## Solved Examples

## JEE Main/Boards

Example 1: Calculate the amount of heat required to convert 1.00 kg of ice at $-10^{\circ} \mathrm{C}$ into steam at $100^{\circ} \mathrm{C}$ at normal pressure. Specific heat capacity of ice $=2100$ $\mathrm{Jk}^{-1} \mathrm{~K}^{-1}$, latent heat of fusion of ice $=3.36 \times 10^{5} \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$, specific heat capacity of water $=4200 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$ and latent heat of vaporization of water $=2.25 \times 10^{6} \mathrm{JKg}^{-1}$.

Sol: Here the temperature of ice and water changes along with change in phases. i. e. ice to water and then water to steam.

Heat required to take the ice from $-10{ }^{\circ} \mathrm{C}$ to
$0^{\circ} \mathrm{C}=(1 \mathrm{~kg})\left(2100 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}\right)(10 \mathrm{~K})=21000 \mathrm{~J}$.
Heat required to melt the ice at $0^{\circ} \mathrm{C}$ to water $=$ $(1 \mathrm{~kg})\left(3.36 \times 10^{5} \mathrm{JKg}^{-1}\right)=336000 \mathrm{~J}$.

Heat required to take 1 kg of water from $0^{\circ} \mathrm{C}$ to $100=(1 \mathrm{~kg})\left(4200 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}\right)(100 \mathrm{~K})=420000 \mathrm{~J}$.

Heat required to convert 1 kg of water at $100^{\circ} \mathrm{C}$ into steam $=(1 \mathrm{~kg})\left(2.25 \times 10^{6} \mathrm{JKg}^{-1}\right)=2.25 \times 10^{6} \mathrm{~J}$.

Total heat required $=3.03 \times 10^{6} \mathrm{~J}$.
Example 2: A 5 g piece of ice at- $20^{\circ} \mathrm{C}$ is put into 10 g of water at $30^{\circ} \mathrm{C}$. Assuming that heat is exchanged only between the ice and the water, find the final temperature of the mixture. Specific heat capacity of ice. $=2100 \mathrm{JKg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$ specific heat capacity of water $=4200 \mathrm{Jkg}^{-1} \mathrm{C}^{-1}$ and latent heat of fusion of ice $=3.36 \times 10^{5} \mathrm{JKg}^{-1}$.

Sol: Always proceed in similar questions assuming the final temperature to be the temperature of phase change (i.e. 0 here)

The heat given by the water when it cools down from $30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ is

$$
(0.0 \mathrm{~kg})\left(4200 \mathrm{JKg}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right)\left(30^{\circ} \mathrm{C}\right)=1260 \mathrm{~J}
$$

The heat required to bring the ice to $0^{\circ} \mathrm{C}$ is

$$
(0.005 \mathrm{~kg})\left(2100 \mathrm{JKg}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right)\left(20^{\circ} \mathrm{C}\right)=210 \mathrm{~J} .
$$

The heat required to melt 5 g of ice is

$$
(0.005 \mathrm{~kg})\left(3.36 \times 10^{5} \mathrm{JKg}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right)=1680 \mathrm{~J}
$$

We see that whole of the ice cannot be melted as the required amount of heat is not provided by the water. Also, the heat is enough to bring the ice to $0^{\circ} \mathrm{C}$. Thus the final temperature of the mixture is $0^{\circ} \mathrm{C}$ with some of the ice is melted.

Example 3: A thermally isolated vessel contains 100 g of water at $0^{\circ} \mathrm{C}$. When air above the water is pumped out, some of the water freezes and some evaporates at $0^{\circ} \mathrm{C}$ itself. Calculate the mass of ice formed if no water is left in the vessel. Latent heat of vaporization of water at $0^{\circ} \mathrm{C}=2.10 \times 10^{6} \mathrm{JKg}^{-1}$ and latent heat of fusion= $3.36 \times 10^{5} \mathrm{JKg}^{-1}$.

Sol: Some water evaporates and Heat of vaporization comes from water itself and hence remaining water freezes by giving the heat for vaporization.
Total mass of water $=\mathrm{M}=100 \mathrm{~g}$. Latentheat ofvaporization of water at $0^{\circ} \mathrm{C}=\mathrm{L}_{1}=21.0 \times 10^{5} \mathrm{Jgg}^{-1}$ latent heat of fusion of ice $=L_{2}=3.36 \times 10^{5} \mathrm{JKg}^{-1}$. Suppose, the mass of the ice formed $=\mathrm{m}$. Then the mass of water evaporated $=M-m$. Heat taken by the water to evaporate $=(M$ $-m) L_{1}$ and heat given by the water in freezing $=\mathrm{mL}_{2}$. Thus, $\mathrm{mL}_{2}=(\mathrm{M}-\mathrm{m}) \mathrm{L}_{1}$
or, $m=\frac{\mathrm{ML}_{1}}{\mathrm{~L}_{1}+\mathrm{L}_{2}}=\frac{(100 \mathrm{~g})\left(2.10 \times 10^{6} \mathrm{JKg}^{-1}\right)}{(21.0+3.36) 10^{5} \mathrm{JKg}^{-1}}=86 \mathrm{~g}$.

Example 4: A lead bullet penetrates into a solid object and melts. Assuming that $50 \%$ of its kinetic energy was used to heat it, calculate the initial speed of the bullet. The initial temperature of the bullet is $27^{\circ} \mathrm{C}$ and its melting point is $327^{\circ} \mathrm{C}$. Latent heat of fusion of lead $=2.25 \times 10^{4} \mathrm{JKg}^{-1}$ and specific heat capacity of lead $=$ $125 \mathrm{Jgg}^{-1} \mathrm{~K}^{-1}$

Sol: Kinetic energy of bullet spatially converted into heat and melt it.

Let the mass of bullet $=\mathrm{m}$.
Heat required to take the bullet from $27^{\circ} \mathrm{C}$ to $327^{\circ} \mathrm{C}=$ $\mathrm{m} \times\left(125 \mathrm{Jgg}^{-1} \mathrm{~K}^{-1}\right)(300 \mathrm{~K})$
$=\mathrm{m} \times\left(3.75 \times 10^{4} \mathrm{JKg}^{-1}\right)$
Heat required to melt the bullet
$=\mathrm{m} \times\left(2.10 \times 10^{6} \mathrm{JKg}^{-1}\right)$.
If the initial speed be $v$, the kinetic energy is $\frac{1}{2} m v^{2}$ and hence the heat developed is $\frac{1}{2}\left(\frac{1}{2} m v^{2}\right)=\frac{1}{4} m v^{2}$. thus, $\frac{1}{4} \mathrm{mv}^{2}=\mathrm{m}(3.75+2.5) \times 10^{4} \mathrm{Jgg}^{-1}$ or $\mathrm{v}=500 \mathrm{~ms}^{-1}$

Example 5: An aluminum vessel of mass 0.5 kg contains 0.2 kg of water at $20^{\circ} \mathrm{C}$. A block iron of mass 0.2 kg at $100^{\circ} \mathrm{C}$ is gently put onto the water. Find the equilibrium temperature of the mixture. Specific heat capacities of aluminum, iron and water are $910 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$, $470 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$ and $4200 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$ respectively.

Sol: Heat lost by the iron block increase the temperature of vessel and water.
Mass aluminum $=0.5 \mathrm{~kg}$,
Mass of water $=0.2 \mathrm{~kg}$;
Mass of iron $=0.2 \mathrm{~kg}$
Temp. of aluminum and water $=20^{\circ} \mathrm{C}=293 \mathrm{~K}$
Temperature of iron $=100^{\circ} \mathrm{C}=373 \mathrm{~K}$
Specific heat aluminum $=910 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$
Specific heat of iron $=470 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$
Specific heat of water $=4200 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$
Heat gain = Heat lost;
$\Rightarrow(\mathrm{T}-293)(0.5 \times 910+0.2 \times 4200)$
$=0.2 \times 470 \times(373-\mathrm{T})$
$\Rightarrow(\mathrm{T}-293)(455+8400)=49(373-\mathrm{T})$;

$$
\begin{aligned}
& \Rightarrow(\mathrm{T}-293)\left(\frac{1295}{94}\right)=(373-\mathrm{T}) ; \\
& \Rightarrow(\mathrm{T}-293) \times 14=373-\mathrm{T} \\
& \Rightarrow \mathrm{~T}=\frac{4475}{15}=298 \mathrm{~K} \quad \therefore \mathrm{~T}=298-273=25^{\circ} \mathrm{C}
\end{aligned}
$$

The final temp $=25^{\circ} \mathrm{C}$.

Example 6: A Piece of iron of mass 100 g is kept inside a furnace for long time and then put in a calorimeter of water equivalent 10 g containing 240 g of water $20^{\circ} \mathrm{C}$. The mixture attains an equilibrium temperature of $60^{\circ} \mathrm{C}$.

Find the temperature of furnace. Specific heat capacity of iron $=470 \mathrm{JKg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$.

Sol: This can be calculated in reverse manner, Heat lost by the iron piece is equal to heat required to increase the temperature of water and calorimeter.

Mass of iron $=100 \mathrm{~g}$
Water Eq of calorimeter $=10 \mathrm{~g}$;
Mass of water $=240 \mathrm{~g}$
Let the Temp. of surface $=0^{\circ} \mathrm{C}$
$S_{\text {iron }}=470 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$
Total heat gained $=$ Total heat lost.
So, $\frac{100}{1000} \times 470 \times(\theta-60)=\frac{250}{1000} \times 4200 \times(60-20)$
$\Rightarrow 470-47 \times 60=25 \times 42 \times 40$
$\Rightarrow \theta=4200+\frac{2820}{47}=\frac{44820}{47}=953.61^{\circ} \mathrm{C}$

Example 7: The temperature of equal masses of three different liquids $\mathrm{A}, \mathrm{B}$ and C are $120^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}$ and $280^{\circ} \mathrm{C}$ respectively. The temperature when $A$ and $B$ are mixed is $160^{\circ} \mathrm{C}$, and when B and C are mixed, it is $23^{\circ} \mathrm{C}$ what will be the temperature when $A$ and $C$ are mixed?

Sol: All liquids have same mass. The heat lost by one equals to heat gain by other, so we can try to solve for the ratio of their heat capacities.
The temp. of $\mathrm{A}=12^{\circ} \mathrm{C}$
The temp. of $B=19^{\circ} \mathrm{C}$
The temp. of $\mathrm{C}=28^{\circ} \mathrm{C}$
The temp of $\mathrm{A}+\mathrm{B}=16^{\circ} \mathrm{C}$
The temp. of $\mathrm{B}+\mathrm{C}=23^{\circ} \mathrm{C}$

In accordance with the principle of calorimetry when A\& B are mixed
$M_{C A}(16-12)=M_{C B}(19-16)$
$\Rightarrow M_{C A} 4=M_{C B} 3 \Rightarrow M_{C A}=\frac{3}{4} M_{C B}$
And when $B$ and $C$ are mixed;
$M_{C B}(23-19)=M_{C C}(28-23)$
$\Rightarrow 4 \mathrm{M}_{\mathrm{CB}}=5 \mathrm{M}_{\mathrm{CC}} \Rightarrow \mathrm{M}_{\mathrm{CC}}=\frac{4}{5} \mathrm{M}_{\mathrm{CB}}$
When $\mathrm{A} \& \mathrm{C}$ are mixed, if T is the common temperature of mixture
$M_{C A}(T-12)=M_{C C}(28-T)=\left(\frac{3}{4}\right) C B(T-12)$
$\Rightarrow\left(\frac{4}{4}\right) \mathrm{M}_{\mathrm{CB}}(28-\mathrm{T})$
$=15 \mathrm{~T}-180=488-16 \mathrm{~T} \Rightarrow \mathrm{~T}=\frac{628}{31}=20.258=20.3^{\circ} \mathrm{C}$

Example 8: A glass cylinder can contain $m_{0}=100 \mathrm{~g}$ of mercury at a temperature of $\mathrm{T}_{0}=0^{\circ} \mathrm{C}$. When $\mathrm{T}_{1}=20^{\circ} \mathrm{C}$, the cylinder can contain $\mathrm{m}_{1}=99.7 \mathrm{~g}$ of mercury. In both cases the temperature of the mercury is assumed to be equal to that of the cylinder. Use this data of find the coefficient of linear expansion of glass $\alpha$, bearing in mind that the coefficient of volume expansion of mercury $\gamma_{1}=18 \times 10^{-5} \mathrm{deg}^{-1}$

Sol: Get the $\gamma$ of glass with the information of mercury. Find the relation between the densities at different temperature, and then get coefficient of linear expansion of glass cylinder.

When the cylinder is heated, its volume increases according to the same Law as that of the glass: $\mathrm{V}_{1}=\mathrm{V}_{0}\left(1+\gamma \mathrm{T}_{1}\right)$ where $\gamma$ is the coefficient of volume expansion of glass. If the densities of mercury at the temperature $T_{0}$ and $T_{1}$ are denoted by $\rho_{0}$ and $\rho_{1}$. We can write that $m_{0}=V_{0} \rho_{0}$ and $m_{1}=V_{1} \rho_{1}$, where $\rho_{1}=\frac{\rho_{0}}{1+\gamma \mathrm{T}_{1}}$. This system of equations will give the following expression for $\gamma$;
$\gamma=\frac{\mathrm{m}_{1}\left(1+\gamma_{1} \mathrm{~T}_{1}\right)}{\mathrm{m}_{0} \mathrm{~T}_{0}} \approx 3 \times 10^{-5} \mathrm{deg}^{-1}$
The coefficient of linear expansion, $\alpha=\frac{\gamma}{3}=10^{-5} \mathrm{deg}^{-1}$

## JEE Advanced/Boards

Example 1: An open glass tube is immersed in mercury in such a way that a length of 8 cm extends above the mercury level. The open end of the tube is then closed and raised further by 44 cm . What will be the length of the air column above mercury in the tube? Atmospheric pressure $=76 \mathrm{~cm}$ of mercury.

Sol: Air column will get trapped and follow $\mathrm{PV}=$ constant. Let A be the area of cross section of the tube.


Initial Atmospheric pressure of air in the tube outside the mercury surface $=P_{1}=76 \mathrm{~cm}$ of Hg
Initial volume of air, $\mathrm{V}_{1}=8 \mathrm{~A}$
New pressure of air in the tube
$P_{2}=76-(52-x)=(42-x) \mathrm{cm}$ of Hg
New volume of air, $\mathrm{V}=\mathrm{xA}$

$$
\begin{aligned}
& \text { As } P_{1} V_{1}=P_{2} V_{2} ; \quad 76 \times 8 \mathrm{~A}=(42+x) \times A \\
& \text { or } 608=x^{2}+24 x
\end{aligned}
$$

$$
\text { or } x^{2}+24 x-608
$$

$$
=0, x=\frac{-24 \pm \sqrt{(24)^{2}-4 \times 608}}{2}
$$

$$
\therefore \mathrm{x}=15.2 \mathrm{~cm} \quad \text { or } \mathrm{x}=-39.4 \mathrm{~cm}
$$

Which is negative
$\therefore$ The length of air column $=15.4 \mathrm{~cm}$

Example 2: An air bubble starts rising from bottom of a lake. Its diameter is 3.6 mm at the bottom and 4 mm at the surface. The depth of the lake is 250 cm and the temperature at the surface is $40^{\circ} \mathrm{C}$. What is the temperature at the bottom of the lake? Given atmospheric pressure $=76 \mathrm{~cm}$ of Hg and $\mathrm{g}=980 \mathrm{~cm} / \mathrm{sec}^{2}$.

Sol: Here the amount air remains while $P, V$ and $T$ all parameters changes. Hence PV/T =constant.
Volume of the bubble of lake
$=V_{1}=\frac{4}{3} \pi r_{1}^{3}=\frac{4}{3} \pi(0.18)^{3} \mathrm{~cm}^{3}$
Pressure on the bubble $P_{1}$
$=$ Atmospheric pressure + Pressure due to a column of 250 cm of water

$$
\begin{aligned}
& =76 \times 13.6 \times 980+250 \times 1 \times 980 \\
& =(76 \times 13.6+250) 980 \text { dyne } / \mathrm{cm}^{2} ; \mathrm{T}_{1}=?
\end{aligned}
$$

Volume of the bubble at the surface of lake

$$
\mathrm{V}_{2}=\frac{4}{3} \pi r_{2}^{3}=\frac{4}{3} \pi(0.2)^{3} \mathrm{~cm}^{3}
$$

Pressure on the bubble $\mathrm{P}_{2}$
$=$ Atmospheric pressure $=76 \times 13.6 \times 980$ dyne $/ \mathrm{cm}^{2}$
$\mathrm{T}_{2}=273+40^{\circ} \mathrm{C}=313^{\circ} \mathrm{K} \quad \mathrm{As}$

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \text { or } \frac{(76 \times 13.6+250) 980 \times 4 \pi(0.18)^{3}}{T_{1} \times 3} \\
& \quad=\frac{(76 \times 13.6 \times 980) 4 \pi(0.2)^{3}}{313 \times 3} ; \\
& \text { or } \quad \frac{1283 \times(0.18)^{3}}{T_{1}}=\frac{1033.6(0.2)^{3}}{313} \\
& T_{1}=\frac{1283 \times(0.18)^{3} \times 313}{(1033.6)(0.2)^{3}}=1283.35^{\circ} \mathrm{K} \\
& \therefore T_{1}=1283.35-273=10.35^{\circ} \mathrm{C}
\end{aligned}
$$

Example 3: A mixture of 250 gm of water and 200 gm of ice at $0^{\circ} \mathrm{C}$ is kept in a calorimeter which has a water equivalent of 50 gm . If 200 gm of a steam at $100^{\circ} \mathrm{C}$ is passed through this mixture, calculate the final temperature and weight of the content of the calorimeter. Latent heat of fusion of ice $=80 \mathrm{Cal} / \mathrm{gm}$. latent heat of vaporization of water of steam $=540 \mathrm{cal} /$ gm., Specific heat of water $=1 \mathrm{cal} / \mathrm{gm} . /^{\circ} \mathrm{C}$.

Sol: Latent heat of vaporization of water is approx. 7 times of latent heat of fusion. So 1 g steam can melt about 7 g of ice. The mass of steam equals to mass of ice, so part of steam is condensed to melt the ice.

Heat lost by 200 gm . of steam before it is condensed to water at $100^{\circ} \mathrm{C}$

$$
\begin{equation*}
=200 \times 540=108000 \mathrm{cal} \tag{i}
\end{equation*}
$$

Heat gained by 200 gm . of ice at $0^{\circ} \mathrm{C}$

$$
\begin{aligned}
& =\mathrm{mL}+\mathrm{m} \times \mathrm{s} \times \Delta \mathrm{T}=200 \times 80 \times 1 \times(100-0) \\
& =36000 \mathrm{cal}
\end{aligned}
$$

Heat gained by 250 gm of water and 50 gm of water equivalent of calorimeter at $100^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$

$$
\begin{aligned}
& =200 \times 80 \times(100-0)+50 \times(100-0) \\
& =300 \times 100=30000 \mathrm{cal}
\end{aligned}
$$

Total heat gained
$30000 \mathrm{cal}+36000=66000 \mathrm{cal}$
Amount of heat lost by the system (i) is greater than heat gained by ice. This shows that only a part of the steam will condense to water at $100^{\circ} \mathrm{C}$ which will be sufficient for melting ice.

Let $M$ be mass of steam which will be sufficient for melting ice,
$\therefore$ Mass M of steam required is given by.
Or $\mathrm{M}=66000 / 540=\frac{1100}{9} \quad=122.2 \mathrm{gm}$
Final temperature of system $=100^{\circ} \mathrm{C}$
Weight contents
$=$ Weight of ice + Water + Steam condensed
$=250+200+122.2=572.2 \mathrm{gm}$

Example 4: A copper calorimeter of mass 100 gm contains 200 g of a mixture of ice and water; Steam at $100^{\circ} \mathrm{C}$ under normal pressure is passed into the calorimeter and the temperature of the mixture is allowed to rise to $50^{\circ} \mathrm{C}$. If the mass of the calorimeter and its contents is now 330 gm , what was the ratio of ice and water in the beginning? Neglect heat losses. Given that:

Specific heat of copper $=0.42 \times 10^{3} \mathrm{~J} / \mathrm{kg} \mathrm{K}$.
Specific heat of water $=4.2 \times 10^{3} \mathrm{~J} / \mathrm{kg} \mathrm{K}$.
Latent heat of fusion of ice $=3.36 \times 10^{5} \mathrm{~J} / \mathrm{kg} \mathrm{K}$.
Latent heat of condensation of steam
$=22.5 \times 10^{5} \mathrm{~J} / \mathrm{kg} \mathrm{K}$.
Sol: Total amount of heat lost by the steam will bring the water and calorimeter to 50 degree temp. remaining heat would have been used to melt the ice.

Heat is lost by steam in getting condensed and heat is gained by the water, ice and the calorimeter. Let
the calorimeter originally contains x gm of ice and (200-x) gm. of water.

