FORMULAE SHEET

(a) **Projectile Motion**

Time of flight:
$$T = \frac{2u\sin\theta}{g}$$

Horizontal range: $R = \frac{u^2 \sin 2\theta}{g}$

Maximum height: $H = \frac{u^2 \sin \theta}{2g}$

Trajectory equation (equation of path):

$$y = x \tan \theta - \frac{g x^2}{2u^2 \cos^2 \theta} = x \tan \theta \left(1 - \frac{x}{R}\right)$$

Projection on an inclined plane

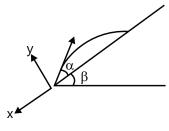


Figure 3.23

(b) Relative Motion

 v_{AB} (velocity of A with respect to B) = $v_A - v_B$

 a_{AB} (acceleration of A with respect to B) = $a_A - a_B$

Relative motion along straight line = $x_{BA} = x_B - x_A$

- (c) **Crossing River:** A boat or man in a river always moves in the direction of resultant velocity of velocity of boat (or man) and velocity of the river flow.
- (d) Shortest Time: Velocity along the river, $V_X = V_R$

Velocity perpendicular to the river, $V_f = V_{mR}$

The net speed is given by $V_m = \sqrt{V_{mR}^2 + V_R^2}$

(e) Shortest Path: Velocity along the river, $V_x = 0$

and velocity perpendicular to river $\,V_y^{}=\sqrt{V_{mR}^2-V_R^2}\,$

The net speed is given by $V_m = \sqrt{V_{mR}^2 - V_R^2}$

at an angle of 90° with the river direction.

velocity V_v is used only to cross the river, therefore time to cross the river,

$$t = \frac{d}{v_y} = \frac{d}{\sqrt{v_{mR}^2 - v_R^2}}$$
 and velocity v_x is zero, therefore, in

this case the drift should be zero.

$$v_{R} = v_{mR} \sin \theta = 0$$
 or $v_{R} = v_{mR} \sin \theta$ or $\theta = \sin^{-1} \frac{v_{R}}{v_{mR}}$

(f) **Rain Problems:**
$$v_{Rm} = \vec{v}_R - \vec{v}_m$$
 or $v_{Rm} = \sqrt{v_R^2 + v_m^2}$

(g) Circular Motion

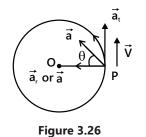
i. Average angular velocity $\omega_{av} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$ ii. Instantaneous angular velocity $\omega = \frac{d\theta}{dt}$

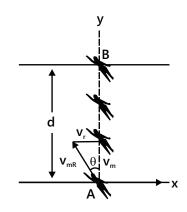
iii. Average angular acceleration
$$\alpha_{av} = \frac{\omega_2 - \omega_1}{t_2 - t_1} = \frac{\Delta \omega}{\Delta t}$$

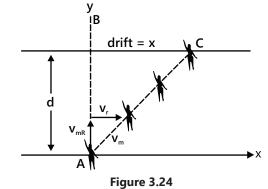
iv. Instantaneous angular acceleration $\alpha = \frac{d\omega}{dt} = \omega \frac{d\omega}{d\theta}$

v. Relation between speed and angular velocity $v = r\omega$ and $v = \omega r$

vi. Tangential acceleration (rate of change of speed) $a_t = \frac{dV}{dt}$







vii. Radial or normal or centripetal acceleration $\mathbf{a}_r = \frac{\mathbf{V}^2}{\mathbf{r}} = \omega^2 \mathbf{r}$ **viii.** Total acceleration $\vec{\mathbf{a}} = \vec{\mathbf{a}}_t + \vec{\mathbf{a}}_r$, $\mathbf{a} = \left(a_t^2 + a_r^2\right)^{1/2}$ **ix.** Angular acceleration $\alpha = \frac{d\omega}{dt}$ (non-uniform circular motion) **x.** Radius of curvature $\mathbf{R} = \frac{\mathbf{v}^2}{\mathbf{a}_\perp} = \frac{\mathbf{m}\mathbf{v}^2}{\mathbf{F}_\perp}$

θ

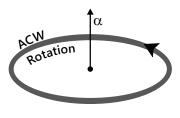


Figure 3.27