g R}$
$\therefore T_{c}=\frac{\mathrm{mv}_{c}^{2}}{R}-m g=5 \mathrm{mg}-\mathrm{mg}=4 \mathrm{mg}$

Sol 62:

At point $A ; T_{A}=m g+\frac{m v_{A}^{2}}{R}$
At point $B ; T_{B}=\frac{m v_{B}^{2}}{R}$
At point $C ; T_{C}=\frac{m v_{C}^{2}}{R}-m g$
Energy at point $A=\frac{1}{2} m v_{A}^{2}$ (point A is assumed to be
ground)
$E_{B}=\frac{1}{2} m v_{B}^{2}+m g R$
$\mathrm{E}_{\mathrm{C}}=\frac{1}{2} m v_{\mathrm{C}}^{2}+2 \mathrm{mgR}$
Now given that $\mathrm{v}_{\mathrm{A}}=10$
So; $E_{A}=E_{B}$ (using conservation of energy)
$\frac{1}{2} m(10)^{2}=\frac{1}{2} m\left(v_{B}^{2}\right)+m g(1) .\left[R=1, v_{A}=10, m=1\right]$
$\mathrm{v}_{\mathrm{B}}=\sqrt{80} \mathrm{~m} / \mathrm{s}$
and similarly
$E_{A}=E_{C} \Rightarrow \frac{1}{2}(10)^{2}=\frac{1}{2} v_{C}^{2}+g(2)$
$v_{c}=\sqrt{60} \mathrm{~m} / \mathrm{s}$
\therefore from (i), (ii), (iii)
$\mathrm{T}_{\mathrm{A}}=10+100=110 \mathrm{~N}$
$\mathrm{T}_{\mathrm{B}}=80 \mathrm{~N}$
$\mathrm{T}_{\mathrm{C}}=50 \mathrm{~N}$
\therefore minimum tension is 50 N
When string is horizontal i.e. at point B;

$$
\begin{aligned}
& \vec{a}_{r}=\frac{v_{B}^{2}}{R}=80 \mathrm{~m} / \mathrm{s}^{2}(-\hat{i}) \\
& \vec{a}_{t}=g=10 \mathrm{~m} / \mathrm{s}^{2}(-\hat{j}) \\
& \vec{a}_{\text {net }}=\vec{a}_{r}+\vec{a}_{t} \\
& \left|\vec{a}_{\text {net }}\right|=\sqrt{(80)^{2}+(10)^{2}} \\
& |\vec{a}|=10 \sqrt{65} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

At point C; tangential acceleration is zero

$\therefore \vec{a}_{\text {net }}=\vec{a}_{r}=\frac{v_{c}^{2}}{R}=60 \mathrm{~m} / \mathrm{s}^{2}$

Sol 63:

$N=\frac{m v^{2}}{R} \sin \theta+m g \cos \theta$
Now depending on condition, friction can be upwards or downwards.

For maximum speed, friction is downwards.
$\therefore f=\frac{m v^{2}}{R} \cos \theta-m g \sin \theta$
And also $f=\mu \mathrm{N}$
$\Rightarrow \mu\left(\frac{m v^{2}}{R} \sin \theta+m g \cos \theta\right)=\frac{m v^{2}}{R} \cos \theta-m g \sin \theta$
$v^{2}\left(\frac{\mu m \sin \theta}{R}-\frac{m \cos \theta}{R}\right)=-(m g \sin \theta+\mu m g \cos \theta)$
$v=\sqrt{\frac{m g(\sin \theta+\mu \cos \theta)}{\frac{m}{R}(-\mu \sin \theta+\cos \theta)}}$
$v_{\text {max. }}=\sqrt{\frac{R g(\sin \theta+\mu \cos \theta)}{(\cos \theta-\mu \sin \theta)}}$
And for the minimum speed;
friction will be acting upwards
$\therefore \mathrm{f}=\mathrm{mg} \sin \theta-\frac{\mathrm{mv}^{2}}{\mathrm{R}} \cos \theta$
And following the same argument
for $f=0$
$\tan \theta=\left(\frac{\mathrm{v}^{2}}{\mathrm{Rg}}\right)$
$v=\sqrt{R g \tan \theta}$
Maximum friction between B and $C=\mu\left(m_{A}+m_{B}\right) g$
or $f_{2}=0.25(3+4)(10)=175 \mathrm{~N}$
Maximum friction between C and ground
$f_{3}=\mu\left(m_{A}+m_{B}+m_{C}\right) g$
$=0.25(3+4+8)(10)=37.5 \mathrm{~N}$
Block C and hence block B are moving in opposite directions with constant velocities and block A is at rest. Hence, net force no all three blocks should be zero. Free body diagrams have been shown below (Only horizontal forces are shown)