Heat gained by calorimeter
$=\frac{100}{1000} \times 0.42 \times 10^{3} \times(50-0)=2100 \mathrm{~J}$
Heat gained by ice
$=\frac{\mathrm{x}}{1000} \times\left[3.36 \times 10^{5}+\left(4.2 \times 10^{3} \times 50\right)\right]$
$=x[336+210]=x \times 546 \mathrm{~J}$
Heat gained by water
$=\left[\frac{200-\mathrm{x}}{1000}\right]\left[4.2 \times 10^{3} \times 50\right]=42000-210 \mathrm{xJ}$
Heat lost by steam
$\left[\frac{330-200-100}{1000}\right]\left[22.5 \times 10^{3} \times 4.2 \times 10^{3} \times 50\right]$
$=30[2250+210]=30 \times 2460=73800 \mathrm{~J}$
Heat gained = heat lost;
$2100+546 x+42000-210 x=73800 ;$
$336 x=73800-44100=29700$
Mass of ice $=x=\frac{29700}{336}=88.39 \mathrm{gm}$
Mass of water $=111.61 \mathrm{gm}$
Ratio of ice to water $=88.39: 111.6=1: 1.263 \approx 0.79$

Example 5: A one liter flask contains some mercury. It is found that at different temperatures the volume of air inside the flask remains the same. What is the volume of mercury in the flask? Given coefficient of linear expansion of glass $=3 \times 10^{-6}$ per degree Celsius.

Coefficient of volume expansion of Hg
$=1.8 \times 10^{-4}$ per degree Celsius.

Sol: Volume of air in the flask is independent of temperature.
Let $x$ be the volume of mercury in the flask
Volume of air $=$ Volume of flask - Volume of Hg .
$=1000 \mathrm{~cm}^{3}-\mathrm{x} \mathrm{cm}{ }^{3}$
At any Temperature ' $T$ ' -
Volume of flask $=1000+1000 \times 3 \alpha_{g} \Delta \mathrm{~T}$.
and Volume of $\mathrm{Hg}=\mathrm{x}+\mathrm{x} \times \gamma_{\mathrm{m}} \times \Delta \mathrm{T}$

Hence volume of air $=$ Volume of flask - Volume of Hg $=1000-x+\left(1000 \times 3 \alpha_{g}-x \times \gamma_{m}\right) \times \Delta T$
Given: Volume of air remains constant at all temperatures
Hence, coefficient of $\Delta T$
i.e. $\left(1000 \times 3 \alpha_{g}-x \times \gamma_{m}\right)=0$
$\Rightarrow x=\frac{3 \times 1000 \times \alpha_{\mathrm{g}}}{\gamma_{\mathrm{m}}}=\frac{9 \times 1000 \mathrm{~cm}^{3} \times 10^{-6} /{ }^{\circ} \mathrm{C}}{1.8 \times 10^{-4} /{ }^{\circ} \mathrm{C}}$
$=50 \mathrm{~cm}^{3}$

Example 6: A piece of metal weights 46 gm in air. When it is immersed in a liquid of specific gravity 1.24 at $37^{\circ} \mathrm{C}$, it weighs 30 gm . When the temperature of the liquid is raised to $42^{\circ} \mathrm{C}$, the metal piece weights 30.5 gm . The specific gravity of the liquid at $42^{\circ} \mathrm{C}$, is 1.20 . Calculate the coefficient of linear expansion of the metal.

Sol: Applying Archimedes' principle, i.e. lose in wt=wt of liquid displaced. We can get volume of metal at two temp. so we can have coefficient of volume expansion. Weight of the piece of metal in air $=46 \mathrm{gm}$. weight of the piece of metal in liquid at $27^{\circ} \mathrm{C}=30 \mathrm{gm}$
$\therefore$ Loss of the weight of the piece of metal in liquid $=$ $46-30=16 \mathrm{gm}=$ Weight of liquid displaced
Volume of liquid Displaced
$=\frac{\text { Weight of liquid displaced }}{\text { Density }}=\frac{16}{124}$ c.c
The volume of metal piece at $27^{\circ} \mathrm{C}$, is $\therefore \mathrm{V}_{27}=\frac{16}{124}$ C.C
Weight of the piece of metal in air $=46 \mathrm{gm}$
Weight of the piece of metal in liquid at $=42^{\circ} \mathrm{C}$ $=30.5 \mathrm{gm}$

Loss of the weight of the piece of metal in liquid $=46-30.5=15.5 \mathrm{gm}$

The Volume of the liquid Displaced

$$
=\frac{\text { Weight of liquid displaced }}{\text { Density }}=\frac{15.5}{1.20} \text { c.C }
$$

The volume of piece of metal at $42^{\circ} \mathrm{C}$

$$
\begin{aligned}
& =\mathrm{V}_{42}=\frac{15.5}{1.20} c . c ; \mathrm{V}_{42}=\mathrm{V}_{27}(1+\gamma \mathrm{T}) \\
& \therefore \frac{15.5}{1.20}=\frac{16}{124}(1+\gamma \times 15)(\because \mathrm{T}=42-27=15) \\
& 1+\gamma 15=\frac{15.5}{1.20} \times \frac{16}{124}
\end{aligned}
$$

Or $\gamma=\frac{1}{15}=\left[\frac{15.5}{1.20} \times \frac{1.24}{16}-1\right]=\frac{1}{15} \times \frac{1}{960}$
$\therefore \alpha=\frac{1}{3 \times 15 \times 960}=2.31 \times 10^{-5} /{ }^{0} \mathrm{C}$

Example 7: A composite rod is made by joining a copper rod end to end with a second rod of different material but of the same cross-section. At $25^{\circ} \mathrm{C}$, the composite rod is 1 m in length of which of the copper rod is 30 cm . At $125^{\circ} \mathrm{C}$, the length of the composite rod increases by 1.91 mm . When the composite rod is not allowed to expand by holding it between two rigid walls, it is found that the lengths of the two constituents do not change with the rise of temperature. Find the Young's modulus and the coefficient of the linear expansion of the second rod. Given Young's modulus copper $=1.3 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, coefficient of the linear expansion of copper $=.1 .7 \times 10^{-5} /{ }^{0} \mathrm{C}$

Sol: First part, $\alpha_{2}$ can be calculated and then same compressive force applied by the wall, this will give the Young's modulus of the material.

Length of copper rod at $25^{\circ} \mathrm{C}, \mathrm{I}_{1}=30 \mathrm{~m}$
Length of second rod at $25^{\circ} \mathrm{C}, \mathrm{I}_{2}=70 \mathrm{~cm}$
If $\alpha_{1}$ and $\alpha_{2}$ are respective linear expansion coefficients, the total expansion of the composite rod when the temperature rises by
$\Delta t$ is $\left(l_{1} \alpha_{1}+I_{2} \alpha_{2}\right) \Delta t$.
$\therefore\left(30 \times 1.7 \times 10^{-5}+70 \alpha_{2}\right) \times 100=0.191$
$\alpha_{2}=2 \times 10^{-5} /{ }^{0} \mathrm{C}$
If the two rods do not change in length of heating, The compressions of the two rods due to thermal stress must be $l_{1} \alpha_{1} \Delta t$ and $I_{2} \alpha_{2} \Delta t$ respectively. If $A$ area of cross-section of each rod, then

Tension developed in copper rod, $F_{1}=Y_{1} A \alpha_{1} \Delta t$
Tension developed in second rod, $F_{2}=Y_{2} A \alpha_{2} \Delta t$
$F_{1}$ And $F_{2}$ should be equal and opposite
Since the composite rod is in equilibrium,

$$
\begin{aligned}
& \therefore Y_{1} \alpha_{1}=Y_{2} \alpha_{2} ; Y_{2}=Y_{1} \alpha_{1} / \alpha_{2} \\
& =\frac{13 \times 10^{11} \times 1.7 \times 10^{-5}}{2 \times 10^{-5}}=1.1 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

## JEE Main/Boards

## Exercise 1

Q. 1 What are the S.I and c.g.s. unit of heat? How are they related?
Q. 2 What is the specific heat of water in SI units? Does it vary with temperature?
Q. 3 What is the specific heat of gas in an isothermal process?
Q. 4 What is principle behind calorimeter?
Q. 5 Briefly explain the concept of heat and concept of temperature?
Q. 6 Explain what is meant by specific heats of a substance. What are its units? How is molar specific heat different from specific heat?
Q. 7 Define the two principle specific heat of gas. Which is greater and why?
Q. 8 What do you understand by change of state? What change occurs with temperature, when heat is given to a solid body?
Q. 9 A faulty thermometer has its fixed point marked at 5 and 95. The temperature of a body as measured by faulty thermometer is 59 . Find the correct temperature of the body on Celsius scale.
Q. 10 A blacksmith fixed iron ring on the rim of the wooden wheel of a bullock cart. The diameter of the rim and the ring is 5.243 m and 5.231 m respectively at $27^{\circ} \mathrm{C}$. To what temperature should the ring be heated so as to fit rim of the wheel? Coefficient of linear expansion of iron $=1.20 \times 10^{-5} \mathrm{~K}^{-1}$.
Q. 11 A sheet of brass is 50 cm long and 10 cm broad at $0^{\circ} \mathrm{C}$. The area of the surface increases by $1.9 \mathrm{~cm}^{2}$ at $100^{\circ} \mathrm{C}$. Find the coefficient of linear expansion of brass?
Q. 12 A sphere of aluminum of 0.047 kg is placed for sufficient time in a vessel containing boiling water,
so that the sphere is at $100^{\circ} \mathrm{C}$. It is then immediately transferred to 0.14 kg copper calorimeter containing 0.25 kg of water of $20^{\circ} \mathrm{C}$. The temperature of water rises and attains a steady state at $23^{\circ} \mathrm{C}$. Calculate the specific heat capacity of aluminum. Specific heat capacity of copper $=0.386 \times 10^{3} \mathrm{Jgg}^{-1} \mathrm{~K}^{-1}$. Specific heat capacity of water $=4.18 \times 10^{3} \mathrm{~K}^{-1}$

Q13 How many grams of ice at $-14^{\circ} \mathrm{C}$ are needed to cool 200 grams of water from $25^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$. Take sp. Heat of ice $=0.5 \mathrm{cal} / \mathrm{g}^{0} \mathrm{C}$ and latent heat of ice $=80 \mathrm{cal} / \mathrm{g}$
Q. 14 A tank of volume $0.2 \mathrm{~m}^{3}$ contains Helium gas at a temp. of 300 K and pressure $10^{5} \mathrm{~N} / \mathrm{m}^{2}$. Find the amount of heat required to raise the temp. to 500K. The molar heat capacity of helium at constant volume is $3.0 \mathrm{ca} /$ mole-K. Neglect any expansion in the volume of the tank. Take $\mathrm{r}=8.31 \mathrm{~J} / \mathrm{mole}-\mathrm{K}$.
Q. 155 moles of oxygen is heated at constant volume from $10^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$. Calculate the amount of heat required, if $C_{p}=8 \mathrm{cal} / \mathrm{mole}^{\circ} \mathrm{C}$ and $\mathrm{R}=8.36$ joule/ mole ${ }^{\circ} \mathrm{C}$.

## Exercise 2

## Single Correct Choice Type

Q. 1 Overall change in volume and radii of a uniform cylindrical steel wire are $0.2 \%$ and $0.002 \%$ respectively when subjected to some suitable force. Longitudinal tensile stress acting on the wire is $\left(\mathrm{Y}=2.0 \times 10^{11} \mathrm{Nm}^{-2}\right)$
(A) $3.2 \times 10^{9} \mathrm{Nm}^{-2}$
(B) $3.2 \times 10^{7} \mathrm{Nm}^{-2}$
(C) $3.6 \times 10^{7} \mathrm{Nm}^{-2}$
(D) $4.08 \times 10^{8} \mathrm{Nm}^{-2}$
Q. 2 A solid sphere of radius $R$ made of material of bulk modulus $K$ is surrounded by a liquid in a cylindrical container. A massless piston of area A floats on the surface of the liquid. When a mass $m$ is placed on the piston to compress the liquid, the fractional change in the radius of the sphere $\delta R / R$ is
(A) Kmg /A
(B) $\mathrm{Kmg} / 3 \mathrm{~A}$
(C) $\mathrm{mg} / \mathrm{A}$
(D) $\mathrm{mg} / 3 \mathrm{AR}$
Q. 3 A cylindrical wire of radius 1 mm , length 1 m , Young's modulus $=2 \times 10^{11} \mathrm{Nm}^{2}$, Poisson's ratio $\mu=\pi / 10$ is stretched by a force of 100 N . Its radius will become
(A) 0.99998 mm
(B) 0.99999 mm
(C) 0.99997 mm
(D) 0.99995 mm
Q. 4 A block of mass 2.5 kg is heated to a temperature of $500^{\circ} \mathrm{C}$ and placed a large ice block. What is the maximum amount of ice that can melt (approx.)? Specific heat for the body $=0.1 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}$.
(A) 1 kg
(B) 1.5 kg
(C) 2 kg
(D) 2.5 kg
Q. 51 kg of ice at- $10^{\circ} \mathrm{C}$ is mixed with 4.4 kg of water at $30^{\circ} \mathrm{C}$. The final temperature of mixture is: (specific heat of ice is $2100 \mathrm{~J} / \mathrm{kg} / \mathrm{k}$ )
(A) $2.3^{\circ} \mathrm{C}$
(B) $4.4^{\circ} \mathrm{C}$
(C) $5.3^{\circ} \mathrm{C}$
(D) $8.7^{\circ} \mathrm{C}$
Q. 6 Steam at $100^{\circ} \mathrm{C}$ is added slowly to 1400 gm of water at $16^{\circ} \mathrm{C}$, until the temperature of water is raised to $80^{\circ} \mathrm{C}$. The mass of steam required to do this is ( $\mathrm{L}_{\mathrm{V}}=540 \mathrm{cal} / \mathrm{gm}$ ):
(A) 165 gm
(B) 125 gm
(C) 250 gm
(D) 320 gm
Q. 7 Ice at $0^{\circ} \mathrm{C}$ is added to 200 g of water initially at $70^{\circ} \mathrm{C}$ in a vacuum flask. When 50 g of ice has been added and has all melted the temperature of the flask and contents is $40^{\circ} \mathrm{C}$. When a further 80 g of ice has been added and has all melted, the temperature of the whole is $10^{\circ} \mathrm{C}$. Calculate the specific latent heat of fusion of ice. $\left[\right.$ Takes $\left._{\mathrm{w}}=1 \mathrm{cal} / \mathrm{gm}{ }^{\circ} \mathrm{C}\right]$
(A) $3.8 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
(B) $1.2 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
(C) $2.4 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
(D) $3.0 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
Q. 8 A continuous flow water heater (geyser) has an electrical power rating=2 KW and efficiency of conversion of electrical power into heat $=80 \%$. If water is flowing through the device at the rate of $100 \mathrm{cc} /$ sec, and the inlet temperature is $10^{\circ} \mathrm{C}$, the outlet temperature will be.
(A) $12.2^{\circ} \mathrm{C}$
(B) $13.8^{\circ} \mathrm{C}$
(C) $20^{\circ} \mathrm{C}$
(D) $16^{\circ} \mathrm{C}$
Q. 9 A rod of length 2 m rests on smooth horizontal floor. If the rod is heated from $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$, find the longitudinal strain developed. $\left(\alpha=5 \times 10^{-5} /{ }^{0} \mathrm{C}\right)$
(A) $10^{-3}$
(B) $2 \times 10^{-3}$
(C) Zero
(D) None
Q. 10 A steel tape gives correct measurement at $20^{\circ} \mathrm{C}$. A piece of wood is being measured with the steel tape gives correct measurement at $20^{\circ} \mathrm{C}$. A piece of wood is being measured with the steel tape at $0^{\circ} \mathrm{C}$. The reading is 25 cm on the tape, The real length of the given piece of wood must be:
(A) 25 cm
(B) $<25 \mathrm{~cm}$
(C) $>25 \mathrm{~cm}$
(D) Cannot say
Q. 11 A metallic rod 1 cm long with a square crosssection is heated through $t^{\circ} C$. If Young's modulus of elasticity of the metal is E and the mean coefficient of linear expansion is $\alpha$ per degree Celsius, then the compressional force required to prevent the rod from expanding along its length is: (Neglect the change of cross-sectional area)
(A) EA $\alpha t$
(B) $E A \alpha t(1+\alpha t)$
(C) EA $\alpha \mathrm{t}(1-\alpha \mathrm{t})$
(D) $E / \alpha t$

Q 12. A solid ball is completely immersed in a liquid. The coefficient of volume expansion of the ball and liquid are $3 \times 10^{-6}$ and $8 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}$ respectively. The percentage change in upthrust when the temperature is increased by $100^{\circ} \mathrm{C}$ is.
(A) $0.5 \%$
(B) $0.11 \%$
(C) $1.1 \%$
(D) $0.05 \%$

## Previous Years' Questions

Q.1. 70 cal of heat are required to raise the temperature of 2 mole of an ideal diatomic gas at constant pressure from $35^{\circ} \mathrm{C}$. The amount of heat required (in calorie) to raise the temperature of the same gas through the same range $\left(30^{\circ} \mathrm{C}\right.$ to $\left.35^{\circ} \mathrm{C}\right)$ at constant volume is.
(1985)
(A) 30
(B) 50
(C) 70
(D) 90
Q. 2 Steam at $100^{\circ} \mathrm{C}$ is passed into 1.1 kg of water contained in a calorimeter of water equivalent 0.02 kg at $15^{\circ} \mathrm{C}$. Till the temperature calorimeter and its constants rises to $80^{\circ} \mathrm{C}$. The mass of steam condensed in kg is
(1986)
(A) 0.130
(B) 0.065
(C) 0.260
(D) 0.135
Q. 3 Two cylinders $A$ and $B$ fitted with piston contain equal amount of an ideal diatomic gas at 300 K . The piston of $A$ is free to move, while that of $B$ is held fixed. The same amount of heat is given to the gas in each
cylinder. If the rise in temperature of the gas in $A$ is 30 $K$, then the rise in temperature of the gas in $B$ is (1988)
(a) 30 K
(b) 18 K
(c) 50 K
(d) 42 K
Q. 4 A block of ice at $-10^{\circ} \mathrm{C}$ is slowly heated and converted to steam at $100^{\circ} \mathrm{C}$. Which of the following curves represent the phenomena qualitatively? (2000)
(A)

(B)

(C)

(D)

Q. 5 Two rods, one made of the aluminum and the other made of steel, having initial length $I_{1}$ and $I_{2}$ are connected together to form a single rod of length $I_{1}+I_{2}$. The coefficients of linear expansion for aluminum and steel are $\alpha_{a}$ and $\alpha_{s}$ respectively. If the length of each rod increases by the same amount when their temperature are raised by $t^{\circ} \mathrm{C}$, then find the ratio $\frac{I_{1}}{I_{1}+I_{2}}$
(2003)
(A) $\frac{\alpha_{s}}{\alpha_{a}}$
(B) $\frac{\alpha_{a}}{\alpha_{s}}$
(C) $\frac{\alpha_{s}}{\left(\alpha_{a}+\alpha_{s}\right)}$
(D) $\frac{\alpha_{a}}{\left(\alpha_{a}+\alpha_{s}\right)}$
Q. 62 kg ice at- $20^{\circ} \mathrm{C}$ is mixed 5 kg of water at $20^{\circ} \mathrm{C}$ in an insulating vessel having a negligible heat capacity. Calculate the final mass of water remaining in the container. It is given that the specific heats of water and ice are $1 \mathrm{kcal} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$ and $0.5 \mathrm{Kcal} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$ while the latent heat of fusion of ice is $80 \mathrm{kcal} / \mathrm{kg}$
(2003)
(A) 7 kg
(B) 6 kg
(C) 4 kg
(D) 2 kg
Q. 7 Two identical conducting rods are first connected independently to two vessels, one containing water at $100^{\circ} \mathrm{C}$ and the other containing ice at $0^{\circ} \mathrm{C}$.

In the second case, the rods are joined end to end and connected to the same vessels. Let $\mathrm{q}_{1}$ and $\mathrm{q}_{2}$ gram per second be the rate of melting of ice in the two cases respectively. The ratio. $\frac{q_{1}}{q_{2}}$ is
(2004)
(A) $\frac{1}{2}$
(B) $\frac{2}{1}$
(C) $\frac{4}{1}$
(D) $\frac{1}{4}$
Q. 8 Calorie is defined as the amount of heat required to raise temperature of 1 g of water by $1^{\circ} \mathrm{C}$ and it is defined under which of the following conditions?
(2005)
(A) From $14.5^{\circ} \mathrm{C}$ to $15.5^{\circ} \mathrm{C}$ at 760 mm of Hg
(B) From $98.5^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{C} 99.5^{\circ} \mathrm{C}$ at 760 mm of Hg
(C) From $13.5^{\circ} \mathrm{C}$ to $14.5^{\circ} \mathrm{C}$ at 76 mm of Hg
(D) From $3.5^{\circ} \mathrm{C}$ to $4.5^{\circ} \mathrm{C}$ at 76 mm of Hg
Q. 9 This question contains Statement-I and Statement-II. Of the four choices given after the statements, choose the one that best describes the two statements.
(2009)

Statement-I: The temperature dependence of resistance is usually given as $R=R_{0}(1+\alpha \Delta t)$. The resistance of a wire changes from $100 \Omega$ to $150 \Omega$ when its temperature is increased from $27^{\circ} \mathrm{C}$ to $227^{\circ} \mathrm{C}$. This implies that $\alpha=2.5 \times 10^{-3} /{ }^{\circ} \mathrm{C}$.

