FORMULAE SHEET

(a) Projectile Motion

Time of flight: $T=\frac{2 u \sin \theta}{g}$
Horizontal range: $\mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}}$
Maximum height: $\mathrm{H}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}$
Trajectory equation (equation of path):

$$
y=x \tan \theta-\frac{g x^{2}}{2 u^{2} \cos ^{2} \theta}=x \tan \theta\left(1-\frac{x}{R}\right)
$$

Figure 3.23

Projection on an inclined plane

(b) Relative Motion

$v_{A B}($ velocity of A with respect to $B)=v_{A}-v_{B}$
$a_{A B}($ acceleration of A with respect to $B)=a_{A}-a_{B}$
Relative motion along straight line $=x_{B A}=x_{B}-x_{A}$
(c) Crossing River: A boat or man in a river always moves in the direction of resultant velocity of velocity of boat (or man) and velocity of the river flow.
(d) Shortest Time: Velocity along the river, $\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{R}}$

Figure 3.24

Velocity perpendicular to the river, $V_{f}=V_{m R}$
The net speed is given by $V_{m}=\sqrt{V_{m R}^{2}+V_{R}^{2}}$
(e) Shortest Path: Velocity along the river, $\mathrm{V}_{\mathrm{x}}=0$
and velocity perpendicular to river $V_{y}=\sqrt{V_{m R}^{2}-V_{R}^{2}}$
The net speed is given by $V_{m}=\sqrt{V_{m R}^{2}-V_{R}^{2}}$ at an angle of 90° with the river direction.
velocity V_{y} is used only to cross the river, therefore time to cross the river,
$t=\frac{d}{v_{y}}=\frac{d}{\sqrt{v_{m R}^{2}-v_{R}^{2}}}$ and velocity v_{x} is zero, therefore, in

Figure 3.25
this case the drift should be zero.
$\mathrm{v}_{\mathrm{R}}=\mathrm{v}_{\mathrm{mR}} \sin \theta=0 \quad$ or $\quad \mathrm{v}_{\mathrm{R}}=\mathrm{v}_{\mathrm{mR}} \sin \theta \quad$ or $\quad \theta=\sin ^{-1} \frac{\mathrm{v}_{\mathrm{R}}}{\mathrm{v}_{\mathrm{mR}}}$
(f) Rain Problems: $v_{R m}=\vec{v}_{R}-\vec{v}_{m} \quad$ or $v_{R m}=\sqrt{v_{R}^{2}+v_{m}^{2}}$

(g) Circular Motion

i. Average angular velocity $\omega_{\mathrm{av}}=\frac{\theta_{2}-\theta_{1}}{\mathrm{t}_{2}-\mathrm{t}_{1}}=\frac{\Delta \theta}{\Delta \mathrm{t}}$
ii. Instantaneous angular velocity $\omega=\frac{\mathrm{d} \theta}{\mathrm{dt}}$
iii. Average angular acceleration $\alpha_{a v}=\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}=\frac{\Delta \omega}{\Delta t}$

Figure 3.26
iv. Instantaneous angular acceleration $\alpha=\frac{d \omega}{d t}=\omega \frac{d \omega}{d \theta}$
v. Relation between speed and angular velocity $v=r \omega$ and $v=\omega r$
vi. Tangential acceleration (rate of change of speed) $a_{t}=\frac{d V}{d t}$
vii. Radial or normal or centripetal acceleration $a_{r}=\frac{V^{2}}{r}=\omega^{2} r$
viii. Total acceleration $\vec{a}=\vec{a}_{t}+\vec{a}_{r}, a=\left(a_{t}^{2}+a_{r}^{2}\right)^{1 / 2}$
ix. Angular acceleration $\alpha=\frac{\mathrm{d} \omega}{\mathrm{dt}}$ (non-uniform circular motion)
x. Radius of curvature $R=\frac{v^{2}}{a_{\perp}}=\frac{m v^{2}}{F_{\perp}}$

Figure 3.27