For equilibrium of B

$T=f_{1}+f_{2}=25 \mathrm{~N}$

For equilibrium of \mathbf{C}

$F=T+f_{2}+f_{3}=80 \mathrm{~N}$
Sol 2: Acceleration of rope $a=\frac{F}{M}$

Now to find tension at point C, a distance ℓ from point B, we can write equation of motion of any one part (AC or (B), both moving with acceleration a.

Equation of motion of part $A C$ is

$T=$ (mass of $A C) \times$ (acceleration) $=\frac{M}{L}(L-\ell)\left(\frac{F}{M}\right)$
$=F\left(1-\frac{\ell}{L}\right)$

So 3: $m g \sin \theta=(2)(10)\left(\frac{1}{2}\right)=10 N=F_{1} \quad$ (say)

$\mu \mathrm{mg} \cos \theta=\left(\sqrt{\frac{3}{2}}\right)(2)(10)\left(\frac{\sqrt{3}}{2}\right)=21.21 \mathrm{~N}=\mathrm{F}_{2}$ (say)
(a) Force required to move the block down the plane with constant velocity.

F_{1} will be acting downwards, while F_{2} upwards.
Since $F_{2}>F_{1}$, force required
$F=F_{2}-F_{1}=11.21 \mathrm{~N}$
(b) Force required to move the block up the plane with constant velocity.

F_{1} and F_{2} both will be acing downwards.
$F=F_{1}+F_{2}=31.21 \mathrm{~N}$

Sol 4: Maximum force of friction between M_{1} and inclined plane
$\mathrm{f}_{1}=\mu_{1} \mathrm{M}_{1} \mathrm{~g} \cos \theta=(0.75)(4)(9.8)(0.8)=23.52 \mathrm{~N}$
$\mathrm{M}_{1} \mathrm{~g} \sin \theta=(4)(9.8)(0.6)=23.52 \mathrm{~N}=\mathrm{F}_{1}$ (say)
Maximum force of friction between M_{2} and inclined plane
$f_{2}=\mu_{2} M_{2} g \cos \theta=(0.25)(2)(9.8)(0.8)=3.92 \mathrm{~N}$
$M_{2} g \sin \theta=(2)(9.8)(0.6)=11.76 \mathrm{~N}=\mathrm{F}_{2}$ (say)

Both the blocks will be moving downwards with same acceleration a. Different forces acting on two blocks are as shown in figures.

Equation of motion of \mathbf{M}_{1}

$T+F_{1}-f_{1}=M_{1} a$
or $T=4 a$

Equation of motion \mathbf{M}_{2}

$\mathrm{F}_{2}-\mathrm{T}-\mathrm{f}_{2}=\mathrm{M}_{2} \mathrm{a}$
or $7.84-\mathrm{T}=2 \mathrm{a}$
Solving eqs. (i) and (ii), we get
$\mathrm{a}=1.3 \mathrm{~m} / \mathrm{s}^{2}$ and $\mathrm{T}=5.2 \mathrm{~N}$

Sol 5: Constant velocity means net acceleration of the system is zero. Or net pulling force on the system is zero. While calculating the pulling force, tension forces are not taken into consideration. Therefore,
(a) $M_{1} g=M_{2} g \sin 37^{\circ}+\mu M_{2} g \cos 37^{\circ}+\mu M_{3} g$ or $M_{1}=M_{2} \sin 37^{\circ}+\mu M_{2} \cos 37^{\circ}+\mu M_{3}$
Substituting the values
$M_{1}=(4)\left(\frac{3}{5}\right)+(0.25)(4)\left(\frac{4}{5}\right)+(0.25)(4)=4.2 \mathrm{~kg}$
(b) Since, M_{3} is moving with uniform velocity
$\mathrm{T}=\mu \mathrm{M}_{3} \mathrm{~g}=(0.25)(4)(9.8)=9.8 \mathrm{~N}$