Statement-II: $R=R_{i}(1+\alpha \Delta T)$ is valid only when the change in the temperature $\Delta T$ is small and $\Delta R=\left(R-R_{0}\right)$ $\ll R_{o}$.
(A) Statement-I is true, statement-II is false
(B) Statement-I is true, statement-II is true; statement-II is the correct explanation of statement-I.
(C) Statement-I is true, statement-II is true; statement-II is not the correct explanation of statement-I.
(D) Statement-I is false, statement-II is true
Q. 10 Two conductors have the same resistance at $0^{\circ} \mathrm{C}$ but their temperature coefficients of resistance are $\alpha_{1}$ and $\alpha_{2}$. The respective temperature coefficients of their series and parallel combinations are nearly
(2010)
(A) $\frac{\alpha_{1}+\alpha_{2}}{2}, \alpha_{1}+\alpha_{2}$
(B) $\alpha_{1}+\alpha_{2}, \frac{\alpha_{1}+\alpha_{2}}{2}$
(C) $\alpha_{1}+\alpha_{2}, \frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}}$
(D) $\frac{\alpha_{1}+\alpha_{2}}{2}, \frac{\alpha_{1}+\alpha_{2}}{2}$
Q. 11 A wooden wheel of radius $R$ is made of two semicircular parts (see figure); The two parts are held together by a ring made of a metal strip of cross sectional area $S$ and length L . L is slightly less than $2 p R$. To fit the ring on the wheel, it is heated so that its temperature rises by DT and it just steps over the wheel. As it cools down to surrounding temperature, it presses the semicircular parts together. If the coefficient of linear expansion of the metal is a, and its Youngs' modulus is $Y$, the force that one part of the wheel applies on the other part is:
(2012)

(A) $2 \pi S Y \alpha \Delta T$
(B) $S Y \alpha \Delta T$
(C) $\pi S Y \alpha \Delta T$
(D) $2 S Y \alpha \Delta T$
Q. 12 Three rods of copper, brass and steel are welded together to form a Y-shaped structure. Area of crosssection of each rod $=4 \mathrm{~cm}^{2}$. End of copper rod is maintained at $100^{\circ} \mathrm{C}$ whereas ends of brass and steel are kept at $0^{\circ} \mathrm{C}$. Lengths of the copper, brass and steel rods are 46,13 and 12 cm respectively. The rods are thermally insulated from surroundings except at ends. Thermal conductivities of copper, brass and steel are
0.92, 0.26 and 0.12 CGS units respectively. Rate of heat flow through copper rod is
(2014)
(A) $1.2 \mathrm{cal} / \mathrm{s}$
(B) $2.4 \mathrm{cal} / \mathrm{s}$
(C) $4.8 \mathrm{cal} / \mathrm{s}$
(D) $6.0 \mathrm{cal} / \mathrm{s}$
Q. 13 A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times. Assume that the potential energy lost each time he lowers the mass is dissipated. How much fat will he use up considering the work done only when the weight is lifted up ? Fat supplies $3.8 \times 10^{7} \mathrm{~J}$ of energy per kg which is converted to mechanical energy with a $20 \%$ efficiency rate. Take $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$
(2016)
(A) $6.45 \times 10^{-3} \mathrm{~kg}$
(B) $9.89 \times 10^{-3} \mathrm{~kg}$
(C) $12.89 \times 10^{-3} \mathrm{~kg}$
(D) $2.45 \times 10^{-3} \mathrm{~kg}$
Q. 14 A pendulum clock lose 12 s a day if the temperature is $40^{\circ} \mathrm{C}$ and gains 4 s a day if the temperature is $20^{\circ} \mathrm{C}$. The temperature at which the clock will show correct time, and the co-efficient of linear expansion ( $\alpha$ ) of the metal of the pendulum shaft are respectively:
(2016)
(A) $60^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
(B) $30^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-3} /{ }^{\circ} \mathrm{C}$
(C) $55^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-2} /{ }^{\circ} \mathrm{C}$
(D) $25^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-5} /{ }^{\circ} \mathrm{C}$

## JEE Advanced/Boards

## Exercise 1

Q. 1 A light rigid bar is suspended horizontally from two vertical wires, one of steel and one of steel brass, as shown in figure. Each wire is 2.00 m long. The diameter of the steel wire is 0.60 mm and the length of the bar $A B$ is 0.20 m . When a mass of 10 kg is suspended from the center of $A B$, bar remains horizontal.

(i) What is the tension in each wire?
(ii) Calculate the extension of the steel wire and the energy stored in it.
(iii) Calculate the diameter of the brass wire.
(iv) If the brass wire is replaced by another brass wire of diameter 1 mm , where should the mass be suspended so that $A B$ would remain horizontal? The Young's modulus for steel $=2.0 \times 10^{11} \mathrm{~Pa}$, the Young's modulus for brass $=1.0 \times 10^{11} \mathrm{~Pa}$.
Q. 2 A steel rope has length $L$, area of cross-section A, Young's modulus Y. [Density=d]
(a) It is pulled on a horizontal frictionless floor with a
constant horizontal force $\mathrm{F}=[\mathrm{dALg}] / 2$ applied at one end. Find the strain at the midpoint.
(b) If the steel rope is vertical and moving with the force acting vertically upward at the upper, end. Find the strain at a point L/3 from lower end.
Q. 3 An aluminum container of mass 100 gm contains 200 gm of ice at- $20^{\circ} \mathrm{C}$. Heat is added to system at the rate of $100 \mathrm{cal} / \mathrm{s}$. Find the temperature of the system after 4 minutes (specific heat of ice $=0.5$ and $\mathrm{L}=80 \mathrm{cal} / \mathrm{gm}$, specific heat $\mathrm{Al}=2.0 . \mathrm{cal} / \mathrm{gm} /{ }^{\circ} \mathrm{C}$ )
Q. 4 A volume of 120 ml of drink (half alcohol + half water by mass) originally at a temperature of $25^{\circ} \mathrm{C}$ is cooled by adding 20 gm ice at $0^{\circ} \mathrm{C}$. If all the ice melts, find the final temperature of drink. (Density of drink $=0.833 \mathrm{gm} /$ cc , specific heat of alcohol $=0.6 \mathrm{cal} / \mathrm{gm} /{ }^{\circ} \mathrm{C}$ )
Q. 5 A hot liquid contained in a container of negligible heat capacity loses temperature at the rate of $3 \mathrm{~K} / \mathrm{min}$, just before it begins to solidify. The temp remains constant for 30 min .
Find the ratio of specific heat capacity of liquid to specific latent heat of fusion. (Given that of losing heat is constant).
Q. 6 Three aluminum rods of equal length form an equilateral triangle $A B C$. Taking $O$ (midpoint of rid $B C$ ) as the origin, find the increase in $Y$-coordinate of the center of mass per unit change in temperature of the system. Assume the length of each rod is 2 m , and $\alpha_{a l}=4 \sqrt{3} \times 10^{-6} /{ }^{0} \mathrm{C}$.

Q. 7 A thermostat chamber at a small height $h$ above earth's surface maintained at $30^{\circ} \mathrm{C}$ has a clock fitted in it with an uncompensated pendulum. The clock designer correctly designs it for height $h$, but for temperature of $20^{\circ} \mathrm{C}$. If this chamber is taken to earth's surface, the clock in it would click correct time. Find the coefficient of linear expansion of material of pendulum. (Earth's radius is R )
Q. 8 A metal rod A of length 25 cm expands by 0.050 cm . When its temperature is raised from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$,
another rod B of a different metal of length 40 cm expands by 0.040 cm for the same rise in temperature. A third rod $C$ of 50 cm length is made up of pieces of rods $A$ and $B$ placed end to end expands by 0.03 cm on heating from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Find the length of each portion of the composite rod.
Q. 9 A wire of cross-section area $4 \times 10^{-4} \mathrm{~m}^{2}$ has modulus of elasticity $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and length 1 m is stretched between two vertical rigid poles. A mass of 1 kg is suspended at its middle. Calculate the angle it makes with horizontal.
Q. 10 A copper calorimeter of mass 100 gm contains 200 gm of a mixture of ice and water. Steam at $100^{\circ} \mathrm{C}$ under normal pressure is passed into the calorimeter and the temperature of the mixture is allowed to rise to $50^{\circ} \mathrm{C}$. If the mass of the calorimeter and its contents is now 330 gm , what was the ratio of ice and water in the beginning? Neglect heat losses.

Given: specific heat capacity of copper
$=0.42 \times 10^{3} \mathrm{Jkg}^{-1 \mathrm{~K}-1}$.
Specific heat capacity of water
$=4.2 \times 10^{3} \mathrm{Jkg}^{-1} \mathrm{~K}-1$.
Specific heat of fusion of ice $=3.36 \times 10^{5} \mathrm{Jkg}^{-1}$.
Latent heat of condensation of steam
$=22.5 \times 10^{5} \mathrm{Jkg}^{-1}$.
Q. 11 Two 50 cm ice cubes are dropped into 250 gm of water into a glass. If the water is initially at a temperature of $25^{\circ} \mathrm{C}$ and the temperature of ice is $15^{\circ} \mathrm{C}$. Find the final temperature of water. (Specific heat of ice $=0.5 \mathrm{cal} /$ $\mathrm{gm} /{ }^{\circ} \mathrm{C}$ and $\mathrm{L}=80 \mathrm{cal} / \mathrm{gm}$ ). Find the final amount of water and ice.
Q. 12 A flow calorimeter is used is measure the specific heat of liquid. Heat is added at a known rate to a steam of the liquid as it passes through the calorimeter at a known rate. Then a measurement of the resulting temperature difference between the inflow and the outflow point of the liquid steam enables us to compute the specific heat of the liquid. A liquid of density $0.2 \mathrm{~g} /$ $\mathrm{cm}^{3}$ flows through a calorimeter at the rate of $\mathrm{cm}^{3} / \mathrm{s}$. Heat is added by means of a $250-\mathrm{W}$ electric heating oil, and a temperature difference of $25^{\circ} \mathrm{C}$ is established in steady-state condition between the inflow and the outflow points. Find the specific heat of the liquid.
Q. 13 Two identical calorimeters $A$ and $B$ contain equal quantity of water at $20^{\circ} \mathrm{C}$. A 5 gm piece of metal X of specific heat $0.2 \mathrm{cal} \mathrm{g}^{-1}\left(C^{0}\right)^{-1}$ is dropped into $A$ and 5 gm piece of metal $Y$ into $B$. The equilibrium temperature in A is $22^{\circ} \mathrm{C}$ and in $\mathrm{B} 23^{\circ} \mathrm{C}$. The initial temperature of both the metal is $40^{\circ} \mathrm{C}$. Find the specific heat of metal Y in cal $\mathrm{g}^{-1}\left(\mathrm{C}^{0}\right)^{-1}$.
Q. 14 The temperature of 100 gm of water is to be raised from $24^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$ by adding steam to it. Calculate the mass of the steam required for this purpose.
Q. 15 A substance is in a solid form at $0^{\circ} \mathrm{C}$. The amount of heat added to substance and its temperature are plotted in the following graph. If the relative specific heat capacity of the solid substance is 0.5 , find from the graph.

(i) The mass of substance;
(ii) The specific latent heat of the melting process, and
(iii) The specific heat of the substance in the liquid state.
Q. 16 A solid receives heat by radiation over its surface at the rate of 4 kW . The heat convection rate from the surface of solid to the surrounding is 5.2 kW , and heat is generated at a rate of 1.7 KW over the volume of the solid. The rate of change of the temperature of the solid is $0.5^{\circ} \mathrm{Cs}^{-1}$. Find the heat capacity of the solid.
Q. 17 Water is heated from $10^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$ in a residential hot water heater at a rate of 70 liter per minute. Natural gas with a density of $1.2 \mathrm{~kg} / \mathrm{m}^{3}$ is used in the heater, which has a transfer efficiency of $32 \%$. Find the gas consumption rate in cubic meters per hour. (Heat combustion for natural gas is $8400 \mathrm{kcal} / \mathrm{kg}$ )
Q. 18 If two rods of length $L$ and $2 L$ having coefficients of linear expansion $\alpha$ and $2 \alpha$ respectively are connected so that length becomes 3 L , determine the average coefficient of linear expansion of the composite rod.
Q. 19 A clock pendulum made of invar has a period of 0.5 sec at $20^{\circ} \mathrm{C}$. If the clock is used in a climate where average temperature is $30^{\circ} \mathrm{C}$, approximately. How much faster or slower will the clock run in $10^{6} \mathrm{sec}$. ( $\alpha_{\text {invar }}=$ $1 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ )
Q. 20 A U-tube filled with a liquid of volumetric coefficient of $10^{-5} /{ }^{\circ} \mathrm{C}$ lies in a vertical plane. The height of liquid column in the left vertical limb is 100 cm . The liquid in the left vertical limb is maintained at a temperature $=0^{\circ} \mathrm{C}$ while the liquid in the right limb is maintained at a temperature $=100^{\circ} \mathrm{C}$. Find the difference in levels in the two limbs.
Q. 21 An iron bar (young's modulus $=10^{11} \mathrm{~N} / \mathrm{m}^{2}$, $\left.\alpha=10^{-6} /{ }^{0} \mathrm{C}\right) 1 \mathrm{~m}$ long and $10^{-3} \mathrm{~m}^{2}$ in area is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ without being allowed to bend or expand. Find the compressive force developed inside the bar.
Q. 22 An isosceles triangle is formed with a rod of length $I_{1}$ and coefficient of linear expansion $\alpha_{1}$ for the base and two thin rods each of length $I_{2}$ and coefficient of linear expansion $\alpha_{2}$ for the two pieces, if the difference between the apex and the midpoint of the base remain unchanged as the temperatures varied show that $\frac{l_{1}}{l_{2}}=2 \sqrt{\frac{\alpha_{2}}{\alpha_{1}}}$
Q. 23 A steel drill making 180 rpm is used to drill a hole in a block of steel. The mass of the steel block and the drill is 180 gm . If the entire mechanical work is used up in producing heat and the rate of rise in temperature of the block and the drill is $0.5^{\circ} \mathrm{C} / \mathrm{s}$. find
(i) the rate of working of the drill in watts, and
(ii) the torque required to drive the drill.

Specific heat of steel $=0.1$ and $\mathrm{J}=4.2 \mathrm{~J} / \mathrm{cal}$. Use: $\mathrm{P}=\tau \omega$
Q. 24 Ice at- $20^{\circ} \mathrm{C}$ is filled up to height $\mathrm{h}=10 \mathrm{~cm}$ in a uniform cylindrical vessel. Water at temperature $\theta^{\circ} \mathrm{C}$ is filled in another identical vessel up to the same height $\mathrm{h}=10 \mathrm{~cm}$. Now water from second vessel is poured into first vessel and it is found that level of upper surface falls through $\Delta \mathrm{h}=0.5 \mathrm{~cm}$ when thermal equilibrium is reached. Neglecting thermal capacity of vessels, change in density of water due to change in temperature and loss of heat due to radiation, calculate initial temperature $\theta$ of water.
Given, density of water, $\rho_{\mathrm{w}}=1 \mathrm{gmcm}{ }^{-3}$
Density of ice, $\rho_{i}=0.9 \mathrm{gmcm}^{3}$

Specific of water, .. $\mathrm{s}_{\mathrm{W}}=1 \mathrm{cal} / \mathrm{gm}^{0} \mathrm{C}$
Specific heat of ice, Specific $\mathrm{s}_{\mathrm{i}}=0.5 \mathrm{cal} / \mathrm{gm}{ }^{0} \mathrm{C}$
Latent heat of ice, $L=80 \mathrm{cal} / \mathrm{gm}$
Q. 25 The apparatus shown in the figure consists of four glass columns connected by horizontal sections. The height of central columns B \& C are 49 cm each. The two outer columns A \& D are open to the atmosphere. $\mathrm{A} \& \mathrm{C}$ are maintained at a temperature of $95^{\circ} \mathrm{C}$ while the column $\mathrm{B} \& \mathrm{D}$ are maintained at $5^{\circ} \mathrm{C}$. the height of the liquid in A \& D measured from the base line are 52.8 cm \& 51 cm respectively. Determine the coefficient of thermal expansion of the liquid.

Q. 26 Toluene liquid of volume $300 \mathrm{~cm}^{3}$ at $0^{\circ} \mathrm{C}$ is contained in a beaker and another quantity of toluene of volume $110 \mathrm{~cm}^{3}$ at $100^{\circ} \mathrm{C}$ is in another beaker. (The combined volume Is $410 \mathrm{~cm}^{3}$ ). Determine the total Volume of the mixture of the toluene liquid when they are mixed together. Given the coefficient of volume expansion $\gamma=0.001 / C$ and all forms of heat losses can be ignored. Also find the final temperature of the mixture.

## Exercise 2

## Single Correct Choice Type

Q. 1 A uniform rod is rotating in gravity free region with constant angular velocity. The variation of tensile stress with distance $X$ from axis of rotation is best represented by which of the following graphs.
(A)

(B)

(C)

(D)

Q. 2 The load versus strain graph for four wires of the same material is shown in the figure. The thickest wire is represented by the line.

(A) OB
(B) OA
(C) $O D$
(D) $O C$
Q. 310 gm of ice at $0^{\circ} \mathrm{C}$ is kept in a calorimeter of water equivalent 10 gm . How much heat should be supplied to the apparatus to evaporate the water thus formed? (Neglect loss of heat)
(A) 6200 cal
(B) 7200 cal
(C) 13600 cal
(D) 8200 cal
Q. 4 Heat is being supplied at a constant rate to a sphere of ice which is melting at the rate $0.1 \mathrm{gm} / \mathrm{sec}$. It melts completely in 100 sec . Assumed no loss of heat. The rate of rise of temperature thereafter will be
(A) $0.8^{\circ} \mathrm{C} / \mathrm{sec}$
(B) $5.40^{\circ} \mathrm{C} / \mathrm{sec}$
(C) $3.6^{\circ} \mathrm{C} / \mathrm{sec}$
(D) will change with time
Q. 5 Ice at $0^{\circ} \mathrm{C}$ is added to 200 g of water initially at $70^{\circ} \mathrm{C}$ in a vacuum flask. When 50 g of ice has been added and has all melted.

The temperature of the flask and contents is $40^{\circ} \mathrm{C}$. When a further 80 g of ice has been added and has all melted, the temperature of the whole is $10^{\circ} \mathrm{C}$. Calculate the specific latent heat of fusion of ice. $\left[\right.$ Take $\left.\mathrm{s}_{\mathrm{w}}=1 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}\right]$
(A) $3.8 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
(B) $1.2 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
(C) $2.4 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
(D) $3.0 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
Q. 6 A solid material is supplied with heat at a constant rate. The temperature of material is changing with heat input as shown in the figure. What does slope DE represent

(A) Latent heat of liquid
(B) Latent heat of vapour
(C) Heat capacity of vapour
(D) Inverse of heat capacity of vapour
Q. 7 A block of ice with mass m falls into a lake. After impact, a mass of ice $\mathrm{m} / 5$ melts. Both the block of ice and the lake have a temperature of $0^{\circ} \mathrm{C}$. If $L$ represents heat of fusion, the minimum distance the ice fell before striking the surface is
(A) $\frac{L}{5 g}$
(B) $\frac{5 L}{g}$
(C) $\frac{g L}{5 m}$
(D) $\frac{\mathrm{mL}}{5 g}$
Q. 8 The graph shown in the figure represents change in the temperature of 5 kg of a substance as it absorbs heat at a constant rate of $42 \mathrm{~kJ} \mathrm{~min}{ }^{-1}$. The latent heat of vaporization of the substance is:

(A) $630 \mathrm{KJkg}^{-1}$
(B) $126 \mathrm{KJkg}^{-1}$
(C) $84 \mathrm{KJkg}^{-1}$
(D) $12.6 \mathrm{KJkg}^{-1}$
Q. 9 The density of material $A$ is $1500 \mathrm{~kg} / \mathrm{m}^{3}$ and that of another material $B$ is $2000 \mathrm{~kg} / \mathrm{m}^{3}$. It is found that the heat capacity of 8 volumes of $A$ is equal to heat capacity of 12 volume of $B$. The ratio of specific heats of $A$ and B will be
(A) $1: 2$
(B) $3: 1$
(C) $3: 2$
(D) $2: 1$
Q. 10 Find the amount of heat supplied to decrease the volumeofanicewatermixtureby $1 \mathrm{~cm}^{3}$ withoutanychange in temperature. ( $\left.\rho_{\text {ice }}=0.9 \rho_{\text {water }}, \mathrm{L}_{\text {ice }}=80 \mathrm{cal} / \mathrm{gm}\right)$.
(A) 360 cal
(B) 500 cal
(C) 720 cal
(D) None of these
Q. 11 Some steam at $100^{\circ} \mathrm{C}$ is passed into 1.1 kg of water contained in a calorimeter of water equivalent 0.02 kg at $15^{\circ} \mathrm{C}$ so that the temperature of the calorimeter and its contents rises to $80^{\circ} \mathrm{C}$. What is the mass of steam condensing? (ln kg)
(A) 0.130
(B) 0.065
(C) 0.260
(D) 0.135
Q. 12 A thin copper wire of length $L$ increases in length by $1 \%$ when heated from temperature $T_{1}$ to $T_{2}$. What is the percentage change in area when a thin copper plate having dimensions $2 \mathrm{~L} \times \mathrm{L}$ is heated from $\mathrm{T}_{1}$ to $\mathrm{T}_{2}$ ?
(A) $1 \%$
(B) $2 \%$
(C) $3 \%$
(D) $4 \%$
Q. 13 The coefficients thermal expansion of steel and metal X are respectively $12 \times 10^{-6}$ and $12 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}$. At $40^{\circ} \mathrm{C}$, the side of a cube of metal $X$ was measured using steel vernier callipers. The reading was 100 mm . assuming that the calibration of the vernier was done at $0^{\circ} \mathrm{C}$, then the actual length of the side cube at $0^{\circ} \mathrm{C}$ will be

(A) $>100 \mathrm{~mm}$
(B) $<100 \mathrm{~mm}$
(C) $=100 \mathrm{~mm}$
(D) Data insufficient to conclude
Q. 14 A cuboid ABCDEFGH is anisotropic with
$\alpha_{x}=1 \times 10^{-5} /{ }^{\circ} \mathrm{C} \alpha_{y}=2 \times 10^{-5} /{ }^{\circ} \mathrm{C} \quad \alpha_{z}=3 \times 10^{-5} /{ }^{\circ} \mathrm{C}$.
Coefficient of superficial. Expansion of faces can be
(A) $\beta_{A B C D}=5 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
(B) $\beta_{\text {BCGH }}=4 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
(C) $\beta_{\text {CDEH }}=3 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
(D) $\beta_{\text {EFGH }}=2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
Q. 15 The coefficient of apparent expansion of a liquid in a copper vessel is $C$ and in a silver vessel is $S$. The coefficient of volume expansion of copper is $\gamma_{c}$. What is the coefficient of linear expansion of silver?
(A) $\frac{\left(C+\gamma_{C}+S\right)}{3}$
(B) $\frac{\left(C-\gamma_{C}+S\right)}{3}$
(C) $\frac{\left(C+\gamma_{C}-S\right)}{3}$
(D) $\frac{\left(C-\gamma_{C}-S\right)}{3}$
Q. 16 A sphere of diameter 7 cm and mass 266.5 gm floats in a bath of a liquid. As the temperature is raised, the sphere just begins to sink at a temperature $35^{\circ} \mathrm{C}$. If the density of a liquid at $0^{\circ} \mathrm{C}$ is $1.527 \mathrm{gm} / \mathrm{cc}$, then neglecting the expansion of the sphere, the coefficient of cubical expansion of the liquid is $f$ :
(A) $8.486 \times 10^{-4} \mathrm{per}^{\circ} \mathrm{C}$
(B) $8.486 \times 10^{-5} \mathrm{per}^{\circ} \mathrm{C}$
(C) $8.486 \times 10^{-6} \mathrm{per}^{\circ} \mathrm{C}$
(D) $8.486 \times 10^{-3} \mathrm{per}^{\circ} \mathrm{C}$
Q. 17 The volume of the bulb of a mercury thermometer at $0^{\circ} \mathrm{C}$ is $\mathrm{V}_{0}$ and cross section of the capillary is $\mathrm{A}_{0}$.