Sol 6:

Let F be applied at angle θ as shown in figure. Normal reaction in this case will be
$N=m g-F \sin \theta$
The limiting friction is therefore
$\mathrm{f}_{\mathrm{L}}=\mu \mathrm{N}=\mu(\mathrm{mg}-\mathrm{F} \sin \theta)$
For the block to move,
$F \cos \theta=f_{L}=\mu(m g-F \sin \theta)$
or $F=\frac{\mu \mathrm{mg}}{\cos \theta+\mu \sin \theta}$
For F to be minimum, denominator should be maximum.
or $\frac{d}{d \theta}(\cos \theta+\mu \sin \theta)=0$
or $-\sin \theta+\mu \cos \theta=0$
or $\tan \theta=\mu$ or $\theta=\tan ^{-1}(\mu)$
Substituting this value of θ in Eq. (i), we get
$F_{\text {min }}=m g \sin \theta$
Sol 7: (a) To find tension at mid-point of the lower wire we cut the string at this point. Draw the free body diagram of lower portion.

The equation of motion gives
$\mathrm{T}_{1}-2.0 \mathrm{~g}=(2.0) \mathrm{a}$
or $T_{1}=(2.0)(g+a)=(2.0)(9.8+0.2)=20 \mathrm{~N}$

Sol 8: Given : $\mathrm{R}=01 \mathrm{~m}, \mathrm{~m}=10^{-2} \mathrm{~kg}$

(a) FBD of particle in ground frame of reference is shown in figure. Hence,
$\tan \theta=\frac{r}{R-h}$
$N \cos \theta=m g$
and $N \sin \theta=m r \omega^{2}$
Dividing Eq. (ii) by Eq. (i), we obtain
$\tan \theta=\frac{r \omega^{2}}{g}$ or $\frac{r}{R-h}=\frac{r \omega^{2}}{g}$
or $\omega^{2}=\frac{g}{R-h}$
This is the desired relation between ω and h.
From Eq. (iii)
$\mathrm{h}=\mathrm{R}-\frac{\mathrm{g}}{\omega^{2}}$
Form non-zero value of h
$R>\frac{g}{\omega^{2}}$ or $\omega>\sqrt{g / R}$

Therefore, minimum value of ω should be
$\omega_{\text {min }}=\sqrt{\frac{g}{R}}=\sqrt{\frac{9.8}{0.1}} \mathrm{rad} / \mathrm{s}$
or $\omega_{\text {min }}=9.89 \mathrm{rad} / \mathrm{s}$
(b) Eq. (iii) can be written as $h=R-\frac{g}{\omega^{2}}$

If R and ω are known precisely, then
$\Delta \mathrm{h}=-\frac{\Delta \mathrm{g}}{\omega^{2}}$ or $\Delta \mathrm{g}=\omega^{2} \Delta \mathrm{~h} \quad$ (neglecting the negative
sign)
$(\Delta \mathrm{g})_{\min }=\left(\omega_{\min }\right)^{2} \Delta \mathrm{~h},(\Delta \mathrm{~g})_{\min }=9.8 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$

Sol 9: $(\mathrm{a}) \mathrm{CP}=\mathrm{CO}=$ Radius of circle (R)
$\therefore \angle C P O=\angle \mathrm{POC}=60^{\circ}$
$\therefore \angle O C P$ is also 60°
Therefore, $\triangle O C P$ is an equilateral triangle.

Hence, $O P=R$

Natural length of spring is $3 R / 4$.
\therefore Extension in the spring
$x=R-\frac{3 R}{4}=\frac{R}{4}$
\Rightarrow Spring force,
$\mathrm{F}=\mathrm{kx}=\left(\frac{\mathrm{mg}}{\mathrm{R}}\right)\left(\frac{\mathrm{R}}{4}\right)=\frac{\mathrm{mg}}{4}$
The free body diagram of the ring will be as shown.
Here, $F=k x=\frac{m g}{4}$
and $\mathrm{N}=$ Normal reaction.
(b) Tangential acceleration $a_{\boldsymbol{T}}$: The ring will move forwards the x-axis just after the release. So net force along x-axis