The coefficient of linear expansion of glass is $\alpha_{g}$ per ${ }^{\circ} \mathrm{C}$ and the cubical expansion of mercury $\gamma_{m}$ per ${ }^{\circ} \mathrm{C}$.
If the mercury just fills the bulb at $0^{\circ} \mathrm{C}$, what is the length of mercury column in capillary at $\mathrm{T}^{\circ} \mathrm{C}$ ?
(a) $\frac{V_{0} T\left(\gamma_{m}+3 \alpha_{g}\right)}{A_{0}\left(1+2 \alpha_{g} T\right)}$
(B) $\frac{V_{0} T\left(\gamma_{m}-3 \alpha_{g}\right)}{A_{0}\left(1+2 \alpha_{g} T\right)}$
(c) $\frac{V_{0} T\left(\gamma_{m}+3 \alpha_{g}\right)}{A_{0}\left(1+3 \alpha_{g} T\right)}$
(D) $\frac{V_{0} T\left(\gamma_{m}-2 \alpha_{g}\right)}{A_{0}\left(1+3 \alpha_{g} T\right)}$
Q. 18 A thin walled cylindrical metal vessel of linear coefficient of expansion $10^{-3}{ }^{\circ} \mathrm{C}^{-1}$ contains benzene of volume expansion coefficient $10^{-3}{ }^{\circ} \mathrm{C}^{-1}$. If the vessel and
its contents are now heated by $10^{\circ} \mathrm{C}$, the pressure due to the liquid at the bottom.
(A) Increases by $2 \%$
(B) decreases by $1 \%$
(C) decreases by $2 \%$
(D) remains unchanged
Q. 19 A rod of length 20 cm is made of metal. It expands by 0.075 cm when its temperature is raised from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Another rod of a different metal B having the same length expands by 0.045 cm for the same change in temperature, A third rod of the same length is composed of two parts one of metal A and the other of metal B. This rod expands by 0.06 cm for the same change in temperature. The portion made of metal $A$ has the length:
(A) 20 cm
(B) 10 cm
(C) 15 cm
(D) 18 cm
Q. 20 A glass flask contains some mercury at the room temperature. It is found that at different temperatures the volume of air inside the flask remains the same. If the volume of mercury in the flask is $300 \mathrm{~cm}^{3}$, then volume of the flask is (given the coefficient of volume expansion of mercury and coefficient of linear expansion of glass are $1.8 \times 10^{-4}\left({ }^{0} \mathrm{C}\right)^{-1}$ respectively)
(A) $4500 \mathrm{~cm}^{3}$
(B) $450 \mathrm{~cm}^{3}$
(C) $2000 \mathrm{~cm}^{3}$
(D) $6000 \mathrm{~cm}^{3}$
Q. 21 Two vertical glass tubes filled with a liquid are connected by a capillary tube as shown in the figure. The tube on the left is put in an ice bath at $0^{\circ} \mathrm{C}$ while the tube on the right is kept at $30^{\circ} \mathrm{C}$ in a water bath. The difference in the levels of the liquid in the tube is 4 cm while the height of the liquid column at $0^{\circ} \mathrm{C}$ is 120 cm . The coefficient of volume expansion of liquid is (ignore expansion of glass tube)

(A) $22 \times 10^{-3} /{ }^{\circ} \mathrm{C}$
(B) $1.1 \times 10^{-3} /{ }^{\circ} \mathrm{C}$
(C) $11 \times 10^{-3} /{ }^{\circ} \mathrm{C}$
(D) $2.2 \times 10^{-3} /{ }^{\circ} \mathrm{C}$

## Multiple Correct Choice Type

Q. 22 A composite rod consists of a steel rod of length 25 cm and area 2 A and a copper rod of length 50 cm and area A. The composite rod is subjected to an axial load F. If the Young's modulus of steel and copper are in the ratio2:1.
(A) The extension produced in copper rod will be more.
(B) The extension in copper and steel part will be in the ratio 2:1.
(C) The stress applied to the copper rod will be more.
(D) No extension will be produced in the steel rod.
Q. 23 The wires $A$ and $B$ shown in the figure are mode of the same material and have radii $r_{A}$ and $r_{B}$ respectively. The block between them has a mass $m$. When the force $F$ is $\mathrm{mg} / 3$, one of the wires breaks.
(A) A breaks if $r_{A}=r_{B}$
(B) A breaks if $r_{A}<2 r_{B}$
(C) Either A or B may break if $r_{A}=2 r_{B}$
(D) The length of $A$ and $B$ must be known to predict which wire will break


B

Q. 24 Four rods A, B, C, D of same length and material but of different radii $r, r \sqrt{2}, r \sqrt{3}$ and $2 r$ respectively are held between two rigid walls. The temperature of all rods is increased by same amount. If the rods do not bend, then
(A) The stress in the rods are in the ratio 1:2:3:4.
(B) The force on the rod exerted by the wall in the ratio 1: 2: 3: 4.
(C) The energy stored in the rods due to elasticity is in the ratio 1: 2: 3: 4.
(D) The strain produced in the rod are in the ratio 1:2: 3: 4.
Q. 25 A body of mass $M$ is attached to the lower end of a metal wire, whole upper end is fixed. The elongation of the wire is $I$.
(A) Loss in gravitation potential energy of M is Mgl
(B) The elastic potential energy stored in the wires is Mgl
(C) The elastic potential energy stored in the wires is $1 / 2 \mathrm{Mgl}$
(D) Heat produced is $1 / 2 \mathrm{Mgl}$.
Q. 26 An experiment is performed to measure the specific heat of copper. A lump of copper is heated in an oven, and then dropped into a beaker of water. To calculate the specific heat of copper, the experimenter must know or measure the value of all the quantities below EXCEPT the
(A) Heat capacity of water and beaker
(B) Original temperature of the copper and the water
(C) Final (equilibrium) temperature of the copper and the water
(D) Time taken to achieve equilibrium after the copper is dropped into the water
Q. 27 When the temperature of a copper coin is raised by $80^{\circ} \mathrm{C}$, its diameter increases by $0.2 \%$
(A) Percentage rise in the area of a face is $0.4 \%$
(B) Percentage rise in the thickness is $0.4 \%$
(C) Percentage rise in the volume is $0.6 \%$
(D) Coefficient of linear expansion of copper is $0.25 \times 10^{-4}{ }^{0} \mathrm{C}^{-1}$

## Comprehension Type

## (Questions 28-31)

Solids and liquids both expand on heating. The density of substance decreases on expanding according to the relation

$$
\rho_{2}=\frac{\rho_{1}}{1+\gamma\left(T_{2}-T_{1}\right)}
$$

Where, $\rho_{1} \rightarrow$ density at $\mathrm{T}_{1} ; \rho_{2} \rightarrow$ density at $\mathrm{T}_{2}$
$\gamma \rightarrow$ coeff. of volume expansion of substances
When a solid is submerged in a liquid, liquid exerts an upward force on solid which is equal to the weight of liquid displaced by submerged part of solid.

Solid will float or sink depending on relative densities of solid and liquid.

A cubical block of solid floats in a liquid with half of its volume submerged in the liquid as shown in figure (at temperature T )

$\alpha_{s} \rightarrow$ coeff. of linear expansion of solid
$\gamma_{\ell} \rightarrow$ coeff. of volume expansion of solid;
$\rho_{s} \rightarrow$ Density of solid at temp.T;
$\rho_{\ell} \rightarrow$ Density of liquid at temp.T
Q. 28 The relation between density of solid and liquid at temperature T is
(A) $\rho_{\mathrm{s}}=2 \rho_{\ell}$
(B) $\rho_{\mathrm{s}}=(1 / 2) \rho_{\ell}$
(C) $\rho_{\mathrm{s}}=\rho_{\ell}$
(D) $\rho_{\mathrm{s}}=(1 / 4) \rho_{\ell}$
Q. 29 If temperature of system increases, then fraction of solid submerged in liquid
(A) Increases
(B) decreases
(C) Remain the same
(D) Inadequate information
Q. 30 Imagine fraction submerged does not change on increasing temperature.

The relation between $\gamma_{I}$ and $\alpha_{s}$ is
(A) $\gamma_{\ell}=3 \alpha_{s}$
(B) $\gamma_{\ell}=2 \alpha_{s}$
(C) $\gamma_{\ell}=4 \alpha_{s}$
(D) $\gamma_{\ell}=(3 / 2) \alpha$
Q. 31 Imagine the depth of the block submerged in the liquid does not change on increasing temperature then
(A) $\gamma_{\ell}=2 \alpha$
(B) $\gamma_{\ell}=3 \alpha$
(C) $\gamma_{\ell}=(3 / 2) \alpha$
(D) $\gamma_{\ell}=(4 / 3) \alpha$

## Assertion Reasoning Type

Q. 32 Statement-I: The coefficient of volume expansion has dimension $\mathrm{K}^{-1}$.
Statement-II: The coefficient of volume expansion is defined as the change in volume per unit volume per unit change in temperature.
(A) Statement-I is true, statement-II is true and Statement-II is correct explanation of statement-I
(B) Statement-I is true, statement-II is true and statement-II is not correct explanation of statement-I
(C) Statement-I is true, statement-II is false
(D) Statement-I is false, statement-II is true
Q. 33 Statement-I: Water kept in an open vessel will quickly evaporate on the surface of the moon.

Statement-II: the temperature at the surface of the moon is much higher than saturation point of the water.
Q. 34 Statement-I: When a solid iron ball is heated, percentage increase in its volume is largest.

Statement-II: Coefficient of superficial expansion is twice that of linear expansion whereas coefficient of volume expansion is three time of linear expansion.
Q. 35 Statement-I: A beaker is completely filed with water at $4^{\circ} \mathrm{C}$. It will over flow, both when heated or cooled.
Statement-II: There is expansion of water below and above $4^{\circ} \mathrm{C}$.
Q. 36 Statement-I: latent heat of fusion of ice is $336000 \mathrm{Jkg}^{-1}$
Statement-II: latent heat refers to change of state without any change in temperature.
Q. 37 Statement-I: Specific heat of a body is always greater than its thermal capacity.

Statement-II: Thermal capacity is the heat required for raising temperature of unit mass of the body through unit degree.

## Previous Year's Questions

Q. 1 A bimetallic strip is formed out of two identical strips-one of copper and other of brass. The coefficient of linear expansion of the two metals are $\alpha_{C}$ and $\alpha_{B}$. On heating, the temperature of the strip goes up by $\Delta \mathrm{T}$ and the strip bends to form an arc of radius of curvature R. then, $R$ is
(1999)
(A) Proportional to $\Delta T$
(B) Inversely proportional to $\Delta T$
(C) Proportional to $\left|\alpha_{B}-\alpha_{C}\right|$
(D) Inversely proportional to $\left|\alpha_{B}-\alpha_{C}\right|$
Q. 2300 g of water at $25^{\circ} \mathrm{C}$ is added to 100 g of ice at $0^{\circ} \mathrm{C}$. The final temperature of the mixture is..${ }^{\circ} \mathrm{C}$
(1989)
Q. 3 A substance of mass $M$ kg required a power input of $P$ watts to remain in the molten states at its melting point. When the power source is turned off, the sample completely solidifies in time $t$ seconds. The latent heat of fusion of the substance is $\qquad$ (1992)
Q. 4 At given temperature, the specific heat of a gas at a constant pressure is always greater than its specific heat at constant volume. (True or False)
(1987)
Q. 5 The temperature of 100 g of water is to be raised from $24^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$ by adding steam to it. Calculate the mass of the steam required for this purpose,
(1996)
Q. 6 A cube of coefficient of linear expansion $\alpha_{s}$ is floating in a bath containing a liquid of coefficient of volume expansion $\gamma_{1}$. When the temperature is raised by $\Delta T$, the depth up to which the cube is submerged in the liquid remain the same. Find the relation between $\gamma_{1}$ and $\alpha_{s}$ showing all the steps.
(2004)
Q. 7 In an insulated vessel, 0.05 kg steam at 373 K and 0.45 kg of ice at 253 K are mixed. Find the final temperature of the mixture (in Kelvin).
(2006)

Given, $L_{\text {fusion }}=80 \mathrm{cal} / \mathrm{g}=336 \mathrm{~J} / \mathrm{g}$,
$\mathrm{L}_{\text {vaporization }}=540 \mathrm{cal} / \mathrm{g}=2268 \mathrm{~J} / \mathrm{g}$,
$S_{\text {ice }}=2100 \mathrm{~J} / \mathrm{kg}, \mathrm{K}=0.5 \mathrm{cal} / \mathrm{g}-\mathrm{K}$ and
$S_{\text {water }}=4200 \mathrm{~J} / \mathrm{kg}, \mathrm{K}=1 \mathrm{cal} / \mathrm{g}-\mathrm{K}$
Q. 8 A piece of ice (heat capacity $=2100 \mathrm{Jkg}^{-10} \mathrm{C}^{-1}$ and latent heat $=3.36 \times 10^{5} \mathrm{Jkg}^{-1}$ ) of mass m gram is at $-5^{\circ} \mathrm{C}$ at atmospheric pressure. It is given 420 J of heat so that the ice starts melting. Finally when the ice- water mixture is in equilibrium, it is found that 1 g of ice has melted. Assuming there is no other heat exchange in the process, the value of m is?
(2010)
Q. 9 A metal rod $A B$ of length $10 x$ has its one end $A$ in ice at $0^{\circ} \mathrm{C}$ and the other end B in water at $100^{\circ} \mathrm{C}$. If a point $P$ on the rod is maintained at $400^{\circ} \mathrm{C}$, then it is found that equal amounts of water and ice evaporate and melt per unit time. The latent heat of evaporation of water is $540 \mathrm{cal} / \mathrm{g}$ and latent heat of melting of ice is $80 \mathrm{cal} / \mathrm{g}$. If the point P is at a distance of $\lambda \mathrm{x}$ from the ice end $A$, find the value of $\lambda$. [Neglect any heat loss to the surrounding.]
(2009)
Q. 10 Steel wire of length ' $L^{\prime}$ ' at $40^{\circ} \mathrm{C}$ is suspended from the ceiling and then a mass ' $m$ ' is hung from its free end. The wire is cooled down from $40^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ to regain its original length 'L'. The coefficient of linear thermal expansion of the steel is $10^{-5}{ }^{\circ} \mathrm{C}$, Young's modulus of steel is $10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and radius of the wire is 1 mm . Assume that $\mathrm{L} \gg$ diameter of the wire. Then the value of ' $m$ ' in kg is nearly:
(2011)
Q. 11 Parallel rays of light of intensity I = $912 \mathrm{Wm}^{-2}$ are incident on a spherical black body kept in surroundings of temperature 300 K. Take Stefan-Boltzmann constant $\sigma=5.7 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$ and assume that the energy exchange with the surroundings is only through radiation. The final steady state temperature of the black body is close to
(2014)

(A) 330 K
(B) 660 K
(C) 990 K
(D) 1550 K
Q. 12 An incandescent bulb has a thin filament of tungsten that is heated to high temperature by passing an electric current. The hot filament emits blackbody radiation. The filament is observed to break up at random locations after a sufficiently long time of operation due to non-uniform evaporation of tungsten from the filament. If the bulb is powered at constant voltage, which of the following statement(s) is(are) true?
(2016)
(A) The temperature distribution over the filament is uniform
(B) The resistance over small sections of the filament decreases with time
(C) The filament emits more light at higher band of frequencies before it breaks up
(D) The filament consumes less electrical power towards the end of the life of the bulb
Q. 13 The ends $Q$ and $R$ of two thin wires, $P Q$ and $R S$, are soldered (joined) together. Initially each of the wires has a length of 1 m at $10^{\circ} \mathrm{C}$. Now the end $P$ is maintained at $10^{\circ} \mathrm{C}$, while the end S is heated and maintained at $400^{\circ} \mathrm{C}$. The system is thermally insulated from its surroundings. If the thermal conductivity of wire $P Q$ is twice that of the wire RS and the coefficient of linear thermal expansion of PQ is $1.2 \times 10^{-5} \mathrm{~K}^{-1}$, the change in length of the wire $P Q$ is
(2016)
(A) 0.78 mm (B) 0.90 mm (C) 1.56 mm (D) 2.34 mm

## MASTERJEE Essential Questions

## JEE Main/Boards

## Exercise 1

Q. $10 \quad$ Q. 14

Exercise 2
Q. $8 \quad$ Q. 10
Q. 1 Q
Q. 23
Q. 24

## Exercise 1

## Exercise 2

## JEE Advanced/Boards

| Q. 1 | Q. 6 | Q. 8 |
| :--- | :--- | :--- |
| Q. 13 | Q. 15 | Q. 25 |


| Q. 1 | Q. 2 | Q. 19 |
| :--- | :--- | :--- |
| Q. 23 | Q. 24 |  |

## Answer Key

## JEE Main/Boards

## EXERCISE 1

Q. 11 joule $=10^{-7}$ ergs
Q. $24180 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$, yes
$\mathbf{Q} .3 \mathrm{c}=\frac{\Delta \mathrm{Q}}{\mathrm{m} \Delta \mathrm{T}}$
Q. 4 Heat gained=Heat lost; i.e. mass of the body sp. heat $\times$ rise its temperature=mass of the other body $\times \mathrm{sp}$. Heat $\times$ fall in its temperature
Q. $960^{\circ} \mathrm{C}$
Q. $10217.73^{\circ} \mathrm{C}$
Q. $111.9 \times 10^{-5} \mathrm{~K}^{-1}$
Q. $12911 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
Q. 13 31g
Q. 14 4813.2cal.
Q. 15300 cal

## Exercise 2

## Single Correct Choice Type

Q. 1 D
Q. 2 B
Q. 3 D
Q. 7 A
Q. 8 B
Q. 9 C
Q. $4 B$
Q. 10 B
Q. 5 D
Q. 6 A

## Previous Year's Questions

Q. 1 B
Q. 2 D
Q. 3 D
Q. 4 A
Q. 5 C
Q. 6 B
Q. 7 C
Q. 8 A
Q. 9 A
Q. 10 D
Q. 11 D
Q. 12 C
Q. 13 C
Q. 14 D

## JEE Advanced/Boards

## Exercise 1

Q. 1 (i) 50 N , (ii) $1.77 \mathrm{~cm}, 0.045 \mathrm{~J}$ (iii) $8.48 \times 10^{-4} \mathrm{~m}$ (iv) $\mathrm{x}=0.12 \mathrm{~m}$
Q. 2 (a) (dgL)/4Y, (b) (dgL)/6Y
Q. $325.5^{\circ} \mathrm{C}$
Q. $44^{\circ} \mathrm{C}$
Q. 5 1/90
Q. $64 \times 10^{-6} \mathrm{~m} /{ }^{\circ} \mathrm{C} \mathbf{Q} .7 \mathrm{~h} / 5 \mathrm{R}$
Q. $810 \mathrm{~cm}, 40 \mathrm{~cm}$
Q. 9 1/200 rad
Q. 10 1: 1.26
Q. $110^{\circ} \mathrm{C}, 125 / 4 \mathrm{~g}$ ice, $1275 / 4 \mathrm{~g}$ water
Q. $125000 \mathrm{~J} /{ }^{\circ} \mathrm{C} \mathrm{Kg}$
Q. 13 27/85
Q. 14 12gm
Q. 15 (i) 0.02 kg (ii) 40,000 cal $^{2} \mathrm{~kg}^{-1} \mathrm{~K}^{1}$ (iii) $750 \mathrm{cal} / \mathrm{kg}^{\circ} \mathrm{C}$
Q. $161000 \mathrm{~J}\left(\mathrm{C}^{\circ}\right)^{-1}$
Q. $17104.16 \mathrm{M}^{3} \lambda^{-1}$
Q. $185 \alpha / 3$
Q. 19 5sec slow
Q. 20 0.1cm
Q. 21 10,000N
Q. 23
(a) $37.8 \mathrm{~J} / \mathrm{s}$ (watts, $)$, (b) $2.005 \mathrm{~N}-\mathrm{m}$
Q. $2445^{\circ} \mathrm{C}$
Q. $252 \times 10^{-4}{ }^{\circ} \mathrm{C}$
Q. 26 Decrease by $0.75 \mathrm{~cm}^{3}, 25^{\circ} \mathrm{C}$

## Exercise 2

## Single Correct Choice Type

Q. 1 A
Q. 2 C
Q. 3 D
Q. 4 A
Q. 5 A
Q. 6 D
Q. 7 A
Q. 8 C
Q. 9 D
Q. 10 C
Q. 11 A
Q. 12 B
Q. 13 A
Q. 14 C
Q. 15 C
Q. 16 A
Q. 17 B
Q. 18 C
Q. 19 B
Q. 20 D
Q. 21 C

## Multiple Correct Choice Type

Q. 22 A, C
Q. 23 A, B, C
Q. 24 B, C
Q. 25 A, C, D
Q. 26 D
Q. 27 A, C, D

## Comprehension Type

Q. 28 B
Q. 29 D
Q. 30 A
Q. 31 A

Assertion Reasoning Type
Q. 32 A
Q. 33 A
Q. 34 A
Q. 35 B
Q. 36 B
Q. 37 D

## Previous Year's Questions

| Q. 1 B, D | Q. 26.25 grams | Q. $3 \mathrm{~L}=\frac{\mathrm{Pt}}{\mathrm{M}}$ | Q. 4 true | Q. ${ }^{12 \mathrm{~g}}$ | Q. $6 \gamma_{1}=2 \alpha_{\text {s }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Q. 7273 K | Q. 88 | Q. 99 | Q. 103 | Q. 11 A | Q. 12 A, D |
| Q. 13 A |  |  |  |  |  |

## Solutions

## JEE Main/Boards

## Exercise 1

Sol 1: S.I unit of heat $=$ joules
C.g.s unit of heat $=$ erg.
and of 1 joule $=1$ newton $\times 1 \mathrm{~m}$
$=10^{5}$ Dyne $\times 10^{2} \mathrm{~cm}=10^{7}$ Dyne $\times \mathrm{cm}$
1 Joule $=10^{-7} \mathrm{Erg}$
Sol 2: Specific heat of water at approximately room temp is $4180 \mathrm{~J} \mathrm{Kg}^{-1} \mathrm{~K}^{-1}$.
Yes, the specific heat of water varies with the temp.

Sol 3: Now for isothermal process $\Delta T=0$, but if heat is not zero $\Rightarrow$ specific heat $\rightarrow \infty$
$C=\frac{\Delta \mathrm{Q}}{\mathrm{m} \Delta \mathrm{T}}$ as $\Delta \mathrm{T} \rightarrow 0$
$C \rightarrow \infty$.

Sol 4: When two bodies at different temp are mixed, the heat will pass from a body at higher temp to a lower temp body until the temp of the mixture becomes constant. The principle of calorimetry implies that heat lost by a body at a higher temperature is equal to heat gained by another body at a lower temperature assuming that there is no loss of heat to the surroundings.

Sol 5: Heat $\Rightarrow$ Heat is the energy that is transferred from one body to another because of temperature difference.

Temperature $\Rightarrow$ Temperature of a body is basically a measure of the energy that the particles of that body have. [Vibrational energy]

Sol 6: Specific heat is amount of energy required to increase the temperature of 1 kg of a substance by $1^{\circ} \mathrm{C}$ so its units: J. $\mathrm{kg}^{-1} \mathrm{~K}^{-1}$ Molar specific heat is energy required to increase the temperature of 1 mole of a substance by $1^{\circ} \mathrm{C}$.

Sol 7: The principal specific heat capacities of a gas:
(a) The specific heat capacity at constant value $\left(C_{v}\right)$ is defined as the quantity of heat required to raise the temperature of 1 kg of gas by 1 K , if the volume of gas remains constant.
(b) The specific heat capacity at constant pressure $\left(C_{p}\right)$ is defined as the quantity of heat required to raise the temperature of 1 kg of gas by 1 K , if the pressure of gas is constant. $C_{p}$ is always greater than $C_{v^{\prime}}$ since if the volume of the gas increases, work must be done by the gas to push back the surroundings.

Sol 8: Change of state occurs because of the weakening of the intermolecular forces between the molecules of the substance, once heat is given to the body. As temp increases, the molecular vibrations increases and the intermolecular forces weaken.

Sol 9: Correct thermometer $=0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$
So ratio $=\frac{95-5}{0+100-0}=0.9$
So 0.9 scale of faulty $=1$ scale of correct
$\Rightarrow 5+0.9 x=59$
$\Rightarrow x=\frac{54}{0.9}=60$
so $x=60^{\circ} \mathrm{C}$

Sol 10: We have $L=L_{0}(1+\alpha \Delta T)$
$\Rightarrow L / L_{0}=1+\alpha \Delta T$
$\Rightarrow \Delta \mathrm{T}=\frac{\left(1-\mathrm{L} / \mathrm{L}_{0}\right)}{\alpha}=\left(\frac{1-5.231 / 5.243}{1.2 \times 10^{-5}}\right)$
$\Rightarrow \Delta \mathrm{T}=190.73 \mathrm{~K} \Rightarrow \mathrm{~T}-27=190.73$
$\Rightarrow \mathrm{T}=217.73^{\circ} \mathrm{C}$

Sol 11: $A_{0}=500 \mathrm{~cm}^{2} . \Delta A=1.9 \mathrm{~cm}^{2}$
Now, $\Delta \mathrm{A}=2 \alpha . \mathrm{A}_{0}(\Delta \mathrm{~T})$
$\Rightarrow 1.9 \mathrm{~cm}^{2}=2 \times \alpha\left(500 \mathrm{~cm}^{2}\right)(100 \mathrm{~K})$
$\Rightarrow \alpha=1.9 \times 10^{-5} \mathrm{~K}^{-1}$

## Sol 12:



Now, amount of heat lost by the aluminium ball = amount of heat gained by
(Container + water)
$\Rightarrow M_{A} \cdot S_{A} \cdot \Delta T_{A}$
$=M_{c} \cdot S_{c} \cdot \Delta T_{c}+M_{w} \cdot S_{w} \cdot \Delta T_{w}$.
$\Rightarrow \mathrm{S}_{\mathrm{A}}=\frac{\mathrm{M}_{\mathrm{C}} \cdot \mathrm{S}_{\mathrm{C}} \cdot \Delta \mathrm{T}_{\mathrm{C}}+\mathrm{M}_{\mathrm{W}} \cdot \mathrm{S}_{\mathrm{W}} \cdot \Delta \mathrm{T}_{\mathrm{W}}}{\mathrm{M}_{\mathrm{A}} \cdot \Delta \mathrm{T}_{\mathrm{A}}}$
$=\frac{0.14 \times 0.386 \times 10^{3} \times(23-20)+0.25 \times 4.13 \times 10^{3} \times(23-20)}{0.047 \times(100-23)}$
$=0.911 \times 10^{3}=911 \mathrm{~J} \mathrm{Kg}^{-1} \mathrm{~K}^{-1}$

Sol 13: Let the mass of ice be $m$ (in grams) then head gained by ice
$=\mathrm{m} \cdot \mathrm{S}_{\mathrm{i}} \cdot \Delta \mathrm{T}+\mathrm{m} \cdot \mathrm{L}+\mathrm{m} \cdot \mathrm{S}_{\mathrm{w}} \cdot \Delta \mathrm{T}$
$=m .(0.5) \times(14)+m .(80)+m .1 \times 10$
$=17 \mathrm{~m}+80 \mathrm{~m}=97 \mathrm{~m}$
And heat lost by water $=\mathrm{m} . \mathrm{S}_{\mathrm{w}} \cdot \Delta \mathrm{T}$
$=200 \times 1 \times(25-10)=200 \times 15$
So assuming no heat loss to surroundings
$200 \times 15=97 \mathrm{~m}$
$\Rightarrow \mathrm{m}=\frac{200 \times 15}{97}=30.93 \mathrm{gm} \approx 31 \mathrm{gm}$.

Sol 14: We have PV = nRT
$\Rightarrow \mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{10^{5} \times 0.2}{8.31 \times 300}$
$=\frac{2 \times 100}{8.31 \times 3}=8.022$ moles
Now volume $=$ Const.
So heat supplied $=\mathrm{n} . \mathrm{Cv} . \Delta \mathrm{T}$
$8.022 \mathrm{~mol} \times 3.0 \frac{\mathrm{cal}}{\text { mole.K }} \times(500-300) \mathrm{K}$
$=4813.2 \mathrm{cal}$

Sol 15: We have $C_{p}=C_{V}+R$
$\mathrm{R}=8.36$ joules $/$ mole ${ }^{\circ} \mathrm{C}=\frac{8.36}{4.18} \mathrm{cal} / \mathrm{mole}^{\circ} \mathrm{C}$
$\mathrm{R}=2 \mathrm{cal} / \mathrm{mole}{ }^{\circ} \mathrm{C}$
so $C_{p}=C_{v}+R \Rightarrow C_{v}=C_{p}-R$
$=(8-2) \mathrm{cal} / \mathrm{mole}^{\circ} \mathrm{C}=6 \mathrm{cal} / \mathrm{mole}^{\circ} \mathrm{C}$
So $Q=\mathrm{nC}_{\mathrm{v}} \Delta T$
$=5 \times 6 \times(20-10)=300 \mathrm{cal}$.

## Exercise 2

## Single Correct Choice Type

Sol 1: (D) $V=A \times \lambda$
$\Rightarrow \frac{\mathrm{dV}}{\mathrm{V}}=\frac{\mathrm{dA}}{\mathrm{A}}+\frac{\mathrm{d} \ell}{\ell}$
$\Rightarrow \frac{0.2}{100}=-2 \times \frac{\mathrm{dr}}{\mathrm{r}}+\frac{\mathrm{d} \ell}{\ell}$
$\Rightarrow \frac{\mathrm{d} \ell}{\ell}=\frac{0.2}{100}-\left(\frac{-2 \times 0.002}{100}\right)$
$\frac{\mathrm{d} \ell}{\ell}=\frac{0.2+0.004}{100} \Rightarrow \frac{0.204}{100}$
So stress $=Y \times$ strain
$=2 \times 10^{11} \times \frac{0.204}{100}=4.08 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$.
Sol 2: (B) $\frac{1}{K}=\frac{-1 . \partial V}{V \partial p}$ and $\Delta P=\frac{m g}{A}$ So
$\frac{\Delta P}{K}=\frac{d V}{V}=\frac{4 \pi R^{2} \cdot d R}{\frac{4 \pi}{3} R^{3}}=\frac{3 d R}{R}$
$=\frac{\mathrm{mg}}{3 \mathrm{AK}}=\frac{\mathrm{dR}}{\mathrm{R}}$
After correction

Sol 3: (D) Stress $=Y \times$ Strain
$\Rightarrow$ Strain $=$ Stress $/ Y$
$=\frac{100}{\pi r^{2}} \times \frac{1}{2 \times 10^{11}}=\frac{1}{2 \times 10^{9} \times 3.14 \times 10^{-6}}$
$=\frac{1}{6.28 \times 10^{3}}=\frac{10}{6.28} \times 10^{-4}=1.6 \times 10^{-4}$
Now, $\mu \cdot \frac{\mathrm{d} \ell}{\ell}=\frac{-\mathrm{dr}}{\mathrm{r}} \Rightarrow \mathrm{dr}=-1 \mathrm{~mm} \times \mu \times \frac{\mathrm{d} \ell}{\ell}$
$=\frac{-1.6 \times 10^{-4} \times 3.14}{10}, r-r_{0}=-5.024 \times 10^{-5}$

Sol 4: (B) $2.5 \times 10^{3} \mathrm{gm} .\left(0.1 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}\right) \cdot(500-0)$
$=\mathrm{m} \times \mathrm{L}$
$\Rightarrow \frac{2.5 \times 100 \times 0.1 \times 500}{80}=\mathrm{m}$.
$=1.5625 \times 10^{3} \mathrm{~g}$

Sol 5: (D) $1 \mathrm{cal}=4.2 \mathrm{~J}$
$\Rightarrow$ Specific heat of ice $=\frac{21000}{42} \mathrm{cal} / \mathrm{Kg} . \mathrm{K}$
$=500 \mathrm{cal} / \mathrm{kg} . \mathrm{K}=0.5 \mathrm{cal} / \mathrm{gm} . \mathrm{K}$
So suppose the mixture is at temperature $T$, then

$$
\begin{aligned}
& m_{i} \cdot S_{i} \cdot(\Delta T)+m_{i} L=+m_{i} \cdot S_{w}(T-0) \\
& =m_{w} \cdot S_{w}(30-T) \\
& \Rightarrow 1000 \times 0.5 \times 10+80 \times 1000+1000 \times 1 \times \mathrm{T} \\
& =4400 \times 1 \times(30-T) \\
& \Rightarrow 5000+80000+1000 \mathrm{~T} \\
& =4400 \times 30-4400 \mathrm{~T} \\
& \Rightarrow 5400 \mathrm{~T}=47000 \\
& \Rightarrow T=8.7^{\circ} \mathrm{C}
\end{aligned}
$$

Sol 6: (A) $\mathrm{ms} \Delta \mathrm{T}=\mathrm{m}_{\mathrm{s}} \cdot \mathrm{L}_{\mathrm{v}}$
$\Rightarrow 1400 \times 1 \times 64=m \times 540$

Sol 7: (A) Let the heat capacity of the flask be $M$
Then $L=$ latent heat of fusion
Then $50 \mathrm{~L}+50(40-0)=200 \times(70-40)+(70-40) \times \mathrm{M}$
$\Rightarrow 50 L+2000=6000+30 \mathrm{M}$
$\Rightarrow 5 \mathrm{~L}=3 \mathrm{M}+400$
And $80 \mathrm{~L}+80(10-0)=250 \times(40-10)+M(30)$
$\Rightarrow 80 \mathrm{~L}+800=7500+30 \mathrm{M}$
$\Rightarrow 8 \mathrm{~L}=3 \mathrm{M}+670$
$\Rightarrow 8 \mathrm{~L}=5 \mathrm{~L}-400+670$
$\Rightarrow \mathrm{L}=90 \mathrm{cal} / \mathrm{gm}$
$\Rightarrow 90 \times 4.2 \times 10^{3} \mathrm{~J} / \mathrm{kg}=3.8 \times 10^{5} \mathrm{~J} / \mathrm{Kg}$
Sol 8: (B) $\frac{d V}{d t}=100 \mathrm{~cm}^{3} / \mathrm{sec}$
$\Rightarrow \frac{\mathrm{dm}}{\mathrm{dt}}=\rho \cdot \frac{\mathrm{dV}}{\mathrm{dt}}=100 \mathrm{gm} / \mathrm{sec}$.
Now, power used in heating $=2000 \times 0.8=1600 \mathrm{~W}$.
Now, power $=\frac{\mathrm{d}(\mathrm{ms} \Delta \mathrm{T})}{\mathrm{dt}}=\mathrm{s} . \Delta \mathrm{T} \cdot \frac{\mathrm{dm}}{\mathrm{dt}}$
Now assuming $\Delta T$ is same
So $1600=\frac{100}{1000} \frac{\mathrm{~kg}}{\mathrm{sec}} \times 4200 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \times \Delta \mathrm{T}$
$\Rightarrow \frac{1600 \times 10}{4200}=\Delta \mathrm{T}=3.8^{\circ} \mathrm{C}$.
$\Rightarrow \mathrm{T}-10^{\circ}=3.8^{\circ} \Rightarrow \mathrm{T}=13.8^{\circ} \mathrm{C}$ (B)

Sol 10: (B) Refer theory

Sol 11: (B) Actual length $=L_{0}(L+\alpha \Delta T)=L_{0}(1+\alpha t)$
Change in length $=L_{0}(1+\alpha t)-L_{0}=L_{0} \alpha t$
So strain $=\frac{L_{0} \alpha t}{L_{0}(1+\alpha t)}=\frac{\alpha t}{(1+\alpha t)}$
$\Rightarrow$ Stress $=\mathrm{E} \times$ strain $=\frac{\mathrm{E} \alpha \mathrm{t}}{(1+\alpha \mathrm{t})}$
$\Rightarrow$ Force $=A \times$ stress $=\frac{E A \alpha t}{1+\alpha t}$
Sol 12: (D) $\rho_{\ell}(t) \cdot V_{s}(t) \cdot g=\frac{\rho_{\ell}}{\left(1+8 \times 10^{-6} \times 10^{2}\right)}$
$\times v_{s}\left(1+3 \times 10^{-6} \times 10^{2}\right) \times g$
$=\rho_{\ell} \cdot v_{s} \cdot g \cdot\left(1+3 \times 10^{-4}\right)\left(1-8 \times 10^{-4}\right)$
so difference $=\rho_{\ell} \cdot v_{s} \cdot g\left(-5 \times 10^{-4}\right)$

## Previous Years' Questions

Sol 1: (B) $\mathrm{Q}_{1}=\mathrm{nC}_{\mathrm{p}} \Delta T, \mathrm{Q}_{2}=\mathrm{nC}_{\mathrm{v}} \Delta T$, $\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1}}=\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{C}_{\mathrm{p}}}=\frac{1}{\gamma}$ or $\mathrm{Q}_{2}=\frac{\mathrm{Q}_{1}}{\gamma}=\frac{70}{1.4}=50 \mathrm{cal}$

Sol 2: (D) Heat required
$Q=(1.1+0.02) \times 10^{3} \times 1 \times(80-15)$
$=72800$ cal.
Therefore, mass of steam condensed (in kg)
$\mathrm{m}=\frac{\mathrm{Q}}{\mathrm{L}}=\frac{72800}{540} \times 10^{-3}=0.135 \mathrm{~kg}$

Sol 3: (D) A is free to move, therefore, heat will be supplied at constant pressure
$\therefore \quad \mathrm{dQ}_{\mathrm{A}}=\mathrm{nC}_{\mathrm{p}} \mathrm{dT}_{\mathrm{A}}$
$B$ is held fixed, therefore, heat will be supplied at constant volume.
$\therefore \quad \mathrm{dQ}_{\mathrm{B}}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}_{\mathrm{B}}$
But $\mathrm{dQ}_{\mathrm{A}}=\mathrm{dQ}_{\mathrm{B}} \quad$ (given)
$\therefore \quad n C_{p} d T_{A}={ }^{n} C_{v} d T_{B} \therefore d_{B}=\left(\frac{C_{p}}{C_{v}}\right) d T_{A}$
$=\gamma\left(\mathrm{dT}_{\mathrm{A}}\right)[\gamma=1.4$ (diatomic) $]$
$\left(\mathrm{dT}_{\mathrm{A}}=30 \mathrm{~K}\right)=(1.4)(30 \mathrm{~K}) ; \therefore \quad \mathrm{dT}_{\mathrm{B}}=42 \mathrm{~K}$

Sol 4: (A) The temperature of ice will first increase from $-10^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$. Heat supplied in this process will be


Heat supplied
$\mathrm{Q}_{1}=\mathrm{ms}_{\mathrm{i}}(10)$
where, $m=$ mass of ice
$s_{i}=$ specific heat of ice
Then, ice starts melting. Temperature during melting will remain constant $\left(0^{\circ} \mathrm{C}\right)$.

Heat supplied in this process will be
$\mathrm{Q}_{2}=\mathrm{mL}, \mathrm{L}=$ latent heat of melting.
Now the temperature of water will increase from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Heat supplied will be
$\mathrm{Q}_{3}=\mathrm{ms}_{\mathrm{w}}$ (100)
where, $s_{w}=$ Specific heat of water.
Finally, water at $100^{\circ} \mathrm{C}$ will be converted into steam at $100^{\circ} \mathrm{C}$ and during this process temperature again remains constant. Temperature versus heat supplied graph will be as shown in figure.