$F_{x}=F \sin 60^{\circ}+m g \sin 60^{\circ}$
$=\left(\frac{\mathrm{mg}}{4}\right) \frac{\sqrt{3}}{2}+\mathrm{mg}\left(\frac{\sqrt{3}}{2}\right)$
$F_{x}=\frac{5 \sqrt{3}}{8} \mathrm{mg}$
Therefore, tangential acceleration of the ring,
$a_{T}=a_{x}=\frac{F_{x}}{m}=\frac{5 \sqrt{3}}{8} g$
Normal reaction \mathbf{N} : Net force along y -axis on the ring just after the release will be zero.
$F_{y}=0$
$\therefore \mathrm{N}+\mathrm{F} \cos 60^{\circ}=\mathrm{mg} \cos 60^{\circ}$
$\therefore \mathrm{N}=\mathrm{mg} \cos 60^{\circ}-\mathrm{F} \cos 60^{\circ}$
$=\frac{\mathrm{mg}}{2}-\frac{\mathrm{mg}}{4}\left(\frac{1}{2}\right)=\frac{\mathrm{mg}}{2}-\frac{\mathrm{mg}}{8}$
$N=\frac{3 m g}{8}$
Sol 10: Given,
$m_{1}=10 \mathrm{~kg}, \mathrm{~m}_{2}=5 \mathrm{~kg}, \omega=10 \mathrm{rad} / \mathrm{s}$
$r=0.3 \mathrm{~m}, \mathrm{r}_{1}=0.124 \mathrm{~m}$
$\therefore r_{2}=r-r_{1}=0.176 \mathrm{~m}$
(a) Masses m_{1} and m_{2} are at rest with respect to rotating table.
Let f be the friction between mass m_{1} and table.

Free body diagram of m_{1} and m_{2} with respect to ground

$$
\mathrm{m}_{1} \longmapsto \mathrm{~T}+\mathrm{f} \mathrm{~T} \longleftrightarrow \mathrm{~m}_{2}
$$

$$
\begin{equation*}
\mathrm{T}=\mathrm{m}_{2} \mathrm{r}_{2} \omega^{2} \tag{i}
\end{equation*}
$$

Since, $m_{2} r_{2} \omega^{2}<m_{1} r_{1} \omega^{2}$
Therefore, $m_{1} r_{1} \omega^{2}>T$
and friction on m_{1} will be inward (toward centre)
$f+T=m_{1} r_{1} \omega^{2}$
from equations (i) and (ii), we get
$\mathrm{f}=\mathrm{m}_{1} \mathrm{r}_{1} \omega^{2}-\mathrm{m}_{2} \mathrm{r}_{2} \omega^{2}$
$=\left(m_{1} r_{1}-m_{2} r_{2}\right) \omega^{2}$
$=(10 \times 0.124-5 \times 0.176)(10)^{2} \mathrm{~N}=36 \mathrm{~N}$
Therefore, frictional force on m_{1} is 36 N (inwards)
(b) From eq. (iii)

$$
f=\left(m_{1} r_{1}-m_{2} r_{2}\right) \omega^{2}
$$

Masses will start slipping when this force is greater than $f_{\text {max }}$ or
$\left(m_{1} r_{1}-m_{2} r_{2}\right) \omega^{2}>f_{\text {max }}>\mu m_{1} g$
\therefore Minimum value of ω is
$\omega_{\text {min }}=\sqrt{\frac{\mu m_{1} g}{m_{1} r_{1}-m_{2} r_{2}}}=\sqrt{\frac{0.5 \times 10 \times 9.8}{10 \times 0.124-5 \times 0.176}}$
$\omega_{\text {min }}=11.67 \mathrm{rad} / \mathrm{s}$
(c) From Eq. (iii), frictional force $\mathrm{f}=0$
where $m_{1} r_{1}=m_{2} r_{2}$ or $\frac{r_{1}}{r_{2}}=\frac{m_{2}}{m_{1}}=\frac{5}{10}=\frac{1}{2}$
and $r=r_{1}+r_{2}=0.3 \mathrm{~m}$
$\therefore r_{1}=0.1 \mathrm{~m}$ and $\mathrm{r}_{2}=0.2 \mathrm{~m}$
i. e. , mass m_{2} should be placed at 0.2 m and m_{1} at 0.1 m from the centre O.