Sol 5: (C) Given $\Delta \ell_{1}=\Delta \ell_{2}$ or $\ell_{1} \alpha_{\mathrm{a}} \mathrm{t}=\ell_{2} \alpha_{5} \mathrm{t}$
$\therefore \quad \frac{\ell_{1}}{\ell_{2}}=\frac{\alpha_{s}}{\alpha_{a}}$ or $\frac{\ell_{1}}{\ell_{2}+\ell_{2}}=\frac{\alpha_{s}}{\alpha_{a}+\alpha_{s}}$
Sol 6: (B) Heat released by 5 kg of water when its temperature falls from $20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ is,
$\mathrm{Q}_{1}=\mathrm{mC} \Delta \theta=(5)\left(10^{3}\right)(20-0)=10^{5} \mathrm{cal}$
when 2 kg ice at $-20^{\circ} \mathrm{C}$ comes to a temperature of $0^{\circ} \mathrm{C}$, it takes an energy
$\mathrm{Q}_{2}=\mathrm{mC} \Delta \theta=(2)(500)(20)=0.2 \times 10^{5} \mathrm{cal}$
The remaining heat
$\mathrm{Q}=\mathrm{Q}_{1}-\mathrm{Q}_{2}=0.8 \times 10^{5}$ cal will melt a mass m of the ice,
Where, $\mathrm{m}=\frac{\mathrm{Q}}{\mathrm{L}}=\frac{0.8 \times 10^{5}}{80 \times 10^{3}}=1 \mathrm{~kg}$
So, the temperature of the mixture will be $0^{\circ} \mathrm{C}$, mass of water in it is $5+1=6 \mathrm{~kg}$ and mass of ice is $2-1=1 \mathrm{~kg}$.

Sol 7: (C) $\frac{d Q}{d t}=L\left(\frac{d m}{d t}\right)$
or $\frac{\text { Temperaute difference }}{\text { Thermal resistance }}=\mathrm{L}\left(\frac{\mathrm{dm}}{\mathrm{dt}}\right)$

In the first case rods are in parallel and thermal resistance is $\frac{R}{2}$ while in second case rods are in series and thermal resistance is $2 R$.
$\frac{q_{1}}{q_{2}}=\frac{2 R}{R / 2}=\frac{4}{1}$

Sol 8: (A) 1 Calorie is the heat required to raise the temperature of 1 g of water from $14.5^{\circ} \mathrm{C}$ to $15.5^{\circ} \mathrm{C}$ at 760 mm of Hg .

Sol 9: (A) A current loop $A B C D$ is held fixed on the plane of the paper as shown in the figure. The arcs $B C$ (radius $=\mathrm{b}$ ) and DA (radius $=\mathrm{a}$ ) of the loop are joined by two straight wires $A B$ and CD. A steady current I is flowing in the loop. Angle made by $A B$ and $C D$ at the origin O is $30^{\circ}$. Another straight thin wire with steady current $\mathrm{I}_{1}$ flowing out of the plane of the paper is kept at the origin.

Sol 10: (D) Let $R_{0}$ be the initial resistance of both conductors
$\therefore$ At temperature q their resistance will be,
$R_{1}=R_{0}\left(1+\alpha_{1} \theta\right)$ and $R_{2}=R_{0}\left(1+\alpha_{2} \theta\right)$
for, series combination, $R_{s}=R_{1}+R_{2}$
$R_{s 0}\left(1+\alpha_{s} \theta\right)=R_{0}\left(1+\alpha_{1} \theta\right)+R_{0}\left(1+\alpha_{2} \theta\right)$
where $R_{s 0}=R_{0}+R_{0}=2 R_{0}$
$\therefore 2 R_{0}\left(1+\alpha_{s} \theta\right)=2 R_{0}+R_{0} \theta\left(\alpha_{1}+\alpha_{2}\right)$
or $\alpha_{s}=\frac{\alpha_{1}+\alpha_{2}}{2}$
For parallel combination, $R_{p}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
$R_{p 0}\left(1+\alpha_{p} \theta\right)=\frac{R_{0}\left(1+\alpha_{1} \theta\right) R_{0}\left(1+\alpha_{2} \theta\right)}{R_{0}\left(1+\alpha_{1} \theta\right)+R_{0}\left(1+\alpha_{2} \theta\right)}$
Where, $R_{p 0}=\frac{R_{0} R_{0}}{R_{0}+R_{0}}=\frac{R_{0}}{2}$
$\therefore \frac{\mathrm{R}_{0}}{2}\left(1+\alpha_{p} \theta\right)=\frac{\mathrm{R}_{0}^{2}\left(1+\alpha_{1} \theta+\alpha_{2} \theta+\alpha_{1} \alpha_{2} \theta\right)}{\mathrm{R}_{0}\left(2+\alpha_{1} \theta+\alpha_{2} \theta\right)}$
As $\alpha_{1}$ and $\alpha_{2}$ are small quantities
$\therefore \alpha_{1} \alpha_{2}$ is negligible

$$
\begin{array}{ll}
\text { or } & \alpha_{p}=\frac{\alpha_{1}+\alpha_{2}}{2+\left(\alpha_{1}+\alpha_{2}\right) \theta}=\frac{\alpha_{1}+\alpha_{2}}{2}\left[1-\left(\alpha_{1}+\alpha_{2}\right) \theta\right] \\
\text { as } & \left(\alpha_{1}+\alpha_{2}\right)^{2} \text { is negligible } \\
\therefore & \alpha_{p}=\frac{\alpha_{1}+\alpha_{2}}{2}
\end{array}
$$

Sol 11: (D) If temperature increases by $\Delta T$,
Increase in length $L, \Delta L=L \alpha \Delta T$
$\therefore \frac{\Delta \mathrm{L}}{\mathrm{L}}=\alpha \Delta \mathrm{T}$
Let tension developed in the ring is $T$.
$\therefore \frac{\mathrm{T}}{\mathrm{S}}=\mathrm{Y} \frac{\Delta \mathrm{L}}{\mathrm{L}}=\mathrm{Y} \alpha \Delta \mathrm{T}$
$\therefore \mathrm{T}=\mathrm{SY} \alpha \Delta \mathrm{T}$

From FBD of one part of the wheel,
$F=2 T$
Where, F is the force that one part of the wheel applies on the other part.
$\therefore \mathrm{F}=2 \mathrm{SY} \alpha \Delta \mathrm{T}$

Sol 12: (C) $\mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2}$

$\frac{0.92 \times 4(100-T)}{46}=\frac{0.26 \times 4 \times(T-0)}{13}+\frac{0.12 \times 4 \times T}{12}$
$\Rightarrow 200-2 \mathrm{~T}=2 \mathrm{~T}+\mathrm{T}$
$\Rightarrow \mathrm{T}=40^{\circ} \mathrm{C}$
$\Rightarrow Q=\frac{0.92 \times 4 \times 60}{46}=4.8 \mathrm{cal} / \mathrm{s}$

Sol 13: (C) Let $m$ mass of fat is used.
$\mathrm{m}\left(3.8 \times 10^{7}\right) \frac{1}{5}=10(9.8)(1)(1000)$
$\mathrm{m}=\frac{9.8 \times 5}{3.8 \times 10^{3}}=12.89 \times 10^{-3} \mathrm{~kg}$
Sol 14: (D)
$\frac{12}{24 \times 3600}=\frac{1}{2} \alpha(40-T)$
$\frac{-4}{24 \times 3600}=\frac{1}{2} \alpha(20-\mathrm{T})$
From equation (i) and (ii)
$-3=\frac{40-T}{20-T}$
$-60+3 T=40-T$
$4 \mathrm{~T}=100$
$T=25$
From equation (ii)
$\frac{-4}{24 \times 3600}=\frac{1}{2} \alpha(20-25)$
$\frac{4}{24 \times 3600}=\frac{1}{2} \times \alpha \times 5$
$\alpha=\frac{8}{24 \times 3600 \times 5}=1.85 \times 10^{-5} /{ }^{\circ} \mathrm{C}$

## JEE Advanced/Boards

## Exercise 1

Sol 1:

(i) $2 \mathrm{~T}=\mathrm{mg}=10 \times 10=100$ (from force and moment balance
$\Rightarrow \mathrm{T}=50 \mathrm{~N}$ (Tension in each wire)
$\mathrm{T}_{1}=\mathrm{T}_{2}$ (moment)
$2 \mathrm{~T}=\mathrm{mg}$ (Force eq.)
(ii) $\frac{\Delta \ell}{\ell}=$ strain $=\frac{\text { stress }}{\mathrm{Y}}=\frac{50 / \pi\left(0.3 \times 10^{-3}\right)^{2}}{2 \times 10^{11}}$
$=\frac{50}{\pi \times(0.3)^{2} \times 2 \times 10^{5}}$
$=\frac{50}{\pi \times 2 \times(0.3)^{2}} \times 10^{-5}$
$=8.85 \times 10^{-4}$
$\Rightarrow \Delta \ell=8.85 \times 10^{-4} \times 2$
$=1.77 \mathrm{~cm}$.
Now energy $=\frac{1}{2} \times$ stress $\times$ strain $\times \mathrm{Al}$
$=\frac{1}{2} \times Y \times(\text { strain })^{2} \times A \ell$
$=\frac{1}{2} \times 2 \times 10^{10} \times\left(8.85 \times 10^{-4}\right)^{2} \times \pi \cdot\left(0.3 \times 10^{-3}\right)^{2}$
$=(8.85)^{2} \times 10^{3} \times \pi \times(0.3)^{2} \times 10^{-6} \times 2$
$=(8.85)^{2} \times \pi \times(0.3)^{2} \times 2 \times 10^{-3}$
$=0.045 \mathrm{~J}$
(iii) $\Delta \ell$ for both has to be same.
$\Rightarrow$ Strains has to be same ( $\ell$ is same for both)
Thus, $\frac{\mathrm{F} / \mathrm{A}_{1}}{\mathrm{y}_{1}}=\frac{\mathrm{F} / \mathrm{A}_{2}}{\mathrm{y}_{2}}$
$\Rightarrow A_{2} Y_{2}=A_{1} Y_{1} \Rightarrow 2 \times 10^{11} \times \pi\left(0.3 \times 10^{-3}\right)^{2}$
$=1 \times 10^{11} \times \pi \times r_{1}{ }^{2}$
$\Rightarrow r_{1}=\sqrt{2} \times 0.3 \times 10.3 \mathrm{~m}$.
$\Rightarrow r_{1}=0.424 \times 10^{-3} \mathrm{~m}$
$\Rightarrow d=0.848 \times 10^{-3} \mathrm{~m}$
$=0.848 \times 10^{-4} \mathrm{~m}$
(iv) For strains to be some (given condition is possible only when the mass is suspended at some distance from centre)

$$
\begin{aligned}
& \frac{F_{s} / A_{s}}{y_{s}}=\frac{F_{B} / A_{B}}{y_{B}} \\
& \Rightarrow \frac{F_{s}}{A_{s} \cdot y_{s}}=\frac{F_{B}}{A_{B} \cdot y_{B}} \\
& \Rightarrow \frac{F_{s} \times 4}{\pi d_{s}^{2} \times y_{s}}=\frac{F_{B} \times 4}{d_{B}^{2} \times y_{B} \times \pi} \\
& \frac{F_{s}}{F_{B}}=\frac{d s^{2} \times y_{s}}{d_{B}^{2} \times y_{B}} \\
& =\frac{(0.6)^{2} \times 2 \times 10^{11}}{(1)^{2} \times 1 \times 10^{11}} \\
& F_{S} \uparrow \quad F_{B} \\
& \frac{L_{A}}{L_{B}}
\end{aligned}
$$

$=2 \times 0.36=0.72$
$\Rightarrow \mathrm{F}_{\mathrm{S}}=0.72 \mathrm{~F}_{\mathrm{B}}$
Torque balance $\Rightarrow F_{S} \cdot L_{A}=F_{B} \cdot L_{B}$
$\Rightarrow 0.72 \mathrm{~F}_{\mathrm{B}} \cdot \mathrm{L}_{\mathrm{A}}=\mathrm{F}_{\mathrm{B}} \cdot \mathrm{L}_{\mathrm{B}}$
$\Rightarrow L_{A} \cdot(0.72)=L_{B}$
Now $L_{A}+L_{B}=0.2 \mathrm{~m}$
$\Rightarrow L_{A}(1.72)=0.2$
$L_{A}=0.116 \approx 0.12 \mathrm{M}$

Sol 2: (a)


Mass $=d(A L)$ so acceleration $=g / 2=\frac{\text { Force }}{\text { Mass }}$
Now take a small element of length dx .


Then we have $\left(\sigma_{x+d x}-\sigma_{x}\right) A=\rho A . d x(g / 2)$
$\Rightarrow \frac{\mathrm{d} \sigma}{\mathrm{dx}}\left(\delta_{\mathrm{x}}\right)=\frac{\rho \mathrm{g}}{2} \mathrm{dx}$
$\Rightarrow \int_{0}^{\sigma} d \sigma=\frac{\rho g}{2} \int_{0}^{x} x$
$\sigma=\frac{\rho g x}{2}$
Now $\varepsilon(x)=\frac{\sigma(x)}{y}=\frac{\rho g x}{2 y}$.
Thus $\varepsilon(L / 2)=\frac{\rho g L}{4 y}$
(b) $(\mathrm{dx}) \perp$

| $x$ |
| :---: |
| $(d x)$ |



Acceleration $=\frac{(\mathrm{dALg}-\mathrm{dALg} / 2)}{\mathrm{dAL}}$

$$
=\mathrm{g} / 2 \mathrm{~m} / \mathrm{s}^{2}
$$



Now using force balance

$$
\begin{aligned}
& \left(\sigma_{x+d x}-\sigma_{x}\right) A+\rho A g d x=\rho A d x(g / 2) \\
& \Rightarrow\left(\frac{\partial \sigma}{\partial x}\right) \cdot \delta x=\frac{-\rho g}{2} \cdot \delta x \\
& \Rightarrow \int_{\frac{d L g}{2}}^{\sigma} d \sigma=-\frac{\rho g}{2} \int_{0}^{x} d x \\
& \Rightarrow \sigma=\frac{d L g}{2}-\frac{-d g x}{2} \\
& \sigma(x)=\frac{d g}{2}[L-x] \\
& \text { So } \varepsilon(x)=\frac{\sigma(x)}{y}=\frac{d g}{2 y}[L-x] \\
& \text { At } x=2 L / 3 \\
& \varepsilon(x)=\frac{d g}{2 y} \cdot[L-2 L / 3]=\frac{d g L}{6 y}
\end{aligned}
$$

Sol 3: Total heat supplied to the system $=100 \mathrm{cal} / \mathrm{s} \times$ 240 sec
$=24 \times 1000$
$=24000 \mathrm{cal}$
Heat to change temperature from $-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$
$=100 \times 0.2 \times(0-(-20)]+200 \times 0.5 \times(0+20)$
$=400+2000=2400 \mathrm{cal}$
$\Rightarrow 24000$ - 2400
$=21600$ cal are left
Heat used to change the state of all ice

$$
\begin{aligned}
& =80 \times 200 \\
& =16000 \text { cal } \\
& \Rightarrow \text { Heat left }=21600-16000 \\
& =5600 \text { cal }
\end{aligned}
$$

So this much each is used to heat the water produced and the container:
$5600=100 \times 0.2 \times(T-0)+200 \times 1 \times(T-0)$
$5600=20 \mathrm{~T}+200 \mathrm{~T}$
$\Rightarrow \mathrm{T}=\frac{5600}{220}=25.45^{\circ} \mathrm{C}$
Note: This approach is to be used as we don't know the final state of water.

Sol 4: Mass of drink $=0.833 \times 120=100 \mathrm{gm}$
So 50 gm alcohol +50 gm of water. Let the temperature be $T$, then

$$
\begin{aligned}
& m_{i} L_{f}+m_{i f} \cdot S_{w} \cdot(T-0)=m_{w} \cdot S_{w} \cdot(25-T)+m_{A} \cdot S_{A} \\
& \quad .(25-T) \\
& \Rightarrow 20 \times 80+20 \times 1 \times T=50 \times 1 \times(25-T)+50 \\
& \quad \times 0.6 \times(25-T) \\
& \Rightarrow 1600+20 \mathrm{~T}=80 \times(25-T) \\
& \Rightarrow 100 \mathrm{~T}=80 \times 25-1600
\end{aligned}
$$

Sol 5: Let the mass be $m$, the heat loss rate $=R$ in J/min.
Then $m . S_{\ell} \cdot \frac{d T}{d t}=R$
$\Rightarrow \mathrm{mS}_{2} .(3)=R$
And also
$\mathrm{m} . \mathrm{L}_{\mathrm{f}}=30 \mathrm{R}$.
$\Rightarrow \mathrm{m} . \mathrm{L}_{\mathrm{f}}=30 \times \mathrm{mS}_{\mathrm{L}}$. (3)
$\Rightarrow \frac{1}{90}=\frac{\mathrm{S}_{2}}{\mathrm{~L}_{\mathrm{f}}} \Rightarrow 1: 90$
Sol 6: $y_{c o m}=\frac{y_{B C} m_{B C}+y_{A B} \cdot m_{A B}+y_{A C} \cdot m_{A C}}{m_{B C}+m_{A B}+m_{A C}}$
$=\frac{m \cdot(0)+\frac{\sqrt{3 a}}{4} \cdot m+\frac{\sqrt{3 a}}{4} m}{3 m}$
$y_{\text {com }}=\frac{a}{2 \sqrt{3}}$
Now $\frac{d y_{\text {com }}}{d T}=\frac{1}{2 \sqrt{3}} \times \frac{d a}{d T}=\frac{1}{2 \sqrt{3}} \times a_{0} \cdot \alpha$
$A s=a_{0}\left(1+\alpha\left(T-T_{1}\right)=\frac{a_{0} \cdot 4 \sqrt{3} \times 10^{-6}}{2 \sqrt{3}}\right.$
$=4 \times 10^{-6} \mathrm{~m} /{ }^{\circ} \mathrm{C}$
$\frac{d a}{d T}=a_{0} \alpha$
Sol 8: $\mathrm{da}=\mathrm{a}_{0} \cdot \alpha \Delta \mathrm{~T} \Rightarrow 0.05=25 \cdot \alpha_{\mathrm{A}} \cdot 100$
$\Rightarrow \alpha_{\mathrm{A}}=0.2 \times 10^{-4}=2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
Similarly $0.04=40 . \alpha_{B} .100$
$\Rightarrow 10^{-5} /{ }^{\circ} \mathrm{C}=\alpha_{\mathrm{B}}$


Now, $0.03=x . \alpha_{A} \cdot(\Delta T)+(50-x) \alpha_{B} \cdot \Delta T$
$0.03=x \times 2 \times 10^{-5} \times 50+(50-x) 10^{-5} \times 50$
$0.03=100 x \times 10^{-5}-50 x \times 10^{-5}+2500 \times 10^{-5}$
$0.03=50 \mathrm{x} \times 10^{-5}+0.025$
$\Rightarrow 0.005=50 \mathrm{x} \times 10^{-5}$
$\Rightarrow x=10 \mathrm{~cm}$
So $L_{A}=10 \mathrm{~cm}, L_{B}=50-10=40 \mathrm{~cm}$

## Sol 9:



We have
$2 \mathrm{~T} \cos \left(90^{\circ}-\theta\right)=\mathrm{mg}$
$\Rightarrow 2 \mathrm{~T} \sin \theta=\mathrm{mg}$
$\Rightarrow 2 \mathrm{~T} \theta \approx \mathrm{mg}$ [ $\theta$ is small]
$\Rightarrow \mathrm{T}=\frac{\mathrm{mg}}{2 \theta}$

Now strain $=\frac{A B+B C-A C}{A C}=\frac{2 \cdot A B-2 A D}{2 A D}$
$=\frac{A B-A D}{A D}=\frac{\sqrt{A D^{2}+B D^{2}}-A D}{A D}$
$=\frac{\mathrm{AD}\left[1+\left(\frac{\mathrm{BD}}{\mathrm{AD}}\right)^{2} \frac{1}{2}\right]-\mathrm{AD}}{\mathrm{AD}}$
$=\frac{1}{2} \cdot\left(\frac{\mathrm{BD}}{\mathrm{AD}}\right)^{2}$, Now as $\mathrm{BD}=\mathrm{AD} \tan \theta$.
Strain $=\frac{1}{2} \cdot \tan ^{2} \theta \approx \frac{\theta^{2}}{2}$ [for small $\left.\theta\right]$
Now, Stress $=Y \times$ Strain
$\Rightarrow \frac{T}{A}=Y \times \frac{\theta^{2}}{2}$
$\Rightarrow \frac{m g}{2 A \theta}=\frac{Y \times \theta^{2}}{2}$
$\Rightarrow \frac{\mathrm{mg}}{\mathrm{AY}}=\theta^{3} \Rightarrow \theta=3 \sqrt{\frac{\mathrm{mg}}{\mathrm{AY}}}$
$=3 \sqrt{\frac{1 \times 10}{4 \times 10^{-4} \times 2 \times 10^{11}}}$
$=3 \sqrt{\frac{1}{8 \times 10^{6}}}=\frac{1}{200} \mathrm{rad}$

Sol 10: Let the mass of ice $=\mathrm{m}$ and water $=200-\mathrm{m}$ So $30 \mathrm{gm}(330-300)$ steam is introduced in the system. Latent heat of condensation for water $=\frac{2250}{4.2} \mathrm{cal} / \mathrm{gm}$ K.
$=535.71 \mathrm{cal} / \mathrm{gm} \mathrm{k}$.
Now, heat lost $=535.71 \times 30+30 \times 1 \times(100-50)$
$=17571.3 \mathrm{cal}$
So heat gained by The mixture $=0.1 \times 100 \times(50-0)+$ $m \times 80+200 \times 1(50-0)=500+10000+80 m$
$\Rightarrow 17571.3=10500+80 \mathrm{~m}$
$\Rightarrow \mathrm{M}_{\text {ice }}=88.4 \mathrm{gm}$
So $m_{\text {water }}=200-88.4=111.6 \mathrm{gm}$
So ratio $=88.4: 111.6=1: 1.26$

Sol 11: Heat required to fully melt the ice :
$2 \times 50 \times 0.5 \times(15)+2 \times 50 \times 80$
$=750+8000=8750 \mathrm{cal}$

Heat required to convert the water at $0^{\circ} \mathrm{C}$
$=250 \times 1 \times(25-0)$
$=250 \times 25=6250 \mathrm{cal}$
So the whole water will be converted at $0^{\circ} \mathrm{C}$
Now $6250-750=5500$ cal energy is coming from melting of ice
$\Rightarrow 5500=\mathrm{mL} \Rightarrow \mathrm{m}_{\mathrm{i}}=\frac{5500}{80}=68.75 \mathrm{gm}$
So ice melted $=68.75 \mathrm{gm}$
Ice remained $=100-68.75$
$=31.25 \mathrm{gm}$
And water $=250 \mathrm{gm}+68.75 \mathrm{gm}=318.75 \mathrm{gm}$

Sol 14: Let the mass = $m$.
So $100 \times 1 \times(90-24)$
$=m L+m .1 \times(100-90)$
$100 \times 66=540 \mathrm{~m}+10 \mathrm{~m}$.
$\Rightarrow \mathrm{m}=\frac{6600}{550}=12 \mathrm{gm}$.

Sol 15: (i) Now, from graph,
800 cal produces $80^{\circ} \mathrm{C}$ temperature diff.
$\Rightarrow \mathrm{m} . \mathrm{S} \times \Delta \mathrm{T}=\mathrm{E}$
$\Rightarrow \mathrm{m} \times 0.5 \times 1 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C} \times 80=800$
$\Rightarrow \mathrm{m}=20 \mathrm{gm}=0.02 \mathrm{Kg}$
(ii) Heat supplied $=1600-800=800 \mathrm{cal}$
$\Rightarrow 800=\mathrm{mL}_{\mathrm{f}}=\mathrm{L}_{\mathrm{f}}=40 \mathrm{cal} / \mathrm{gm}=40,000 \mathrm{cal} / \mathrm{kg}$.
(iii) $\mathrm{m} \cdot \mathrm{S}_{\ell} \cdot \Delta \mathrm{T}=\mathrm{E}$
$\Rightarrow 0.02 \times \mathrm{S}(120-80)=(2200-1600)$
$0.02 \times \mathrm{S} \times 40=\frac{600}{40}$
$S=\frac{600}{40 \times 0.02}=\frac{15 \times 100}{0.02}=750 \mathrm{cal} / \mathrm{kg}^{\circ} \mathrm{C}$

Sol 16:


Heat stored in system $=4+1.7-5.2=0.5 \mathrm{~kW}$

Now power $P=C_{p} \cdot \frac{d T}{d t}$
$\Rightarrow 0.5 \times 10^{3}=C_{p} \cdot 0.5$
$\Rightarrow C_{p}=10^{3} \mathrm{~J} /{ }^{\circ} \mathrm{C}=1000 \mathrm{~J} / \mathrm{K}$.
Sol 17: 70 litre $=70,000 \mathrm{~cm}^{3}=70,000 \mathrm{gm}$

$$
=70 \mathrm{~kg} \text {. of water }
$$

Now heat required per minute
$=\mathrm{m} \times \mathrm{S}_{\mathrm{w}} \cdot(\Delta \mathrm{T})$
$=70 \times 1000 \mathrm{cal} / \mathrm{kg}^{\circ} \mathrm{C} \times(90-10)$
$=70 \times 1000 \times 80$
$=56 \times 10^{5} \mathrm{cal} / \mathrm{min}$
Now, $0.32 x=56 \times 10^{5}$
$\Rightarrow \mathrm{x}=56 \times 10^{5} / 0.32=1.75 \times 10^{7} \mathrm{cal} / \mathrm{min}$
So $\mathrm{mH}=1.75 \times 10^{7}$.
$\Rightarrow \mathrm{m}=\frac{1.75 \times 10^{7}}{8400 \times 10^{3}}=\frac{1.75}{0.84}=2.08 \mathrm{~kg} / \mathrm{min}$
So for 1 hour $=2.08 \mathrm{~kg} \times 60=125 \mathrm{~kg} /$ hour.
So volume $=\frac{\text { Mass }}{\text { Density }}=\frac{125 \mathrm{~kg} / \text { hour }}{1.2 \mathrm{~kg} / \mathrm{m}^{3}}$
$=104.16 \times \mathrm{m}^{3} /$ hour
Sol 18:

$L_{T}=L_{A}+L_{B}$.
$\Rightarrow \frac{\mathrm{dL}_{T}}{\mathrm{dT}}=\frac{\mathrm{dL}_{\mathrm{A}}}{\mathrm{dT}}+\frac{\mathrm{dL}_{B}}{\mathrm{dT}}$
$=\alpha \cdot \mathrm{L}+(2 \alpha) \cdot(2 \mathrm{~L})=5 \alpha \lambda$.
Now $\frac{1}{\mathrm{~L}_{\mathrm{T}}} \cdot \frac{\mathrm{dL}_{T}}{\mathrm{dT}}=\frac{5 \alpha \mathrm{~L}}{3 \mathrm{~L}}=\frac{5 \alpha}{3}$
$\Rightarrow \alpha_{\mathrm{T}}=\frac{5 \alpha}{3}$
Sol 19: $T=2 \pi \sqrt{\frac{L}{g}}$
$\frac{\mathrm{dT}}{\mathrm{T}}=\frac{1}{2} \times \frac{\mathrm{dL}}{\mathrm{L}}$ [for small changes]
[for quantity
$A=a^{m} b^{n}$

$$
\left.\frac{d A}{A}=m \cdot \frac{d a}{a}+n \cdot \frac{d b}{b}\right]
$$

So $\frac{\mathrm{dL}}{\mathrm{L}}=(\alpha \cdot \Delta \mathrm{T})=10^{-6} \cdot(10)=10^{-5}$
$\Rightarrow \frac{\mathrm{dT}}{\mathrm{T}}=\frac{1}{2} \times 10^{-5}$
$\Rightarrow \mathrm{dT}=0.5 \times \frac{1}{2} \times 10^{-5}$
[Time period is increasing, so cock has been slowed down]

So in 0.5 sec it loses $\Rightarrow 0.5 \times \frac{1}{2} \times 10^{-5} \mathrm{sec}$
In $10^{6} \mathrm{sec}$ it loses $\Rightarrow \frac{0.5 \times \frac{1}{2} \times 10^{-5}}{0.5} \times 10^{6}=5 \mathrm{sec}$

Sol 20:


We have $\rho_{1} g \cdot h_{1}=\rho_{2} \cdot g \cdot h_{2}$
$\rho_{0} g h_{1}=\frac{\rho_{0} g \times h_{2}}{\left[1+10^{5}(\Delta \mathrm{~T})\right]}$
$h_{1}\left[1+10^{-3}\right]=h_{2}$
$\Rightarrow h_{2}=100+0.1=100.1 \mathrm{~cm}$
$\Rightarrow \Delta \mathrm{h}=100.1-100=0.1 \mathrm{~cm}$.

## Sol 21:



We have $=L_{0}(1+\alpha \Delta T)-L_{0}=L_{0}(\alpha \Delta T)$
And actual length $=L_{0}(1+\alpha \Delta T)=L$
So strain $=\frac{L_{0}(\alpha \Delta T)}{L_{0}(1+\alpha \Delta T)}=\frac{\alpha \Delta T}{1+\alpha \Delta T}$
$\Rightarrow$ Stress $=Y \times$ Strain $=\frac{Y \alpha \Delta T}{1+\alpha \Delta T}$
So compressions force $=\frac{A \times Y \alpha \Delta T}{1+\alpha \Delta T}=\frac{Y A \alpha \Delta T}{1+\alpha \Delta T}$
$=\frac{10^{11} \times 10^{-3} \times 10^{-6} \times 100}{1+10^{-6} \times 100}$
$=\frac{10^{4}}{1+10^{-4}}=10^{4} \mathrm{~N}$.

## Sol 22:



Now using Pythagoras theorem
$\ell_{2}^{2}=h^{2}+\frac{\ell_{1}^{2}}{4}$
Now after increasing temp T,

$$
\begin{aligned}
& \ell_{2}^{2}\left(1+\alpha_{2} \cdot \Delta \mathrm{~T}\right)^{2}=\mathrm{h}^{2}+\frac{\ell_{1}^{2}}{4}\left(1+\alpha_{1} \cdot \Delta \mathrm{~T}\right)^{2} \\
& \mathrm{~h}^{2}=\left(\ell_{2}^{2}-\frac{\ell_{1}^{2}}{4}\right)+2 \cdot\left[\ell_{2}^{2} \cdot \alpha_{2}-\frac{\ell_{1}^{2}}{4} \cdot \alpha_{1}\right] \Delta \mathrm{T} \\
& +\left[\ell_{2}^{2} \cdot \alpha_{2}^{2}-\frac{\ell_{1}^{2}}{4} \cdot \alpha_{1}^{2}\right](\Delta \mathrm{T})^{2}
\end{aligned}
$$

Now $h^{2}$ is independent of $\Delta T$
So, $\ell_{2}^{2} \cdot \alpha_{2}-\frac{\ell_{1}^{2}}{4} . \alpha_{1}=0$ [coeff. of $\Delta \mathrm{T}$ ]
[Now, as $(\Delta T)^{2}$ has coeff proportional to $\alpha^{2}$ and hence negligible]
$\Rightarrow \ell_{2}^{2} \cdot \alpha_{2}=\frac{\ell_{2}^{2} \cdot \alpha_{1}}{4} \Rightarrow \frac{\ell_{1}}{\ell_{2}}=2 \sqrt{\frac{\alpha_{2}}{\alpha_{1}}}$
Hence proved.

Sol 23: (i) Entire energy = Heat energy
So power $=m(0.1) \times \frac{d T}{d t}=180 \times 0.1 \times 0.5$
$=9 \mathrm{cal} / \mathrm{s}=9 \times 4.2$
$=37.8 \mathrm{~J} / \mathrm{s}=37.8 \mathrm{watts}$
(ii) We have $P=\tau \omega$

So $37.8=\tau \times \frac{180}{60} \times 2 \pi$
$\Rightarrow \tau=\frac{37.8}{6 \pi}=2.005 \mathrm{Nm}$.

Sol 24:


A


A

Now when both are mixed, $0^{\circ} \mathrm{C}$ will be the common temperature.

Now, Change in volume
$=A .(\Delta h)=\frac{m}{\rho_{i}}-\frac{m}{\rho_{w}}=\frac{m \cdot\left[\rho_{w}-\rho_{i}\right]}{\rho_{i} \cdot \rho_{w}}$
Where $\mathrm{m}=$ Mass of ice melted,
$\Rightarrow m=\frac{A(\Delta h) \rho_{i} \rho_{w}}{\left(\rho_{w}-\rho_{i}\right)}$
So energy gained by this much ice
$=m L=\frac{A(\Delta h) \rho_{i} \rho_{w} \times L}{\left(\rho_{w}-\rho_{i}\right)}$
Conservation of energy $\Rightarrow$
Energy by ice to change temp. + Energy to melt = Energy to convert water temp to $0^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \rho_{i} \cdot A \cdot h \cdot S_{i} \cdot(0+20)+\frac{A \cdot(\Delta h) \cdot \rho_{i} \cdot \rho_{w} \cdot L}{\left(\rho_{v}-\rho_{i}\right)} \\
& =\rho_{w} \cdot A \cdot h \cdot S_{w} \cdot \theta \\
& \Rightarrow \rho_{i} \cdot h \cdot S_{i} \cdot 20+\frac{\Delta h \cdot \rho_{i} \rho_{w} \cdot L}{\left(\rho_{v}-\rho_{i}\right)}=\rho_{w} \cdot h \cdot S_{w} \cdot \theta \\
& \Rightarrow \theta=\frac{\rho_{i} \cdot S_{i} \times 20}{\rho_{w} \times S_{w}}+\left(\frac{\Delta h}{h}\right) \frac{\rho_{i}}{\left(\rho_{w}-\rho_{i}\right)} \cdot \frac{L}{S_{w}} \\
& =9+36=45^{\circ} \mathrm{C}
\end{aligned}
$$

Sol 25: Pressure at the bottom of $A$ is same from both the sides.

$$
\begin{aligned}
& \rho_{A} \cdot g \cdot h_{A}=\rho_{0} \cdot g \cdot h_{0}-\rho_{c} \cdot g \cdot h_{C}+\rho_{B} \cdot g \cdot h_{B} \\
& \rho_{A} h_{A}=\rho_{0} \cdot h_{0}-\rho_{C} h_{C}+\rho_{B} \cdot h_{B}\left[\rho_{B}=\rho_{0}=\rho_{0}\right] \\
& \frac{\rho_{0}}{[1+\alpha \cdot(95-5)]} \cdot h_{A}=\rho_{0} \cdot h_{D}-\frac{\rho_{0} \cdot h_{C}}{1+\alpha(95-5)}+\rho_{0} \cdot h_{B} \\
& \frac{h_{A}}{(1+90 \alpha)}=h_{0}-\frac{h_{C}}{(1+90 \alpha)}+h_{B} \\
& \Rightarrow \frac{\left(h_{A}+h_{C}\right)}{(1+90 \alpha)}=\left(h_{0}+h_{B}\right) \\
& \frac{52.8+49}{1+90 \alpha}=(51+49) \\
& \Rightarrow 1+90 \alpha=\frac{52.8+49}{100} \\
& 1+90 \alpha=\frac{101.8}{100} \Rightarrow 90 \alpha=\frac{1.8}{100} \\
& \Rightarrow \alpha=0.2 \times 10^{-3} \\
& =2 \times 10^{-4} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Sol 26: Let the density at $0^{\circ} \mathrm{C}=\rho_{0}$
Then density at $100^{\circ} \mathrm{C}=\frac{\rho_{0}}{1+\gamma \cdot \Delta \mathrm{T}}$
$=\frac{\rho_{0}}{1+0.1}=\frac{\rho_{0}}{1.1}$
Density at some temperature
$T=\frac{\rho_{0}}{1+\gamma \cdot(T-0)}=\frac{\rho_{0}}{(1+\gamma T)}$
And from heat transfer.
$300 \rho_{\mathrm{o}} \mathrm{S}(\mathrm{T}-0)=\frac{110 \rho_{\mathrm{o}}}{1.1} \mathrm{~S}(100-\mathrm{T})$
$300 \mathrm{~T}=100(100-\mathrm{T})$
$\Rightarrow 400 \mathrm{~T}=100 \times 100$
$\Rightarrow \mathrm{T}=25^{\circ} \mathrm{C}$
Now from the expansion and contraction we have
$\mathrm{V}=\mathrm{V}_{\mathrm{O}_{1}}\left(1+\alpha \Delta \mathrm{T}_{1}\right)+\mathrm{V}_{\mathrm{o}_{2}}\left(1+\alpha \Delta \mathrm{T}_{2}\right)$
$V=V_{0_{1}}+V_{o_{2}}$
$\Rightarrow \mathrm{V}-\mathrm{V}_{0}=\Delta \mathrm{V}=\mathrm{V}_{\mathrm{O}_{1}} \alpha \Delta \mathrm{~T}_{1}+\mathrm{V}_{\mathrm{o}_{2}} \alpha \Delta \mathrm{~T}_{2}$
$=300 \times 0.001 \times 25+110 \times 0.001 \times(-75)$
$=-0.75 \mathrm{~cm}^{3}$
So the volume decreases by $0.75 \mathrm{~cm}^{3}$

## Exercise 2

## Single Correct Choice Type

Sol 1: (A)

$r_{\text {com }}=\frac{a-x}{2}+x=\frac{a+x}{2}$
Now $\sigma_{x} \times A=F$ required for centripetal force

So $\sigma_{x} \times A=\rho \cdot(a-x) \cdot \omega^{2} \frac{(a+x)}{2}$
$\Rightarrow \sigma_{x}=\frac{\rho \cdot\left(a^{2}-x^{2}\right)}{2 A} \omega^{2} \quad \Rightarrow$ Quadratic

Sol 2: (C) Stress $=y \times$ Strain
$\Rightarrow \frac{\mathrm{F}}{\mathrm{A}}=\mathrm{y} \times \frac{\Delta \ell}{\ell} \Rightarrow \frac{\mathrm{F}}{\Delta \ell}=$ Slope $=\frac{A y}{\ell}$

Sol 3: (D) Heat $=\mathrm{mL}_{1}+\left(\mathrm{m}_{\mathrm{w}}+\mathrm{m}_{\mathrm{c}}\right) \cdot \mathrm{C}_{\mathrm{w}} \cdot \Delta \mathrm{T}+\mathrm{mL}_{\mathrm{v}}$
$=10 \times 80+(10+10) \times 1 \times 100+10 \times 540$
$=800+5400+2000=8200 \mathrm{cal}$

Sol 4: (A) $\Delta H=m L$.
$\Rightarrow \frac{\mathrm{dH}}{\mathrm{dt}}=\frac{\mathrm{dm}}{\mathrm{dt}} \times \mathrm{L}=80 \times 0.1 \mathrm{gm} / \mathrm{sec}$ $=8 \mathrm{cal} / \mathrm{sec}$

So total heat supplied $=800 \mathrm{cal}(8 \times 100 \mathrm{sec})$
So $800 \mathrm{cal}=\mathrm{m} \times \mathrm{L} \Rightarrow \mathrm{m}=10 \mathrm{gm}$
So $\frac{\mathrm{dH}}{\mathrm{dt}}=\mathrm{mS} \frac{\mathrm{dT}}{\mathrm{dt}}=10 \times 1 \mathrm{cal} / \mathrm{gm} \mathrm{K}^{-1} \times \frac{\mathrm{dT}}{\mathrm{dt}}=8$
$\Rightarrow \frac{\mathrm{dT}}{\mathrm{dt}}=0.8^{\circ} \mathrm{C} / \mathrm{sec}$

Sol 5: (A) Let the heat capacity of the flask be m
Then $L=$ Latent heat of fusion
Then
$50 L+50(40-0)=$
$200 \times(70-40)+(70-40) \times m$
$\Rightarrow 50 \mathrm{~L}+2000=6000+30 \mathrm{~m}$
$\Rightarrow 5 \mathrm{~L}=3 \mathrm{~m}+400$
And
$80 L+80(10-0)=250 \times(40-10)+m(30)$
$\Rightarrow 80 \mathrm{~L}+800=7500+30 \mathrm{M}$
$\Rightarrow 8 \mathrm{~L}=3 \mathrm{M}+670$
$\Rightarrow 8 \mathrm{~L}=5 \mathrm{~L}-400+670$
$\Rightarrow \mathrm{L}=90 \mathrm{cal} / \mathrm{gm}$
$\Rightarrow 90 \times 4.2 \times 10^{3} \mathrm{~J} / \mathrm{kg}=3.8 \times 10^{5} \mathrm{~J} / \mathrm{Kg}$
Sol 6: $(D)$ Slope $=\frac{\Delta T}{H} \Rightarrow$ Increase of heat capacity

Sol 7: (A) Assuming all potential energy is converted to heat energy
$\mathrm{mgh}=\frac{\mathrm{mL}}{5} \Rightarrow \mathrm{~h}=\mathrm{L} / 5 \mathrm{~g}$
Sol 8: (C) Vap. $\Rightarrow$ between 20-30 min
$\Rightarrow$ Heat supp $=(30-20) \times 42 \mathrm{KJ}=420 \mathrm{~kJ}$
$\Rightarrow \mathrm{mL}=420$
$\Rightarrow \mathrm{L}=84$

Sol 9: (D) 8 volumes of $A=12$ volume of $B$
$\Rightarrow 2$ volumes of $A=3$ volumes of $B$
So, suppose the volume V ,
Then $C_{2 v}=C_{3 v}$
Thus, $\rho_{A} \cdot(2 \mathrm{~V}) \cdot \mathrm{S}_{\mathrm{A}}=\rho_{\mathrm{B}} \cdot(3 \mathrm{~V}) \cdot \mathrm{S}_{\mathrm{B}}$
$\Rightarrow 1500 \times 2 \mathrm{~S}_{\mathrm{A}}=3 \times 2000 \times \mathrm{S}_{\mathrm{B}}$
$\Rightarrow S_{A} / S_{B}=2 / 1$
Sol 12: (B) We have, $\frac{\Delta \mathrm{L}}{\mathrm{L}}=\alpha \Delta \mathrm{T}=0.01$
So $\frac{\mathrm{dA}}{\mathrm{A}}=2 \alpha \Delta \mathrm{~T}=0.02$
Sol 13: $\mathbf{( A )}$ Let the length be $=\mathrm{L}$
Now L ( $1+2 \times 10^{-6} \times 40$ )
$=100 \mathrm{~mm} .\left(1+12 \times 10^{-6} \times 40\right)$
L is Length at $40^{\circ} \mathrm{C}$
$\Rightarrow L=100 \times \frac{\left(1+12 \times 10^{-6} \times 40\right)}{\underline{\left(1+2 \times 10^{-6} \times 40\right)}}$
$\Rightarrow \mathrm{L}>100 \mathrm{~mm}$

Sol 14: (C) $B_{A B C D}=B_{E F G H}=\alpha_{x}+\alpha_{y}$
$=3 \times 10^{-5}$
(A) and (B) are incorrect.