Sol 11: Acceleration of block A

Maximum friction force that can be obtained at A is
$\left(f_{\text {max }}\right)_{A}=\mu_{A}\left(m g \cos 45^{\circ}\right)$
$=\frac{2}{3}(\mathrm{mg} / \sqrt{2})=\frac{\sqrt{2} \mathrm{mg}}{3}$

Similarly,
$\left(f_{\max }\right)_{B}=\mu_{B}\left(2 m g \cos 45^{\circ}\right)$
$=\frac{1}{3}(2 \mathrm{mg} / \sqrt{2})=\frac{\sqrt{2} \mathrm{mg}}{3}$
Therefore, maximum value of friction that can be obtained on the system is

$$
\begin{equation*}
\left(f_{\max }\right)=\left(f_{\max }\right)_{A}+\left(f_{\max }\right)_{B}=\frac{2 \sqrt{2} m g}{3} \tag{i}
\end{equation*}
$$

Net pulling force on the ststem is
$F=F_{1}-F_{2}=\frac{2 m g}{\sqrt{2}}-\frac{m g}{\sqrt{2}}=\frac{m g}{\sqrt{2}}$
From Eqs. (i) and (ii), we can see that
Net pulling force $<f_{\text {max }}$
Therefore, the system will not move or the acceleration of block A will be zero.
(b) and (c) Tension in the string and friction at A

Net pulling force on the system (block A and B)
$F=F_{1}-F_{2}=\mathrm{mg} / \sqrt{2}$
Therefore, total friction force on the blocks should also be equal to $\frac{\mathrm{mg}}{\sqrt{2}}$
or $f_{A}+f_{B}=F=m g / \sqrt{2}$
Now since the blocks will start moving from block B first (if they move), therefore, f_{B} will reach its limiting value first and if still some force is needed, it will be provided by f_{A}
Here, $\left(f_{\max }\right)_{B}<F$
Therefore, f_{B} will be in its limiting value and rest will be provided by f_{A}.
Hence $f_{B}=\left(f_{\max }\right)_{B}=\frac{\sqrt{2} m g}{3}$
and $f_{A}=F-f_{B}=\frac{m g}{\sqrt{2}}-\frac{\sqrt{2} m g}{3}=\frac{m g}{3 \sqrt{2}}$

The FBD of the whole system will be as shown in the figure

Therefore, friction on A is
$\mathrm{f}_{\mathrm{A}}=\mathrm{mg} / 3 \sqrt{2}$ (down the plane)
Now for tension T in the string, we may consider either equilibrium of A or B
Equilibrium of A gives
$T=F_{2}+f_{A}=\frac{m g}{\sqrt{2}}+\frac{m g}{3 \sqrt{2}}=\frac{4 m g}{3 \sqrt{2}}$ or $\frac{2 \sqrt{2} m g}{3}$
Similarly, equilibrium of B gives $T+f_{B}=F_{1}$
or $T=F_{1}-f_{B}=\frac{2 m g}{\sqrt{2}}-\frac{\sqrt{2} m g}{3}=\frac{4 m g}{3 \sqrt{2}}$
or $\frac{2 \sqrt{2} \mathrm{mg}}{3}$
Therefore, tension in the string is $\frac{2 \sqrt{2} \mathrm{mg}}{3}$
Sol 12: Acceleration of A down the plane,
$a_{A}=g \sin 45^{\circ}-\mu_{A} g \cos 45^{\circ}$
$=(10)\left(\frac{1}{\sqrt{2}}\right)-(0.2)(10)\left(\frac{1}{\sqrt{2}}\right)=4 \sqrt{2} \mathrm{~m} / \mathrm{s}^{2}$
Similarly acceleration of B down the plane,
$a_{B}=g \sin 45^{\circ}-\mu_{B} g \cos 45^{\circ}$
(10) $\left(\frac{1}{\sqrt{2}}\right)-(0.3)(10)\left(\frac{1}{\sqrt{2}}\right)=3.5^{\sqrt{2}} \mathrm{~m} / \mathrm{s}^{2}$

The front face of A and B will come in a line when,
$\mathrm{S}_{\mathrm{A}}=\mathrm{S}_{\mathrm{B}}+\sqrt{2}$
or $\frac{1}{2} a_{A} t^{2}=\frac{1}{2} a_{B} t^{2}+\sqrt{2}$
$\frac{1}{2} \times 4 \sqrt{2} \times t^{2}=\frac{1}{2} \times 3.5 \sqrt{2} \times t^{2}+\sqrt{2}$
Solving this equation, we get $t=2 s$
Further, $\mathrm{s}_{\mathrm{A}}=\frac{1}{2} \mathrm{a}_{\mathrm{A}} \mathrm{t}^{2}=\frac{1}{2} \times 4 \sqrt{2} \times(2)^{2}=8 \sqrt{2} \mathrm{~m}$
Hence, both the blocks will come in a line after A has travelled a distance $8 \sqrt{2} \mathrm{~m}$ down the plane.