Also $B_{\text {BCGH }}=\alpha_{y}+\alpha_{z}=(2+3) \times 10^{-5}$
$=5 \times 10^{-5} \Rightarrow(B)$ incorrect.
(C) $\Rightarrow \alpha_{x}+\alpha_{y}=(2+1) \times 10^{-5}=3 \times 10^{-5}$
(C) is correct.

Sol 15: (C) We have, $x-\gamma_{c}=C$
And $x-\gamma_{\mathrm{s}}=\mathrm{S}$

$$
\Rightarrow C+\gamma_{c}-\gamma_{\mathrm{s}}=\mathrm{S}
$$

$\Rightarrow \gamma_{\mathrm{S}}=\left(\mathrm{C}+\gamma_{\mathrm{c}}-\mathrm{S}\right)$
$\Rightarrow \alpha_{\mathrm{s}}=\frac{\left(\mathrm{C}+\gamma_{\mathrm{c}}-\mathrm{S}\right)}{3}$; (C)
Sol 16: (A) Volume of sphere
$=\frac{4 \pi}{3} \times \mathrm{R}^{3}=\frac{4}{3} \times \frac{22}{3} \times\left(\frac{7}{2}\right)^{3}=179.66\left(\mathrm{~m}^{3}\right)$
So density of sphere $=1.4833$
Now, the density of sphere = Density of water (for just scenting)
$\Rightarrow 1.4833 \mathrm{gm} / \mathrm{cm}^{3}=\frac{1.527}{1+\gamma . \Delta \mathrm{T}}=\frac{1.527}{1+35 \gamma}$
$\Rightarrow \gamma=8.486 \times 10^{-4}$
Sol 17: (B) Change in volume of Mercury $=\mathrm{V}_{0} \gamma_{m} \cdot \mathrm{~T}$
Change in volume of bulb $=\mathrm{V}_{0} 3 \alpha_{\mathrm{g}}{ }^{\top}$
So excess volume of mercury $=V_{0}\left(\gamma_{m}-3 \alpha_{g}\right) T$
And new area of glass $=\mathrm{A}_{0}\left(1+2 \alpha_{g} \mathrm{~T}\right)$
$\Rightarrow$ Length $=\frac{V_{0} \cdot\left(\gamma_{m}-3 \alpha_{g}\right) T}{A_{0}\left(1+2 \alpha_{g} T\right)}$
Sol 18: (C) $3 \alpha_{B}=10^{-3}{ }^{\circ} \mathrm{C}^{-1}$ and $3 \alpha_{c}=3 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$
So when heated, the ratio of volumes increases by
benzene $=3 \alpha_{\mathrm{B}} \cdot \Delta \mathrm{T}=10^{-2}$
(Cylindrical vessel $=3 \times 10^{-2}$ )
so new vol : Benzene $=10^{-2} V_{0}+V_{0}$
$($ Cylindrical vessel $)=\left(1+3 \times 10^{-2}\right) v_{0}$
Change in volume $=2 \times 10^{-2} V_{0}$.
So the height will decrease as the volume of cylindrical vessel would be more.

Sol 19: (B) We have $\Delta L=L \alpha \Delta T$
$\Rightarrow 0.075=20 \times \alpha_{A} \times 100$
$3.75 \times 10^{-5}=\alpha_{A}$
And $0.045=20 \times \alpha_{B} \times 100$
$\Rightarrow 2.25 \times 10^{-5}=\alpha_{B}$
Now, let the length of A part be x com.
so $\Delta \mathrm{L}=\mathrm{x} \cdot \alpha_{\mathrm{A}} \cdot \Delta \mathrm{T}+(20-\mathrm{x}) \alpha_{\mathrm{B}} \cdot \Delta \mathrm{T}$
$0.06=20 \alpha_{B} \cdot \Delta \mathrm{~T}+\mathrm{x} \cdot \Delta \mathrm{T}\left(\alpha_{\mathrm{A}}-\alpha_{B}\right)$
$0.06=0.045+x \times 100 .\left[1.5 \times 10^{-5}\right]$
$\Rightarrow 0.015=\mathrm{x} \times 1.5-10^{-3}$
$\Rightarrow x=10 \mathrm{~cm}$

Sol 20: (D) Now the volume of air is same
$\Rightarrow \Delta \mathrm{V}=$ Same (independent of $\Delta \mathrm{T}$ )
change in vol. of mercury - change in vol of glass $=0$
$\Rightarrow \gamma_{\mathrm{m}} \cdot \mathrm{V}_{\mathrm{m}} \cdot \Delta \mathrm{T}-\gamma_{g} \cdot \mathrm{~V}_{g} \cdot \Delta \mathrm{~T}=0$
$\Rightarrow \gamma_{\mathrm{m}} \cdot \mathrm{V}_{\mathrm{m}}=\gamma_{\mathrm{g}} \cdot \mathrm{V}_{\mathrm{g}}$
$\Rightarrow 1.8 \times 10^{-4} \times 300=\mathrm{x} \times 9 \times 10^{-6}$
$\Rightarrow \mathrm{x}=20 \times 300=6000 \mathrm{~cm}^{3}$

Sol 21: (C) We have
$\rho_{1} \mathrm{gh}_{1}=\rho_{2} g \mathrm{~h}_{2} \quad$ [pressure is same]
$\Rightarrow \rho_{0} \times \mathrm{g} \times 120=\frac{124 \times \mathrm{g} \times \rho_{0}}{(1+\gamma . \Delta \mathrm{T})}$
$\Rightarrow(1+\gamma \cdot \Delta \mathrm{T})=\frac{124}{120}$
$\Rightarrow \gamma \cdot \Delta \mathrm{T}=\Rightarrow \gamma=\frac{1}{900}$

## Multiple Correct Choice Type

Sol 22: (A, C)


Stress in steel $=\frac{\mathrm{F}}{2 \mathrm{~A}}$, stress in copper $=\frac{\mathrm{F}}{\mathrm{A}}$
Strain in steel $=\frac{F}{2 A E}$, strain in copper $=\frac{F}{A E}$
Extension $=\frac{\mathrm{L}_{0} \cdot \mathrm{~F}}{2 \mathrm{AE}}$, extension in copper $=\frac{2 \mathrm{~L}_{0} \cdot \mathrm{~F}}{\mathrm{AE}}$

Sol 23: (A, B, C)


Now $T_{B}=F=m g / 3$
And $T_{A}=m g+T_{B}=\frac{4 m g}{3}$
Now, if $r_{A}=r_{B}$ then as $T_{B}<T_{A^{\prime}}$ the $\sigma_{A}>\sigma_{B}$ and hence $A$ will break.

more $\sigma$
If $r_{A}>2 r_{B} \Rightarrow \sigma_{A}>\sigma_{B} \Rightarrow(B)$
If $r_{A}=2 r_{B}$
$\Rightarrow \sigma_{\mathrm{A}}=\sigma_{\mathrm{B}}$ and either rope can break.

Sol 24: (B, C)


New length
$=L_{0}(1+\alpha \Delta T)$ and change in length $=\Delta L$
$=L_{0} \alpha \Delta T$
So strain in each rod $=\left(\frac{\alpha \Delta T}{1+\alpha \Delta T}\right)$
$\Rightarrow$ Stress $=\mathrm{E}\left(\frac{\alpha \Delta \mathrm{T}}{1+\alpha \Delta \mathrm{T}}\right)$
And Force $=\frac{\text { A.E. }(\alpha \Delta \mathrm{T})}{(1+\alpha \Delta \mathrm{T})}$
So, (B) Energy
$=\underbrace{\frac{1}{2} \times \text { Stress } \times \text { strain }}_{\text {Same for all }} \times \underbrace{\text { Volume } .}_{\mathrm{A} \times \ell}$
Same
for all

So Energy $\alpha$ area $\Rightarrow(C)$

Sol 25: $(A, C, D)(A)$ Stress $=\frac{M g}{A}$, strain $=\frac{\ell}{L}$
So energy stored $=\frac{1}{2} \times \frac{\mathrm{mg}}{\mathrm{A}} \times \frac{\ell}{2} \times \mathrm{AL}=\frac{\mathrm{mg} \ell}{2}$

Sol 26: (D) No kinetics involved

Sol 27: (A, C, D) $\beta=2 \alpha \Rightarrow$ (A)
(C) $\Rightarrow \beta=3 \alpha \Rightarrow$ (C)
$0.002=\alpha \Delta \mathrm{T}=\alpha \times 80$
$\Rightarrow \alpha=\frac{2}{8} \times 10^{-4} \Rightarrow 0.25 \times 10^{-4}$

Sol 28: (B) $\left(\rho_{\ell}\right)(\mathrm{V} / 2) \times \mathrm{g}=\left(\rho_{\mathrm{s}}\right) \times \mathrm{V} \times \mathrm{g}$
$\Rightarrow \rho_{\ell}=2 \rho_{\mathrm{s}}$.

Sol 29: (D) Let the fraction be f, $\Delta \mathrm{T}=$ Change in temp
So $\frac{\rho_{L}}{\left(1+\gamma_{L} \Delta T\right)} \cdot(f . v) \times g=\frac{\rho_{S}}{\left(1+\gamma_{S} \Delta T\right)} v \times g$
$\Rightarrow f=\frac{\rho_{\mathrm{s}}}{\rho_{\mathrm{L}}} \cdot \frac{\left(1+\gamma_{\mathrm{L}} \Delta \mathrm{T}\right)}{\left(1+\gamma_{\mathrm{S}} \Delta \mathrm{T}\right)}$
$f=\frac{1}{2} \times \frac{\left(1+r_{L} \Delta T\right)}{\left(1+r_{S} \Delta T\right)}$
Now the f depends on whether
$\gamma_{L}>\gamma_{S}$ or $\gamma_{S}>\gamma_{L}$

Sol 30: (A) We have
$\frac{1+\gamma_{L}{ }^{\top}}{1+\gamma_{S}{ }^{\top}}=1$ for all T .
$\Rightarrow \gamma_{\mathrm{L}}=\gamma_{\mathrm{S}} \Rightarrow \gamma_{\mathrm{L}}=3 \alpha_{\mathrm{s}}$.
Sol 31: (A) We have

$$
\begin{aligned}
& \frac{\rho_{\ell}}{\left(1+\gamma_{L} \cdot \Delta T\right)} \cdot A_{0}\left(1+2 \alpha_{s} \Delta T\right) \cdot h \cdot g=\rho_{\ell} \cdot A_{0} \cdot h \times g \\
& \Rightarrow 1+2 \alpha_{s} \Delta T=1+\gamma_{L} \Delta T \\
& \Rightarrow \gamma_{L}=2 \alpha_{s}
\end{aligned}
$$

Sol 32: (A) Correct explanation.

Sol 33: (A) Refer theory.

Sol 34: (A) Statement-I may be true statement-II is true. But statement-I is only possible when $\beta \omega>B_{c}$

Sol 35: (B) Factual

Sol 36: (B) $\mathrm{L}_{\mathrm{f}}=80 \mathrm{cal} / \mathrm{gm}=80 \times 4.2 \times 10^{3}$
$=8 \times 4.2 \times 10^{4} \mathrm{~J} / \mathrm{kg}$
$=336000$

Sol 37: (D) for mass > 1 kg
We have thermal capacity $=$ m.S.
$\Rightarrow$ Thermal cap > S

## Previous Years' Questions

Sol 1: (B, D) Let $\ell_{0}$ be the initial length of each strip before heating. Length after heating will be

$\ell_{B}=\ell_{0}\left(1+\alpha_{B} \Delta T\right)=(R+d) \theta$
and $\ell_{C}=\ell_{0}\left(1+\alpha_{c} \Delta \mathrm{~T}\right)=R \theta$
$\therefore \quad \frac{R+d}{R}=\left(\frac{1+\alpha_{B} \Delta T}{1+\alpha_{c} \Delta T}\right)$
$\therefore \quad 1+\frac{d}{R}=1+\left(\alpha_{B}-\alpha_{C}\right) \Delta T$
[From binomial expansion]
$\therefore \quad R=\frac{d}{\left(\alpha_{B}-\alpha_{C}\right) \Delta T}$
or $\quad R \propto \frac{1}{\Delta T} \propto \frac{1}{\left|\alpha_{B}-\alpha_{C}\right|}$
Sol 2: Heat liberated when 300 g water $25^{\circ} \mathrm{C}$ goes to water at $0^{\circ} \mathrm{C}: \mathrm{Q}=\mathrm{ms} \Delta \theta=(300)(1)(25)=7500$ call

From $Q=m L$, this much heat can melt mass of ice given by
$\mathrm{m}=\frac{\mathrm{Q}}{\mathrm{L}}=\frac{7500}{80}=93.75 \mathrm{~g}$
i.e., whole ice will not melt.

Hence, the mixture will be at $0^{\circ} \mathrm{C}$

Mass of water in mixture
$=300+93.75=393.75 \mathrm{~g}$ and
Mass of ice in mixture
$=100-93.75=6.25 \mathrm{~g}$

Sol 3: Heat lost in time $t=P t=M L$
$\therefore \quad L=\frac{P t}{M}$

Sol 4: $C_{p}=C_{v}+R \therefore C_{p}>C_{v}$

Sol 5: Let $m$ be the mass of the steam required to raise the temperature of 100 g of water from $24^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$.
Heat lost by steam $=$ Heat gained by
Water $\therefore m\left(L+s \Delta \theta_{1}\right)=100 s \Delta \theta_{2}$
or $m=\frac{(100)(s)\left(\Delta \theta_{2}\right)}{L+s\left(\Delta \theta_{1}\right)}$
Here, $s=$ Specific heat of water $=1 \mathrm{cal} / \mathrm{g}-{ }^{\circ} \mathrm{C}$,
$\mathrm{L}=$ Latent heat of vaporization $=540 \mathrm{cal} / \mathrm{kg}$.
$\Delta \theta_{1}=(100-90)=10^{\circ} \mathrm{C}$
and $\Delta \theta_{2}=(90-24)=66^{\circ} \mathrm{C}$
Substituting the values, we have
$m=\frac{(100)(1)(66)}{(540)+(1)(10)}=12 \mathrm{~g}$
$\therefore \quad \mathrm{m}=12 \mathrm{~g}$

Sol 6: When the temperature is increased, volume of the cube will increase while density of liquid will decrease. The depth upto which the cube is submerged in the liquid remains the same.

Upthrust $=$ Weight. Therefore, upthrust should not change
$F=F^{\prime}$
$\therefore \mathrm{V}_{\mathrm{i}} \rho_{\mathrm{L}} \mathrm{g}=\mathrm{V}^{\prime}{ }_{\mathrm{i}} \rho_{\mathrm{L}} \mathrm{g}\left(\mathrm{V}_{\mathrm{i}}=\right.$ volume immersed $)$
$\therefore\left(A h_{i}\right)\left(\rho_{\mathrm{L}}\right)(\mathrm{g})$
$=A\left(1+2 \alpha_{s} \Delta T\right)\left(h_{i}\right)\left(\frac{\rho_{L}}{1+\gamma_{1} \Delta T}\right) g$
Solving this equation, we get $\gamma_{1}=2 \alpha_{\mathrm{s}}$

Sol 7: 0.05 kg steam at 373 K
$\xrightarrow{\mathrm{Q}_{1}} 0.05 \mathrm{~kg}$ water at 373 K
0.05 kg water at 373 K
$\xrightarrow{\mathrm{Q}_{2}} 0.05 \mathrm{~kg}$ water at 273 K
0.45 kg ice at 253 K
$\xrightarrow{\mathrm{Q}_{3}} 0.45 \mathrm{~kg}$ ice at 273 K
0.45 kg ice at 273 K
$\xrightarrow{\mathrm{Q}_{4}} 0.45 \mathrm{~kg}$ water at 273 K
$\mathrm{Q}_{1}=(50)(540)=27,000$
$\mathrm{Q}_{2}=(50)(1)(100)=5000$
$\mathrm{Q}_{3}=(450)(0.5)(20)=4500$
$\mathrm{Q}_{4}=(450(80)=36000$
Now since $\mathrm{Q}_{1}+\mathrm{Q}_{2}>\mathrm{Q}_{3}$ but $\mathrm{Q}_{1}+\mathrm{Q}_{2}<\mathrm{Q}_{3}+\mathrm{Q}_{4}$ ice will come to 273 K from 253 K , but whole ice will not melt. Therefore, temperature of the mixture is 273 K .

Sol 8: Language of question is slightly wrong. As heat capacity and specific heat are two different physical quantities. Unit of heat capacity is $\mathrm{J}-\mathrm{kg}^{-1}$ not $\mathrm{J}-\mathrm{kg}^{-1} \mathrm{-}^{\circ} \mathrm{C}^{-1}$. The heat capacity given in the question is really the specific heat. Now applying the heat exchange equation.
$420=\left(m \times 10^{-3}\right)(2100)(5)+\left(1 \times 10^{-3}\right)\left(3.36 \times 10^{5}\right)$
Solving this equation we get, $m=8 g$
$\therefore \quad$ The correct answer is 8 .

## Sol 9: (9)


$\frac{d m_{\text {ice }}}{d t}=\frac{d m_{\text {vapour }}}{d t}$
$\frac{400 \mathrm{kS}}{\lambda \times \mathrm{L}_{\text {ice }}}=\frac{300 \mathrm{kS}}{(100-\lambda) \mathrm{xL}_{\text {vapour }}}$
$\lambda=9$
Sol 10: (3) Change in length $\Delta L=\frac{M g L}{Y A}=L \propto \Delta T$
$\therefore \mathrm{m} \approx 3 \mathrm{~kg}$

Sol 11: (A) Rate of radiation energy lost by the sphere
$=$ Rate of radiation energy incident on it
$\Rightarrow \sigma \times 4 \pi r^{2}\left[\mathrm{~T}^{4}-(300)^{4}\right]=912 \times \pi r^{2}$
$\Rightarrow \mathrm{T}=\sqrt{11} \times 10^{2} \approx 330 \mathrm{~K}$

Sol 12: (A, D) If the temperature distribution was uniform (assuming a uniform cross section for the filament initially) the rate of evaporation from the
surface would be same everywhere. But because the filaments break at random locations; it follows that the cross-sections of various filaments are non-uniform.

$\delta R(x)=\rho \frac{\delta \mathrm{x}}{\pi r(\mathrm{x})^{2}}$
The temperature of points $A$ and $B$ are decided by ambient temperature are identical. Then the average heat flow through the section S is O . After sufficiently long time, this condition implies that the temperature across the filament will be uniform. If the instantaneous current is $i(t)$ through the filament then by conservation of energy :
$\left.\frac{\left(V_{B}-V_{A}\right)^{2}}{R(t)^{2}} \times \frac{d x}{\kappa \pi r(x)^{2}}=e \sigma 2 \pi r 9 x\right) \cdot \delta(x) T^{4}+\rho \pi r(x)^{2} \cdot d x L_{v}$
in above $\kappa=$ Material conductivity
$R(t)=$ Resistance of whole filament as a function of time
$\rho=$ Material density
$L_{v}=$ Latent heat of vapourisation for the material at temperature $T$

Since $R(t)$ increases with time
$P(t)=\frac{\left(V_{B}-V_{A}\right)^{2}}{R(t)}$ decreases

Sol 13: (A) Let temperature of junction $=T$


Rate of heat transfer $=\frac{d Q}{d t}=\frac{2 K A(T-10)}{L}=\frac{K A(400-T)}{L}$
$\Rightarrow 2(\mathrm{~T}-10)=400-\mathrm{T}$
$3 \mathrm{~T}=420$
$T=140^{\circ} \mathrm{C}$
For wire PQ

$\frac{\Delta \mathrm{T}}{\Delta \mathrm{x}}=\frac{140-10}{1}=130$
Temp. at distance x
$\mathrm{T}=10+130 \mathrm{x}$
$\mathrm{T}-30=130 \mathrm{x}$
Inc. in length of small element

$$
\frac{d y}{d x}=\propto \Delta T
$$

$$
\frac{d y}{d x}=\propto(T-10)
$$

$$
\frac{d y}{d x}=\propto(130 x)
$$

$\int_{0}^{\Delta L} d y=130 \propto \int_{0}^{L} x d x$
$\Delta \mathrm{L}=\frac{130 \propto \mathrm{x}^{2}}{2}$
$\Delta \mathrm{L}=\frac{130 \times 1.2 \times 10^{-5} \times 1}{2}$
$\Delta \mathrm{L}=78 \times 10^{-5} \mathrm{~m}=0.78 \mathrm{~mm}$