Circular Dynamics

Sol 13: (A) Tangential force $\left(F_{1}\right)$ of the bead will be given by the normal reaction (N), while centripetal force $\left(F_{c}\right)$ is provided by friction (f_{r}). The bead starts sliding when the centripetal force is just equal to the limiting friction.

F_{t} is inwards

Therefore, $F_{t}=m a=m \alpha L=N$
\therefore Limiting value of friction
$\left(f_{r}\right)_{\text {max }}=\mu N=\mu m \alpha L$
Angular velocity at time t is $\omega=$ at
\therefore Centripetal force at time t will be
$F_{c}=m L \omega^{2}=m L \alpha^{2} t^{2}$
Equating equation (i) and (ii), we get $t=\sqrt{\frac{\mu}{\alpha}}$
For $t>\sqrt{\frac{\mu}{\alpha}}, F_{c}>\left(f_{r}\right)_{\max }$ i.e., the bead starts sliding.
In the figure F_{t} is perpendicular to the paper inwards.

Sol 14: (A) Since, the block rises to the same heights in all the four cases, from conservation of energy, speed of the block at highest point will be same in all four cases. Say it is v_{0}. Equation of motion will be $N+m g=\frac{m v_{0}^{2}}{R} \quad$ or $\quad N=\frac{m v_{0}^{2}}{R}-m g$
R (the radius of curvature) in first case is minimum. Therefore, normal reaction N will be maximum in first case.
Note In the question it should be mentioned that all the four tracks are frictionless. Otherwise, v_{0} will be different in different tracks.

Sol 15: (\mathbf{B}, \mathbf{C}) Motion of pendulum is part of a circular motion. In circular motion it is better to resolve the forces in two perpendicular directions. First along radius
(towards centre) and second along tangential. Along radius net force should be equal to $\frac{m v^{2}}{R}$ and along
tangentitshouldbeequalto $m a_{T^{\prime}}$ where a_{T} is the tangential acceleration in the figure.
$T-M g \cos \theta=\frac{m v^{2}}{L}$ and
$M g \sin \theta=M a_{T}$
or $\mathrm{a}_{\mathrm{T}}=\mathrm{g} \sin \theta$

\therefore Correct options are (b) and (c).

Sol 16: (B, D) A rotating/revolving frame is accelerating and hence non-inertial. Therefore, correct options are (b) and (d).

Sol 17: (A, C)

$v_{1}^{\prime}=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) v_{1}+\left(\frac{2 m_{2}}{m_{1}+m_{2}}\right) v_{2}$
$-2=\left(\frac{1-5}{1+5}\right) v_{1}+0 \quad\left(\right.$ as $\left.v_{2}=0\right)$
$\therefore \mathrm{v}_{1}=3 \mathrm{~ms}^{-1}$
$v_{2}^{\prime}=\left(\frac{m_{2}-m_{1}}{m_{2}+m_{1}}\right) v_{2}+\left(\frac{2 m_{1}}{m_{1}+m_{2}}\right) v_{1}$
$=0+\left(\frac{2 \times 1}{6}\right)(3)=1 \mathrm{~ms}^{-1}$
$P_{C M}=P_{i}=(1)(3)=3 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
$P_{5}^{\prime}=(5)(1)=5 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
$K_{C M}=\frac{P_{C M}^{2}}{2 \mathrm{M}_{C M}}=\frac{9}{2 \times 6}=0.75 \mathrm{~J}$
$\mathrm{K}_{\text {total }}=\frac{1}{2} \times 1 \times(3)^{2}=4.5 \mathrm{~J}$
\therefore Correct options are (a) and (c).

Sol 18: (B) (a) $C P=C O=$ Radius of circle (R)
$\therefore \angle C P O=? P O C=60^{\circ}$
$\therefore \angle \mathrm{OCP}$ is also 60°
Therefore, \triangle OCP is an equilateral triangle.

Hence, $O P=R$

Natural length of spring is $3 R / 4$.
\therefore Extension in the spring $\mathrm{x}=\mathrm{R}-\frac{3 \mathrm{R}}{4}=\frac{\mathrm{R}}{4}$
\Rightarrow Spring force, $F=k x=\left(\frac{\mathrm{mg}}{\mathrm{R}}\right)\left(\frac{\mathrm{R}}{4}\right)=\frac{\mathrm{mg}}{4}$
The free body diagram of the ring will be as shown.
Here, $F=k x=\frac{m g}{4}$ and $N=$ Normal reaction.
(b)Tangential acceleration $\mathbf{a}_{\boldsymbol{T}}$ the ring will move forwards the x-axis just after the release. So, net force along x-axis

$F_{x}=F \sin 60^{\circ}+m g \sin 60^{\circ}=\left(\frac{m g}{4}\right) \frac{\sqrt{3}}{2}+m g\left(\frac{\sqrt{3}}{2}\right)$ $F_{x}=\frac{5 \sqrt{3}}{8} \mathrm{mg}$

Therefore, tangential acceleration of the ring,
$a_{T}=a_{x}=\frac{F_{x}}{m}=\frac{5 \sqrt{3}}{8} g$
Normal reaction \mathbf{N} Net force along y-axis on the ring just after the release will be zero

$$
F_{y}=0
$$

$\therefore \mathrm{N}+\mathrm{F} \cos 60^{\circ}=\mathrm{mg} \cos 60^{\circ}$
$\therefore \mathrm{N}=\mathrm{mg} \cos 60^{\circ}-\mathrm{F} \cos 60^{\circ}$
$=\frac{\mathrm{mg}}{2}-\frac{\mathrm{mg}}{4}\left(\frac{1}{2}\right)=\frac{\mathrm{mg}}{2}-\frac{\mathrm{mg}}{8}$
$N=\frac{3 m g}{8}$

Sol 19: (A, C)

If $\theta=45^{\circ}$ then $\cos \theta=\sin \theta$ hence block will be at rest.
If plane is rough $\& \theta>45^{\circ}$ then $\sin \theta>\cos \theta$ so friction will act up the plane

If plane is rough $\& \theta<45$ then $\cos \theta>\sin$ so friction will act down the plane so (A, C) are correct

Sol 20: (D) Initially bead is applying radially inward normal force.

During motion at an instant, $\mathrm{N}=0$, after that N will act radially outward.

Sol 21: (D) Condition for not sliding,
$f_{\text {max }}>\left(m_{1}+m_{2}\right) g \sin \theta$
$\mu N>\left(m_{1}+m_{2}\right) g \sin \theta$
$0.3 m_{2} g \cos \theta \geq 30 \sin \theta$
$6 \geq 30 \tan \theta$
$1 / 5 \geq \tan \theta$
$0.2 \geq \tan \theta$
\therefore for P, Q
$f=\left(m_{1}+m_{2}\right) g \sin \theta$
For R and S
$F=f_{\text {max }}=\mu m_{2} g \sin \theta$

Sol 22: (C) $\vec{F}_{\text {rot }}=\vec{F}_{\text {in }}+2 m\left(\vec{v}_{\text {rot }} \times \vec{\omega}\right)+m(\vec{\omega} \times \vec{r}) \times \vec{\omega}$
$=-m \omega^{2} r \hat{i}+2 m v_{\text {rot }} \omega(-\hat{j})+m \omega^{2} r \hat{i}=-2 m v_{\text {rot }} \omega \hat{j}$
$v_{\text {rot }}=\frac{d r}{d t}=\frac{\omega R}{4}\left(e^{\omega t}-e^{-\omega t}\right)$
$\vec{F}_{\text {rot }}=-\frac{m \omega^{2} R}{2}\left(e^{\omega t}-e^{-\omega t}\right) \hat{j}$
$\vec{F}_{\text {net }}=-\vec{F}_{\text {rot }}+m g \hat{k}=\frac{m \omega^{2} R}{2}\left(e^{\omega t}-e^{-\omega t}\right) \hat{j}+m g \hat{k}$

